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The digital soil electrical conductivity (EC) map has been widely applied 

in agriculture globally due to its ability to explain various soil 

characteristics. However, the Mekong Delta lacks comprehensive data on 

soil EC. This study aims to address this gap by using the common 

interpolation method —K-Nearest Neighbors (KNN), Inverse Distance 

Weighting (IDW), Kriging interpolation, and Convolutional Neural 

Networks (CNN)—to map soil EC over an area of approximately 1.4 

hectares. Using 228 data samples, the study found that the Gaussian model 

within Kriging was the most effective for interpolating soil EC, achieving 

the highest R-squared values (0.79 with test data and 0.96 with full data) 

and the lowest RMSE values (0.049 with test data and 0.022 with full data). 

Additionally, GPS data collection using the U-blox ZED-F9P-01B GPS 

module, paired with the U-blox ANN-MB-00 antenna, yielded better 

accuracy and reliability under rice field conditions (Q=1) compared to the 

performance in orchard settings. This research provides valuable insights 

into soil management and agricultural practices in the Mekong Delta. 
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1. INTRODUCTION 

Digital soil maps (DSM) have become a popular 

tool in modern agriculture and can be applied on 

both local and global scales (Wadoux et al., 2020). 

Field mapping to monitor temporal variability is 

essential for various soil assessments, such as 

planning soil sampling to evaluate soil quality, and 

site-specific soil management and remediation 

strategies (Corwin & Scudiero, 2020). Soil 

conductivity is an important indicator in agriculture, 

related to many soil attributes, such as salt content, 

moisture, and soil texture (Corwin & Plant, 2005). 

In non-saline conditions, EC primarily reflects soil 

properties such as fertilizer content, nutrients, and 

chemical characteristics, providing valuable 

insights for soil and crop management (Corwin & 

Lesch, 2005; Rhoades & Corwin, 1990). The EC 

value in soil is not completely stable over time, as it 

can be influenced by several factors, including 

fertilization, irrigation, and weather conditions 

(Corwin & Plant, 2005). There are various methods 

for measuring soil conductivity in the field, with the 

use of electrodes being common due to its simplicity 

and high reliability (Corwin & Scudiero, 2020; 

Olaojo & Oladunjoye, 2022). Numerous studies 

have focused on mapping soil conductivity and its 

applications in modern agriculture. 

Inverse Distance Weighting (IDW) is a spatial 

interpolation technique widely used to estimate 

values at unknown locations based on known 

sample points, under the assumption that values 

closer to the estimated point have greater influence 

than those farther away (Ismain et al., 2023). This 

method has been applied in various research 

contexts, such as mapping particulate matter in 

megacities like Delhi (Shukla et al., 2020) and the 
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Klang Valley (Ismain et al., 2023), as well as in 

characterizing soil pollution, including the spatial 

distribution of chromium in soil (Chen et al., 2023)  

and lead in urban soil (Magno & Budianta, 2023). 

Studies suggest that IDW is particularly suitable for 

research with a limited number of samples. 

However, most studies are conducted on large areas 

and have not demonstrated effectiveness in smaller 

areas, such as fields in the Mekong Delta. 

Kriging interpolation techniques, a widely used 

geostatistical method in spatial data analysis, play a 

crucial role in estimating values at unsampled 

locations based on known data points. In 

environmental science and agronomy, Kriging has 

been extensively applied to map soil nutrients, 

predict soil properties, and assess spatial variability. 

For example, Sharma et al. (2022) used Kriging 

interpolation to map soil nutrients in central India, 

optimizing prediction errors through cross-

validation iterations. Similarly, studies by Yuan  et 

al. (2022) demonstrated the utility of ordinary 

Kriging in interpolating spatial variations of soil 

contaminants at polluted sites, showing its 

effectiveness in environmental monitoring and soil 

pollution research. Although this method is 

effective, it is necessary to choose an appropriate 

variogram model for each different subject. 

K-Nearest Neighbors (KNN) is a widely used 

algorithm in various fields, such as materials 

science, optics, chemistry, remote sensing, and 

computer science. This method involves finding the 

K-nearest data points in feature space to make 

predictions or classifications. KNN has been used to 

map wildfire areas and burned regions, 

demonstrating its effectiveness in environmental 

monitoring applications (Pacheco et al., 2021). 

Furthermore, KNN has been employed to assess tree 

cover density in Sri Lanka, although the Support 

Vector Machine (SVM) method using Sentinel-2 

satellite imagery showed promising results with 

high accuracy (Premakantha et al., 2023). Similar to 

the two methods presented above, most studies are 

conducted in large-area conditions but have not 

demonstrated effectiveness in small-scale area 

conditions. 

In various fields, Convolutional Neural Networks 

(CNNs) have become a powerful tool because of 

their ability to efficiently extract features from data. 

In remote sensing, One-dimension (1D) CNNs have 

been successfully used to assess flood susceptibility, 

showing high accuracy in predicting such events, as 

demonstrated in a study conducted on the island of 

Euboea, Greece (Tsangaratos et al., 2023). This 

study confirmed that 1D CNNs provide higher 

accuracy (0.924) compared to LR (0.904) and 

DLNN (0.899) (Tsangaratos et al., 2023). Although 

convolutional neural networks have proven to be 

highly effective under large data conditions, it is 

necessary to conduct research on small-scale field 

plots to compare their effectiveness with traditional 

models. 

The purpose of this study is to apply KNN, IDW, 

Kriging, and CNN methods in mapping soil EC on 

a small scale under cultivation conditions in the 

Mekong Delta. Each method will be implemented 

with various configurations to select the best model 

for each method. Consequently, the most effective 

solution for mapping soil EC under these conditions 

will be proposed. Additionally, GPS data collection 

will be tested and applied using the U-blox ZED-

F9P-01B GPS module and the U-blox ANN-MB-00 

antenna under real conditions. 

2. MATERIALS AND METHOD  

2.1. Observation area and devices 

The study was conducted in January 2024 in Thoi 

Lai district (Can Tho city) (Figure 1-a) on a rice 

cultivation area of 35 x 400 m. Soil conductivity was 

measured using the Wenner method with an 

electrode spacing of 10 cm (Ho et al., 2024). GPS 

coordinates were collected based on the Cors station 

reference method using the U-blox ZED-F9P-01B-

00 GPS sensor module, U-blox ANN-MB-00-00 

antenna (Figures 1-c), and the RTKLIB version 

“Demo 5 b34” library package, which has been 

tested in previous studies (Tran et al., 2023). In this 

study, the grid sampling method (Carter & 

Gregorich, 2007) was implemented as follows: 
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Figure 1. a) – Study area. b) – Collecting GPS data in a rice field. c) – U-blox ZED-F9P-01B GPS module 

and U-blox ANN-MB-00 antenna. d) - Collecting GPS data in a fruit orchard. e) - Sampling point 

− GPS data were collected and accuracy assessed 

under rice field and fruit orchard conditions with an 

antenna height of 1.5 m (Figures 1-b, 1-d). 

− Fixed points were arranged along both sides of 

the field to create horizontal rows (Figure 1-e), and 

GPS coordinates were collected, with 19 horizontal 

rows established. 

− GPS coordinates were corrected so that the 

horizontal rows had the same latitude. 

− Each horizontal row was divided into 12 equal 

points to determine the location of 228 sampling 

points. Coordinates at these points were determined 

based on the two outer points. 

− Sampling was conducted at the determined 

points, and the results were recorded. 

− Python software was used to perform 

calculations (Virtanen et al., 2020) (SciPy and 

NumPy for numerical calculations) and create charts 

with four algorithms: KNN in Scikit-learn library 

(Pedregosa et al., 2012), IDW, Kriging in PyKrige 

library (Oliver & Webster, 2015), and CNN using 

TensorFlow library (Chollet, 2021). 

2.2. Data processing  

2.2.1. Inverse Distance Weighting (IDW) 

IDW is a type of deterministic method for 

multivariate interpolation with a known scattered set 

of points. The basic idea is that the influence of a 

known data point decreases with distance. Assume 

a set of data points ( , , )ii ix y EC   with i = 1, 2, 3, 

…, n, where ( , )i ix y  are the sampling coordinates  

and 
iEC is the conductivity value at the sampling 

point. The value ( )EC u at location 𝑢 is estimated 

using the IDW method as follows (Dooley, 

1976)(Liu et al., 2021): 

1

1

( )
1

n i
pi

i

n

pi
i

EC

d
EC u

d

=

=

=



     (1) 

− id  is the distance from the interpolation point 𝑢 

to the data point  ( , )i ix y . 

2 2( ) ( )i ii x x y yd = − + −    (2) 

 
(b) (c) (e) (d) 
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− p  is an exponent (often called the power 

parameter), which indicates the influence of 

distance, usually chosen as 2p =  

− 
1

n i
pi

i

EC

d=  is the sum of the 𝐸𝐶 values of the 

data points, each divided by the distance from the 

interpolation point to the data point raised to the 

power of 𝑝. Points closer to the interpolation point 

will have a larger weight. 

− 
1

1n

pi
id=  is the sum of the inverse distance 

weights, used to normalize the sum of the values in 

the numerator. 

2.2.2. K-Nearest Neighbors (KNN) 

In the context of spatial interpolation, KNN is 

applied to predict values at unknown locations 

based on the values of the nearest known points 

(Peterson, 2009). Assume a set of data points 

( , , )ii ix y EC  with i = 1, 2, 3, …, n, where ( , )i ix y  

are the sampling coordinates and 
iEC  is the 

conductivity value at the sampling point. The value  

( )EC u at location 𝑢 is estimated using the KNN 

method as follows: 

1
( )

1
kEC u EC
j jk

=  =
    (3) 

− k is the number of nearest neighbors chosen to 

estimate the value. 

− 
( )ji

z is the value of the 𝑗-th data point among the 

𝑘 nearest neighbors to the location 𝑢. 

2.2.3. Kriging interpolation 

This method allows for the interpolation of values at 

unsampled locations based on existing data, 

improving the accuracy of predictions and spatial 

data analysis (Cressie, 2015)(Chiles & Delfiner, 

2012)(Loonis & de Bellefon, 2018). Assume a set of 

data points ( , , )ii ix y EC   with i = 1, 2, 3, …, n, 

where ( , )i ix y  are the sampling coordinates  and 

iEC is the conductivity value is at the sampling 

point. 

The objective of Kriging is to find the weights λi to 

calculate the interpolated value Z*(u) at a location 

u:  

*

1

( ) ( )
n

i i
i

Z u Z x
=

=       (4) 

There are many possible choices for the weights λi. 

Using the second-order stationarity assumption or 

intrinsic hypothesis, we have: 

   ( )E Z u m=   m D        (5) 

This means for the linear estimator: 

*

1

( )( ) i

n

i
i

E Z x mE Z u 
=

     
==   (6) 

The weights λi must satisfy the condition: 

1
1

n

ii


=
=         (8) 

This is called the unbiasedness condition. The goal 

of Kriging is to minimize the estimation variance 

𝜎2(𝑢) based on the covariance model 𝐶(ℎ). The 

estimation variance can be expressed as a function 

of the covariance: 
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To minimize σ2(u) under the unbiasedness 

condition, we use the Lagrange multiplier µ. The 

weights that minimize σ2(u) are the solution to: 
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This system of equations is called the Kriging 

system, and the weights λi are called Kriging 

weights. The minimum estimation variance 

𝜎𝐾
2(𝑢) can be achieved by substituting the Kriging 

weights λi  on equation (9): 
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In the specific case of soil conductivity, the Kriging 

method will be used to interpolate EC values at 

unsampled locations. 

The variogram model describes the spatial 

correlation of a random variable, such as soil 

conductivity, and indicates the degree of correlation 

between data points based on their distance. The 
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variogram is used to understand and model spatial 

variation patterns in the data. 

Some common variogram models include: 

Linear: The simplest model, where the semivariance 

increases linearly with distance. 

Exponential: A model where the semivariance 

increases rapidly and reaches a threshold. 

Spherical: A model where the semivariance 

increases rapidly and then stabilizes at a threshold. 

Gaussian: A model where the semivariance 

increases quadratically and reaches a threshold. 

2.2.4. Convolutional Neural Network (CNN) 

CNN utilizes convolutional layers and pooling 

layers to reduce the number of parameters and 

computations while capturing essential features 

from the input data (Nielsen, 2015)(Book, 2017). 

Convolutional Layer: 

In this layer, filters are applied to the input to create 

feature maps. This process can be described by the 

following formula: 

1 1

, , , , ,

0 0

.W
M N

i j k i m j n m n k k

m n

Z X b
− −

+ +

= =

= +    (12) 

− , ,i j kZ  is the value at position (i, j) of the k-th 

channel in the feature map. 
 

− . ,i jZ .is the value at position (i, j) in the input. 

− , ,Wm n k is the value at position (m, n) of the k-th 

filter. 

− kb is the bias of the k-th filter.
 

− M and N are the dimensions of the filter. 

Activation Function: 

After convolution, an activation function like ReLU 

(Rectified Linear Unit) is often applied to introduce 

non-linearity: 

, , , , , ,( ) (0, )i j k i j k i j kA ReLU Z max Z= =   (13) 

Pooling Layer: 

The pooling layer (typically max pooling) reduces 

the spatial dimensions of the feature map: 

, , , ,
( , )

i j k i m j n k
m n pool

P max A+ +


=       (14) 

− , ,i j kP is the value at position (i, j) of the k-th 

channel in the pooled feature map. 

The max function is applied over a defined window 

(pool) size. 

Fully Connected Layer: 

The output from the previous layers is flattened and 

fed into one or more fully connected layers: 

− 

.j i ij j

i

O A W b
 

= + 
 


     (15) 

− jO is the output of the j-th node. 

− 
iA is the input value from the previous layer. 

− ijW is the weight connecting the i-th input to the 

j-th node. 

− jb is the bias of the j-th node. 

−  is the activation function (typically softmax 

for the final layer in classification problems). 

With the collected data, consisting of 228 samples, 

they are divided into two subsets: 

− The first subset, comprising 70% (about 163 

data samples), is used for calculations or model 

training. 

− The second subset, comprising 30% (about 65 

data samples), is used for testing. 

The evaluation criteria include R-squared, MAE, 

and RMSE. 

R-squared: This metric evaluates the explanatory 

power of the model. A higher value indicates a 

better model. 

2ˆ( )
2 1

2( )

y y
i iR
y y
i

−
= −

−

     (16) 

MAE (Mean Absolute Error): This metric measures 

the average absolute error between the predicted and 

the actual values. A lower value indicates a better 

model. 

1 2ˆ( )MSE y y
i in

= −      (17) 

RMSE (Root Mean Squared Error): This metric 

measures the average squared error between the 

predicted and the actual values. A lower value 

indicates a better model. 

21
ˆ( )i iRMSE y y

n
= −     (18) 
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2ˆ( )i iy y− : This represents the Sum of 

Squared Errors (SSE), which is the total sum of the 

squared differences between the observed actual 

values (𝑦𝑖) and the predicted values ( )iy . 

2( )iy y− : which is the total sum of the 

squared differences between the observed actual 

values (𝑦𝑖) and the mean of the observed values ( ).y  

3. RESULTS AND DISCUSSION  

3.1. GPS Data Collection 

The image window from the RTKNAVI software 

demo version 5 b34f.1, RTKPLOT, is a tool for 

positioning and navigation. In the image, a black 

point in the center represents the current position. 

Yellow Path represents the movement path of the 

positioning device, showing a short recorded route. 

The X and Y axes are divided into units, with each 

small grid square corresponding to 1 square meter:  

− X-axis usually represents the East-West 

direction, with positive values indicating eastward 

displacement and negative values indicating 

westward displacement.  

− Y-axis usually represents the North-South 

direction, with positive values indicating northward 

displacement and negative values indicating 

southward displacement.  

The bottom of the screen displays the time and 

coordinates of the current point: January 18, 2024, 

at 07:43:36.000 GPST, with coordinates at 

10.024475280N, 105.581243260E, and an altitude of 

-3.8267 meters (Figures 2-a). The bottom right 

corner includes a scale bar indicating 1 meter and a 

Q=1 indicator, showing that the signal quality is 

FIX, meaning the highest accuracy, or FLOAT 

(Q=2), indicating lower accuracy (Figures 2-b,2-c).  

Results from rice field experiments showed accurate 

and consistent GPS coordinates with good signal 

quality (Q=1), ensuring precise and reliable data. In 

contrast, orchard experiments showed slight 

fluctuations in GPS coordinates, likely due to 

environmental factors affecting the signal. The 

signal quality only reached FLOAT level (Q=2), 

indicating lower accuracy, possibly due to tree 

canopies obstructing the signal compared to the 

open rice fields. 

 

 

Figure 2.  a – GPS Data for Rice Fields; b - GPS in the gap between two tree canopies, c – GPS 

directly under the tree canopy 

(a) 

(b) (c) 
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3.2. Model Evaluation 

3.2.1. KNN method 

Figure 3 illustrates the soil electrical conductivity 

(EC) map generated using the KNN method. The 

points on the map represent EC values according to 

geographic coordinates, with different colors 

indicating different EC levels. Blue represents low 

EC values, while red indicates high EC values. 

With K = 6, the R-squared value reaches its highest 

on the test set (0.75). 

With K = 5, the MAE reaches its lowest on the test 

set (0.042). 

With K = 6, the RMSE reaches its lowest on the test 

set (0.054). 

However, when considering the performance on the 

full dataset, K = 4 shows better performance with 

lower R-squared, MAE, and RMSE compared to K 

= 6 and K = 7. 

K = 5 appears to be the best choice as it has the 

highest R-squared and RMSE on the test set and the 

lowest MAE on the test set. 

K = 6 is also a good choice as it has the highest R-

squared and RMSE, but its MAE is not the lowest 

on the test set. 

 

Figure 3.  Soil EC map by KNN method 

Based on these metrics, we can conclude that K = 5 

is the most effective K value for the KNN model, as 

it provides the best balance between the evaluation 

metrics on both the test set and the full dataset. 

Table 1. Performance Metrics of KNN Model with Different Numbers of Neighbors  

Neighbors 
Test Data  Full Data 

R – squared MAE RMSE  R – squared MAE RMSE 

K = 4 0.70 0.044 0.059  0.75 0.043 0.056 

K = 5 0.75 0.042 0.054  0.75 0.044 0.057 

K = 6 0.75 0.043 0.054  0.72 0.046 0.060 

K = 7 0.73 0.046 0.056  0.70 0.048 0.062 

3.2.2. IDW method 

Figure 4 shows the soil EC map generated via the 

IDW method. The map uses a color gradient to 

represent EC values, with blue indicating lower 

conductivity and red representing higher 

conductivity. The model's predictive accuracy is 

reflected in the test set results, where an RMSE of 

0.051 demonstrates the model's ability to closely 

approximate actual values. 

 

Figure 4.  Soil EC map by IDW method 
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On the full dataset, the RMSE is slightly higher 

(0.067), indicating a slight difference in prediction 

capability between the test set and the full dataset. 

Testing on the full dataset provides an opportunity 

to assess the model's performance across the entire 

data range, rather than just a limited subset (the test 

set). This helps determine whether the model is 

consistently accurate across all data points. 

On the test set, the R-squared value reached 0.77, 

indicating that the IDW model can explain 77.17% 

of the data variability. This is a fairly good indicator, 

showing that the model performs well on the test set. 

On the full dataset, the R-squared value decreased 

to 0.65, indicating that the model explains about 

64.53% of the data variability when considering the 

full dataset. This may suggest that the model might 

not be entirely suitable for the full dataset or there 

might be differences in data structure between the 

test set and the full dataset. 

On the test set, the MAE reached a value of 0.041, 

indicating that the mean absolute error between the 

predicted values and the actual values is small, 

demonstrating the high accuracy of the IDW model 

on the test set. 

On the full dataset, the MAE is slightly higher 

(0.052), indicating a slightly larger mean absolute 

error when considering the full dataset. 

3.2.3. Kriging method 

The four variogram models (Figure 5) (Linear, 

Spherical, Exponential, Gaussian) were applied and 

compared with the experimental variogram to 

determine the most appropriate model for capturing 

the variability in soil EC. The findings revealed that 

the Linear model was inadequate for this dataset, as 

it displayed only a linear increase in semivariance 

and failed to capture the complexity of EC variation 

over longer distances. In contrast, the Spherical, 

Exponential, and Gaussian models provided better 

fits to the experimental data at shorter distances 

(within 100 meters). Nonetheless, at greater 

distances, none of the models accurately represented 

the semivariance variation, particularly the decline 

after its peak. 

 

Figure 5.  Experimental variograms of soil EC 

The soil EC distribution across the study area is 

depicted in Figure 6, created using the Kriging 

method. The gradient from blue to red illustrates 

varying EC levels, with blue denoting lower values 

and red higher ones. This map underscores the 

effectiveness of the Gaussian method within the 

Kriging approach, which achieved superior 

performance based on R-squared and RMSE 

metrics. 

 

Figure 6.  Soil EC map by Kriging method 

The Linear method shows a negative R-squared (-

0.014) when tested with the test data, indicating that 

this model is not suitable for soil EC interpolation. 

The Exponential, Spherical, and Gaussian methods 

all show much better results with both test data and 

full data. Among them, the Gaussian method has the 

highest R-squared and the lowest RMSE, indicating 

it is the best model for EC interpolation. The highest 

R-squared (0.79 with test data and 0.96 with full 

data) and the lowest RMSE (0.049 with test data and 

0.022 with full data) are achieved with this method. 
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Table 2. Performance metrics of different variogram models 

Variogram 

Model 

Test Data  Full Data 

R – squared MAE RMSE  R – squared MAE RMSE 

Linear -0.014 0.092 0.11  0.82 0.019 0.049 

Exponential 0.77 0.040 0.051  0.96 0.0081 0.023 

Spherical 0.79 0.042 0.049  0.96 0.0086 0.022 

Gaussian 0.79 0.040 0.049  0.96 0.0080 0.022 

3.2.4. CNN method 

Figure 7 depicts the spatial variation of soil EC 

generated by the CNN method. A color gradient 

from blue to red is used to represent different levels 

of EC, where blue corresponds to lower values and 

red to higher ones. The CNN model’s performance 

is particularly validated at 140 epochs where the 

balance between R-squared, MAE, and RMSE is 

optimal. 

CNN model is designed to predict soil EC values 

using latitude and longitude as inputs. The model 

uses a convolutional layer (Conv2D) with 64 filters 

and a kernel size of (1, 2). After convolution, the 

output is flattened and passed through two dense 

layers, where the final layer has one output neuron 

for regression. 

 

Figure 7.  Soil EC map by CNN method 

Test Data: The highest R-squared value is achieved 

at 130 epochs (0.39) with MAE and RMSE of 0.56 

and 0.74, respectively. However, at 140 epochs, R-

squared slightly decreases but remains relatively 

high (0.37), while MAE and RMSE do not differ 

much from those at 130 epochs. At 150 epochs, R-

squared significantly drops (0.21), indicating that 

increasing the number of epochs may lead to 

overfitting. 

Full Data: At 140 epochs, R-squared reaches the 

highest value (0.70) with MAE and RMSE of 0.36 

and 0.55, respectively. This is the best result 

compared to other epoch numbers, indicating that 

the model performs best when trained with 140 

epochs.

Table 3. Performance Metrics of CNN Model with Different Epochs 

Epochs 
Test Data  Full Data 

R – squared MAE RMSE  R – squared MAE RMSE 

120 0.31 0.57 0.79  0.68 0.36 0.57 

130 0.39 0.56 0.74  0.69 0.36 0.56 

140 0.37 0.56 0.75  0.70 0.36 0.55 

150 0.21 0.61 0.84  0.64 0.60 0.37 

3.3. Overall evaluation 

With the test data, KNN has a fairly good R-squared 

(0.51) and relatively low MAE and RMSE (0.072 

and 0.090). However, with the full data, the R-

squared slightly decreases (0.66), but the MAE and 

RMSE remain acceptable. 

IDW shows good results with the test data, with R-

squared (0.56), MAE (0.067), and RMSE (0.085). 

However, when using the full data, the R-squared 

significantly decreases (0.51), and both MAE and 

RMSE increase (0.070 and 0.090). 
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Kriging provides the best results among all methods 

with the full data, having a very high R-squared 

(0.91) and very low MAE and RMSE (0.013 and 

0.038). With the test data, Kriging still gives good 

results with R-squared (0.57), MAE (0.067), and 

RMSE (0.084). 

CNN performs worse than the other methods with 

the test data, having a low R-squared (0.37) and high 

MAE and RMSE (0.56 and 0.75). However, with the 

full data, CNN significantly improves the R-squared 

(0.70), but the MAE and RMSE remain higher 

compared to traditional methods as Kriging.

Table 4. Performance Metrics of Different Methods 

Methods 
Test Data  Full Data 

R – squared MAE RMSE  R – squared MAE RMSE 

KNN 0.51 0.072 0.090  0.66 0.058 0.075 

IDW 0.56 0.066 0.085  0.51 0.070 0.090 

Kriging 0.79 0.040 0.049  0.96 0.0080 0.022 

CNN 0.37 0.56 0.75  0.70 0.36 0.55 

Kriging is the best method for predicting soil EC. 

This method provides the best results with the full 

data, having high R-squared and low MAE and 

RMSE. Even with the test data, Kriging still delivers 

more reliable and accurate results compared to other 

methods. 

3.4. Discussion 

The results indicate that the surrounding 

environment significantly affects GPS signal 

accuracy, with rice fields providing more stable 

signals than orchards. Overall, the Kriging model is 

identified as the best method for predicting soil 

electrical conductivity, exhibiting the highest and 

most consistent evaluation metrics on both the test 

set and the full dataset. 

The experiments were conducted in specific areas, 

so the results may not represent all soil types and 

environmental conditions. Additionally, the models 

used may be influenced by input data, potentially 

leading to differences in prediction outcomes. 

Future studies should expand the range of soil types 

and environmental conditions to verify these results. 

Combining different methods or developing new 

models could also enhance the accuracy of soil 

conductivity predictions. Further research should 

consider factors such as weather and seasonal 

effects on GPS signal quality and prediction results. 

4. CONCLUSION 

In this study, we evaluated the performance of 

various interpolation and prediction methods for 

estimating soil EC. The methods examined included 

KNN, IDW, Kriging, and CNN. The Kriging 

method emerged as the superior model for soil EC 

interpolation. Even with the test data, Kriging 

showed reliable performance with an R-squared 

value of 0.57, MAE of 0.067, and RMSE of 0.084. 

With the full dataset, Kriging achieved the highest 

R-squared value (0.91) and the lowest MAE (0.014) 

and RMSE (0.038). This indicates that Kriging is 

highly effective in explaining the variability in soil 

EC and minimizing prediction errors.  

The GPS data collected using the U-blox ZED-F9P-

01B module and U-blox ANN-MB-00 antenna 

showed high accuracy and stability in open 

environments like rice fields (FIX quality). 

However, in more complex environments like 

orchards, the data exhibited variation and lower 

signal quality (FLOAT), likely due to obstacles like 

tree canopies and terrain. This indicates that while 

the GPS device performs well in open areas, it 

requires improvements for more accurate data in 

complex environments.  
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