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Nowadays, the world is moving towards green energy vehicles and electric 

vehicles (EVs) are one of the chosen solutions. Vehicle-to-grid (V2G) 

technology is gradually gaining attention to support issues of performance 

optimization, energy fluctuations, reducing grid operating costs and 

bringing optimal efficiency to owners. Along with the rapid increase in the 

number of EVs, the deployment of effective electric vehicle charging station 

(EVCS) infrastructure is desirable. However, improper installation can 

cause many negative impacts on the grid and vice versa, especially EVCS 

applying V2G charging and discharging techniques. In this study, we 

propose a computational model to determine the optimal location and size 

of EVCS applying V2G technique in a distribution network integrating 

distributed generation sources (DG) with the goal of minimizing active 

power loss, using an improved method combining the firefly algorithm with 

the quantum-inspired evolutionary algorithm (QBFA) to find solutions for 

the problem. The solution results are simulated on a 33-node IEEE 

standard distribution network using Matlab software and compared with 

the original FA algorithm to evaluate and propose computational solutions 

to develop the EVCS system infrastructure in practice. 
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1. INTRODUCTION   

Increasing energy demand, loss gradually fossil fuel 

sources, and greenhouse gas emissions are major 

threats the world faces (Singh et al.,2012). The oil 

consumption in the transportation sector is expected 

to rise by 54% by 2035 (Matsuo et al., 2013). The 

transportation sector currently accounts for about 

23% of global greenhouse gas emissions, and thus 

significant improvements are needed in the sector to 

limit global warming to 2°C (Cazzola et al., 2016). 

The most effective way to reduce greenhouse gas 

emissions in the transportation sector is to replace 

internal combustion engine (ICE) vehicles with low-

emission or zero-emission electric vehicles (EVs)         

(Graham-Rowe et al., 2012). Electric vehicles have 

the potential to control greenhouse gas emissions, 

which are the causes of climate change and global 

warming. In addition to environmental aspects, 

lower operating costs, noise, and maintenance are 

additional benefits influencing many countries to 

transition from ICE vehicles to electric vehicles 

(Teixeira & Sodré, 2016). Currently, renewable 

energy systems (such as solar, wind, etc.) are being 

connected to the grid in large numbers. Due to the 
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natural intermittency of renewable energy causing 

fluctuations in electricity generation, compensating 

from other energy sources (e.g., battery energy 

storage systems) is essential to adjust the natural 

variability of renewable energy, ensure grid 

frequency stability, and mitigate the impact of 

reverse voltage increase caused by current flow. The 

Vehicle-to-Grid (V2G) system is proposed to 

address these issues as an essential solution when 

EV charging stations (EVCS) need to be arranged to 

support this development, and intermittent charging 

times can pump power back into the grid to ensure 

the system operates stably, maximize renewable 

energy utilization, and optimize operation. Its core 

is to use the energy storage of  a large number of 

electric vehicles as a buffer storage for the grid and 

renewable energy. The energy storage of EVs will 

provide power and support for the grid, such as peak 

shaving, reactive power compensation, etc. When 

grid load is low, it is used to store electricity to avoid 

wastage. However, EVs cannot be connected to the 

grid at will without management. This is because if 

the grid is at peak load while also bearing the 

charging demands of  a large number of vehicles, it 

will certainly have a very severe impact on the grid. 

For EVs, in addition to supporting the grid, they 

must also meet daily travel needs. Therefore, during 

grid supply, the energy storage of EVs must also be 

considered  to avoid affecting normal usage. Thus, 

researching V2G systems to coordinate charging 

and discharging between EVCS and the grid is 

essential to not affect the operation of the grid and 

not restrict the normal usage of both the grid and 

transportation (Liu et al., 2012). 

Well-planned distribution of charging stations will 

lead to an improved charging system that adequately 

meets the energy demand for EV loads (Chinnam & 

Murat, 2016). The location of charging stations 

plays a crucial role affecting various aspects of the 

power grid. The optimal location of EVCS can not 

only reduce power losses and voltage deviations but 

also improve accessibility (Islam et al., 2015). As 

EVs are widely adopted, it will increase the burden 

on public charging stations. Therefore, the location 

of the charging stations must ensure that vehicles 

can easily move within the area (Islam et al., 2018). 

Some studies have focused on minimizing the 

impact of electric vehicles on the power system. In 

(Deilami et al., 2011), the authors present a smart, 

sustainable load balancing control method to reduce 

power losses and improve system voltage. Reactive 

power adjustment is used in EVCS to enhance 

voltage configuration (Yong et al., 2015). The 

reliability and economic-technical benefits of 

integrating DG have been demonstrated (Dixit et al., 

2017). Therefore, integrating DG has been proposed 

as a feasible method to mitigate the impacts of EV 

charging (Shaaban et al., 2012). 

The paper (Farsadi et al., 2015), presents a method 

for optimizing the location and operation of DG in a 

distribution system considering the cost objective 

function for power loss. One of the most important 

tasks in operating a distribution system is to develop 

a suitable plan. The objective function is a nonlinear 

problem (NLP) solved using a genetic algorithm 

(GA). In this way, GA is suitable for carefully 

analyzing the search space and then finding optimal 

solutions. The paper (Boonluk et al., 2020) presents 

a method for optimizing the location and capacity of 

DG installation in a distribution system, considering 

the cost objective function of voltage deviation, 

power loss, and peak load coverage. The simulation 

results of the installation are evaluated in a 33-bus 

IEEE distribution network. The Particle Swarm 

Optimization (PSO) algorithm has been applied to 

solve this optimization problem. The objective 

function considered for minimization is the total 

cost incurred in the distribution network, including 

voltage deviation cost, power loss, and peak 

demand. The installation of DG was operated in the 

IEEE-33 bus distribution network using GA and 

PSO algorithms to optimize the objective function, 

and results from both showed that DG installation 

could improve the efficiency of the distribution 

network in terms of reducing costs, voltage 

deviation, power loss, peak demand, and effectively 

supporting the connection of renewable energy 

sources with fluctuations in electricity generation.  

Determining the location of each EVCS aims to 

enhance efficiency, such as minimizing voltage 

deviation, power loss, and peak demand (load peak) 

in the distribution network. Furthermore, comparing 

different optimization algorithms has not been 

studied to verify the simulation results obtained.  

Therefore, our proposed problem is to find the 

optimal location of EVCS in a distribution network 

integrated with renewable energy connected to areas 

with fluctuating load demand over a 24-hour period 

using the improved QBFA algorithm derived from 

the original FA algorithm, with the objective 

function of minimizing costs including; voltage 

deviation cost, power loss, and peak demand. The 

proposed solution is evaluated and tested through 

simulations using Matlab software on a standard 

IEEE 33-bus distribution network integrated with 

distributed power sources, and the problem solution 
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is assessed, analyzed, and proposed as the best 

solution for design and economic operation in 

EVCS infrastructure development. 

The Firefly Algorithm (FA) is an optimization 

algorithm inspired by the communication behavior 

of fireflies. This algorithm is classified as a 

metaheuristic and is applied to tackle optimization 

problems in complex search spaces, especially in 

engineering and computational fields. (Cheung et 

al., 2014) 

The Firefly Algorithm with Quantum Bit (QBFA) is 

a variant that combines the traditional Firefly 

Algorithm with the fundamental principles of 

quantum computing. Integrating quantum 

mechanics into the Firefly Algorithm enhances its 

ability to explore the search space more quickly and 

efficiently, particularly in complex optimization 

problems. (Zitouni et al., 2021) 

Contributions of the paper: 

− Efficiently building an optimization problem for 

minimizing voltage deviation and power loss, with 

constraints on power, charging/discharging energy, 

and efficiency in the considered cycle.  

− First-time application of FA algorithm to 

determine the optimal location of each charging 

station in the distribution system. 

− Utilization of MATPOWER/MATLAB 

R2022A to simulate and solve the optimization 

problem of location using FA and QBFA algorithms 

in the IEEE 33-bus distribution network. 

The structure is divided into 6 sections: section 1 

introduction provides an overview of the research 

and the context of the study; section 2 problem 

description, defines and outlines the problem being 

addressed, section 3 discusses the Firefly 

Algorithm; section 4. algorithm diagram illustrates 

the proposed algorithm with a diagrammatic 

representation; section 5 simulation results present 

the results obtained from simulations; section 6 

discussion evaluations based on the simulation 

results and the effectiveness of the proposed 

solutions. 

2. PROBLEM DESCRIPTION 

2.1. Objective function 

The main objective of this work is to minimize 

certain costs incurred in the distribution network 

(Csystem), including voltage regulation cost (CVR), 

energy loss cost (CLoss), and peak load demand cost 

(CP) under the condition of delayed infrastructure 

development. Equation represents the objective 

function, and some of these costs can be found using 

equation:  

( ) ( )systemlFC min C=                                         (2.1) 

system LossVR PC C C C= + +                           (2.2) 

1 1
*

T N

VR i ref VRt i
C V V 

= =
= −                  (2.3)  

1 1
*

T N

Loss Lineloss Losst i
C L 

= =
=                (2.4) 

tP max PC P =                                         (2.5) 

In which 𝑁, 𝑉𝑖 , 𝑉ref , 𝑀, 𝐿LineLoss, 𝑃max , VR , Loss and 

𝛾𝑃 are the total number of buses, voltage magnitude 

(per unit) at bus i, reference voltage equal to 1 pu, 

total number of branches, active power loss in each 

branch, maximum active power at the slack bus 

during the considered time period, voltage 

regulation cost ratio, energy loss cost ratio, and peak 

demand cost ratio γ𝑉𝑅 = 0.142 $/p.u (Coello, 2002), 

𝛾loss = 0.284 $/ kWℎ (Michalewicz & Janikow, 

1991), 𝛾𝑃 = 200 $/kWℎ/year (Michalewicz & 

Janikow, 1991), respectively. 

2.2. Constraints of the objective function 

(1) Voltage constraints: The voltage at each bus 

must be limited within the lower and upper bounds 

throughout the considered time period, set at ±5% of 

the nominal voltage as represented by the equation. 

t

lower i upperV V V        (2.6) 

Where lowerV và 
upperV  are the lower and upper 

voltage limits at bus i , respectively, and 
t

iV is the 

voltage magnitude at bus i  at time t. 

(2) Battery storage constraints: The power and 

capacity of the battery are limited to ensure that the 

operation of the station does not exceed boundary 

limits during charging or discharging, which can be 

represented by the equation below. 

,t t

B min cha dis B maxP P P P− −                           (2.7) 

t

B min b B maxE E E− −                                    (2.8) 

Where B minP − , PB–max are the minimum and 

maximum power of the battery, respectively. 𝑃𝑐ℎ𝑎
𝑡 , 

𝑃𝑑𝑖𝑠
𝑡  are the charging and discharging rates of the 

station at time t, respectively. EB–min, B maxE − are the 
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charging and discharging rates of the station at time 

t, respectively. 

3. FIREFLY ALGORITHM 

The Firefly Algorithm, proposed by Yang (Yang & 

He, 2013), is a swarm intelligence-based algorithm. 

This algorithm draws inspiration from the 

interaction of fireflies in nature through their light 

emission. The Firefly Algorithm has been shown to 

be very effective for global optimization problems 

(Fister et al., 2013). However, research on using this 

algorithm for constrained optimization is still quite 

limited. In nature, fireflies emit light with an 

intensity proportional to their attractiveness. The 

intensity of this light changes with distance: fireflies 

that are closer perceive stronger light and are 

attracted to each other. This mechanism is simulated 

in the Firefly Algorithm to search for optimal 

solutions. This algorithm belongs to the class of 

metaheuristic algorithms, which are used to solve 

optimization problems in complex search spaces. 

Principles of the Firefly Algorithm (Cheung et al., 

2014): 

Light and Brightness: The brightness of a firefly is 

proportional to the value of the objective function 

(the function to be optimized) at its position. 

Brighter fireflies will attract others towards them. 

Attractiveness: The attractiveness between two 

fireflies is inversely proportional to the distance 

between them. Fireflies move towards brighter and 

closer individuals. 

Position Update: Each firefly updates its position by 

moving towards brighter fireflies. This movement 

follows a calculation formula influenced by the 

level of attractiveness and a random factor to 

prevent getting stuck in local optimal. 

Additionally, to handle constraints when using 

swarm algorithms, penalty functions are a common 

method. This approach is simple, easy to use, and 

can be applied to all types of constraints (equality or 

inequality, linear or nonlinear, continuous or 

discrete). The idea behind this method is to modify 

the original form of the objective function by adding 

certain values (called penalty values) to the 

objective function of individuals that do not satisfy 

the constraint conditions. If individuals are farther 

from the feasible region, the penalty values increase, 

and vice versa. If individuals are within the feasible 

region, the penalty values are zero. However, the 

challenge of this method is to determine the penalty 

coefficient appropriately (Deb, 2000). To address 

this challenge, in addition to static penalty methods 

(Fister et al., 2013), many studies have proposed 

complex methods to determine the penalty 

coefficient used in penalty functions, such as 

dynamic penalty methods (Joines & Houck, 1994), 

self-adaptive penalty functions (Bean & Hadj-

Alouane, 1992). Michalewicz (Michalewicz & 

Janikow, 1991) suggests using a penalty coefficient 

(static penalty function) because dynamic penalty 

methods often yield different results for different 

problems. Coello (Coello, 2002) compares methods 

using penalty functions with evolutionary 

algorithms and indicates that determining the 

penalty coefficient for penalty functions must 

depend on the specific problem. However, there is 

very little experimental research evaluating the 

effectiveness of different types of penalty functions 

for optimization problems. 

3.1. The basic expressions of the Firefly 

Algorithm 

Voltage Constraints: Maintain the voltage at each 

bus in the power system within the prescribed limits 

to ensure that the voltage does not exceed the upper 

bound or fall below the lower bound. This is crucial 

for protecting equipment and maintaining the 

stability of the power system. The ±5% limit relative 

to the nominal voltage is a common standard in 

electrical systems. Oltage constraints help ensure 

system stability and safety throughout the 

operational period. 

t

lower i upperV V V                                          (3.1) 

Battery Storage Constraints: Ensure that the 

battery's power and capacity limits are maintained 

so that the operation of the charging station does not 

exceed boundary limits during charging or 

discharging. This is essential for extending the 

battery's lifespan and preventing unwanted energy 

losses. Battery storage constraints optimize battery 

performance, ensuring that charging and 

discharging processes remain within the permissible 

power and capacity limits. 

,t t

B min cha dis B maxP P P P− −                            (3.2) 

t

B min b B maxE E E− −                                     (3.3) 

Modeling constrained optimization problems 

Minimization:  

𝑓(𝑥1, 𝑥2, … 𝑥𝑑), 𝑑 = 1,2, … , 𝐷                          (3.4) 

Subject to constraints: 
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𝑔𝑞(𝑥1, 𝑥2, … 𝑥𝑑) ≤ 0                                         (3.5) 

ℎ𝑟(𝑥1, 𝑥2, … 𝑥𝑑) = 0                                         (3.6) 

𝑥𝑑
𝐿 ≤  𝑥𝑑 ≤  𝑥𝑑

𝑈                                                 (3.7) 

with  q=1,2,..., M; r = 1,2,...., N. 

Where: 𝑓(𝑥1, 𝑥2, … 𝑥𝑑) is the objective function, 

usually representing losses or voltage fluctuations, 

(𝑥1, 𝑥2, … 𝑥𝑑) are the design variables, 

𝑔𝑞(𝑥1, 𝑥2, … 𝑥𝑑) and ℎ𝑟(𝑥1, 𝑥2, … 𝑥𝑑)are the 

constraints (regarding stress, deformation), 𝑥𝑑
𝐿 and 

𝑥𝑑
𝑈 are the lower and upper bounds of the design 

variable 𝑥𝑑, D is the number of design variables; M 

and N are the numbers of inequality and equality 

constraints, respectively.  

 

Figure 1. Flowchart of the Firefly Algorithm 

* Firefly Algorithm 

 

 

 

Start the algorithm 

Define the objective function (x), in which x = (x1, 

x2, … , xd) 

Initialize the population of fireflies 

Calculate the brightness of each individual I  

Define the light absorption coefficient γ 

 While (t < maximum number of iterations) 

 For i = 1 to n (n = number of individuals) 

For j = 1 to n (n = number of individuals) 

                 If (Ij > Ii) move individual i closer  

to individual j 

         End if 

                Evaluate the new individuals and update 

brightness 

          End for j 

End for i 

Rank the fireflies and find the best individual 

End while 

End of the algorithm 

The brightness I is calculated as follows: 

𝐼 =  𝐼𝑆𝑒−𝛾𝑟2                                                      (3.8) 

In which, 𝐼𝑆 = is the brightness at the light source; γ 

= is the light absorption coefficient; r = is the 

distance to the light source. 

Since the attraction of a firefly is proportional to the 

light it emits, the attraction of a firefly (denoted as 

β) is defined as: 

𝛽 = 𝛽0𝑒−𝛾𝑟2                                                     (3.9) 

The distance between firefly i at position 𝑥𝑖 and 

firefly j at position 𝑥𝑗 is calculated as follows: 

𝑟𝑖𝑗 =  ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑑

𝑘=1           (3.10) 

In which, d = is the dimensionality of the search 

space; ||.|| is denotes the Euclid distance. 

The movement of firefly i attracted by a brighter 

firefly j is defined as follows: 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟𝑖𝑗2 (𝑥𝑖 − 𝑥𝑗) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5) 

 (3.11) 
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In which, 𝑥𝑖
𝑔+1 

and 𝑥𝑖
𝑔

  are the positions of firefly i 

at iteration g+1 and g, respectively; 𝑥𝑖
𝑔

  is the 

position of firefly j at iteration g+1 and  g; 𝛾 is the 

light absorption coefficient (0.1 ~ 10);  𝛽0  is the 

attractiveness at 𝑟𝑖𝑗 = 0 ; α is the coefficient 

affecting the random movement of fireflies; rand = 

1 is a random number from a uniform distribution. 

Constrained optimization is a common problem in 

optimization. To handle constraints when using the 

Firefly Algorithm, it is necessary to use penalty 

functions. The reason is that this technique is 

relatively simple and can be applied to all types of 

constraints. To guide the fireflies into the feasible 

region, the original form of the objective function is 

modified by adding penalty values if the individual 

does not satisfy the constraint conditions. When the 

individuals are within the feasible region, the 

penalty values are zero. For individuals further from 

the feasible region, the penalty values increase. 

To use this method, it is necessary to determine the 

penalty function value through the penalty 

coefficient appropriately. Determining the penalty 

function value depends on the specific optimization 

problem (Bean & Hadj-Alouane, 1992). To address 

this issue, different types of penalty functions have 

been proposed: static penalty functions (Fister et al., 

2013), dynamic penalty functions (Join & Houck, 

1994), and self-adaptive penalty functions (Bean & 

Hadj-Alouane, 1992). 

Advantages of FA: 

1.The algorithm has excellent exploration 

capabilities in the search space due to the movement 

of firefly individuals towards brighter ones. 

2. It has the ability to avoid local optima thanks to 

the randomness factor during movement. 

3.2. Optimization model based on the Firefly 

Algorithm and penalty functions 

 The optimization model based on the Firefly 

Algorithm and Penalty Functions (FAPF) is 

illustrated in Figure 2. This model uses the Firefly 

Algorithm to search for the best choices of design 

variables within the search space. Additionally, 

penalty functions are used to handle the constraints 

of the optimization problem: 

 

Figure 2. Optimization based on the Firefly 

Algorithm and penalty functions  

Step 1: Start the Algorithm: The algorithm 

parameters include the maximum number of 

iterations (gmax), the number of fireflies in the 

population (N), the light absorption coefficient (γ), 

the type and parameters of the penalty function 

specified at this step. Typically, these parameters 

can be set as follows: N = 5d, In whith d is the 

number of design variables. γ = 1. gmax needs to be 

sufficiently large to ensure that the optimization 

process converges. 

Step 2: Initialize the Initial Firefly Population: The 

firefly individuals in the first iteration are initialized 

randomly within the allowable range of each design 

variable. At this step, the firefly population is also 

evaluated using the objective function combined 

with the values of the penalty functions. 

Step 3: Check Stopping Criteria: If the current 

iteration g < gmax the optimization process 

continues. When the stopping criteria are met, the 

best design variable has been found by the 

algorithm. 
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Step 4: Move the Firefly Individuals: The fireflies 

move towards other brighter fireflies. If no brighter 

firefly is found, the individual will move randomly 

within the search space. 

Step 5: Evaluate the Firefly Individuals: The 

individuals will be evaluated and ranked to identify 

better individuals. The information of the best 

individual will be recorded. 

3.3. Firefly Algorithm with Quantum Bit 

Quantum-Inspried evolutionary algorithm – QEA 

Start the Algorithm 

Begin t ← 0 

1. Initialize Q(t) 

2. Compute P(t) based on the state of Q(t) 

3. Evaluate P(t) 

4. Store the best value of P(t) in B(t) 

While (stopping condition is not satisfied) 

          Begin t ← t + 1 

5. Compute P(t) based on the state of Q(t − 1) 

6. Evaluate  P(t) 

7. Update Q(t) using Q-gates 

8. Store the best value between B(t − 1) and P(t) in 

B(t) 

9. Store the best value of b in B(t) 

10.If (stopping condition is satisfied) 

       Then (move b or 𝑏𝑗
𝑡 in B(t) globally or locally) 

       End 

End 

End of the Algorithm 

QEA is a probabilistic algorithm similar to other 

evolutionary algorithms. However, QEA maintains 

a population of Q-bit individuals Q(t) = {𝑞1
𝑡, 𝑞2

𝑡 , … 

, 𝑞𝑛
𝑡  } at generation t, whith n is the population size 

and 𝑞𝑗
𝑡 is a Q-bit individual defined as:  

𝑞𝑗
𝑡 = [

𝛼𝑗1
𝑡 𝛼𝑗2

𝑡 ⋯ 𝛼𝑗𝑚
𝑡

𝛽𝑗1
𝑡 𝛽𝑗2

𝑡 ⋯ 𝛽𝑗𝑚
𝑡 ]                             (3.12) 

In which m is the number of Q-bits, the length of the 

string for each Q-bit and 𝑗 = 1,2, … , 𝑛. 

Step 1. 𝛼𝑖
0 and  𝛽𝑖

0 which 𝑖 = 1,2, … , 𝑚 of all 𝑞𝑗
0 =

𝑞𝑗
𝑡|

𝑡=0
 which 𝑗 = 1,2, … , 𝑛 are initialized to a value 

of 1/√2. This means that a Q-bit individual, 𝑞𝑗
0 

represents a linear superposition of all possible 

states with a uniform probability. 

|𝜓𝑞𝑗
0⟩ = ∑  

2𝑘=1
𝑚

𝑘=1

1

√2𝑚
|𝑋𝑘⟩                                  (3.13) 

In which 𝑋𝑘 is the 𝑘 state represented by a binary 

string (𝑥1𝑥2 … 𝑥𝑛) where 𝑥𝑖 for 𝑖 = 1,2, … , 𝑚 is 

either 0 or 1 according to the probabilities |𝛼𝑖
0|

2
 and 

|𝛽𝑖
0|

2
 

 Step 2: This step calculates the binary values in 

𝑃(𝑡) by observing the states of 𝑄(0), where 𝑃(0) =
{𝑥1

0, 𝑥2
0, … , 𝑥𝑛

0} at 𝑡 = 0. A binary solution, 𝑥𝑗
0 for 

𝑗 = 1,2, … , 𝑛 is a binary string of length 𝑚, formed 

by selecting 0 or 1 for each bit using the 

probabilities,  |α0|2 or |β0|2 whith i = 1,2, … , m of 

𝑞𝑗
0.  

Step 3: Each binary solution 𝑥𝑗
0 is evaluated to 

determine its fitness. 

Step 4: The initial best solutions are then selected 

from the binary solutions in  P(0) and stored in B(0) 

where B(0)={𝑏1
0, 𝑏2

0..., 𝑏𝑛
0 } and  𝑏𝑗

0= 𝑏𝑡
0|𝑡=0 is the 

same as the initial generation 𝑥𝑗
0. 

Steps 5 + 6: In the while loop, the binary solutions 

in P(t) are formed by observing the states Q(t - 1) as 

in Step 2, and each binary solution is evaluated for 

its fitness. It is important to note that 𝑥𝑗
𝑡 in P(t) may 

be formed by multiple observations of 𝑞𝑗
𝑡−1 in Q (t - 

1). In this case, 𝑥𝑗
𝑡 should be replaced by 𝑥𝑗𝑙

𝑡 , where 

l is an observation index. 

Step 7: In this step, the Q-bit individuals in Q(t) are 

updated by applying the Q-gates defined in formula 

(3.12). 

Steps 8 + 9: The best solutions among B(t − 1) and 

P(t) are selected and stored into B(t). If the best 

solution stored in B(t) is better than the best solution 

stored in b, the solution stored in b will be replaced 

with the new value.  

Step 10: If a move condition is satisfied, then the 

best solution bbb will be moved to B(t), or the best 

solution among several solutions in B(t) will be 

moved to them. The move condition is a design 

parameter, and the moving process described below 

may result in a change in the probability of a Q-bit 

individual. 
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The binary solutions in P(t) are discarded at the end 

of the loop because P(t+1) will be generated by 

observing the updates in Step 7. Until the 

termination condition is met, QEA runs in the while 

loop. 

The Firefly Algorithm with Quantum Bit (QBFA) 

(Zitouni et al., 2021). It is a hybrid variation of the 

traditional firefly algorithm and the fundamental 

principles of quantum computing. The integration of 

quantum mechanics into the firefly algorithm 

enhances its ability to explore the search space more 

quickly and efficiently, especially in complex 

optimization problems., but it incorporates quantum 

concepts to adjust how fireflies update their 

positions and interact with one another: 

1. Quantum state initialization: Each firefly is 

represented as a qubit, with its state described by a 

quantum wave function. These qubits represent the 

firefly’s position in the search space, and the 

firefly’s state is a superposition of multiple possible 

locations. 

2. Updating brightness based on wave function: The 

brightness of a firefly is determined not only by the 

value of the objective function but also by the 

quantum superposition of its state. When brighter 

fireflies are found, weaker ones adjust their wave 

functions to move toward them. 

3.Utilizing quantum interference: Instead of simply 

moving based on distance like in the traditional 

algorithm, QBFA leverages principles such as 

quantum interference and measurement to create 

nonlinear movements. This allows fireflies to 

“jump” to more promising regions in the search 

space. 

4. Heisenberg uncertainty and quantum 

qandomness: Movement is no longer fixed, as it is 

in the traditional algorithm. Due to the Heisenberg 

uncertainty principle, there is a degree of 

randomness in the position and momentum of 

fireflies, allowing them to escape local optima and 

explore the search space more comprehensively. 

5. Measurement: After fireflies move through the 

search space, the measurement process is applied to 

determine the actual position of each firefly. This 

means transitioning from a superposition state to a 

specific position in the search space. The 

measurement collapses the quantum state, revealing 

the firefly’s exact location, which is then used in the 

optimization process. This step ensures that a 

potential solution is selected from the quantum 

possibilities. 

Advantages of QBFA 

Better global search capability: Thanks to quantum 

superposition and randomness, the Firefly 

Algorithm with Quantum Bit (QBFA) can explore 

the global search space more efficiently compared 

to the traditional Firefly Algorithm (FA). 

Minimizing local optima trapping: Due to quantum 

uncertainty and randomness, fireflies have the 

ability to escape local optima, thereby increasing the 

chances of finding the global optimal solution. 

Faster optimization: Quantum interference and state 

superposition accelerate convergence, particularly 

in complex search spaces with numerous local 

optimal. 

 

Figure 3. Diagram of the QBFA Algorithm 
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4. THE PROCESS OF MODEL EXPRESSED 

IN THE STEPS 

 

Figure 4. Algorithm Diagram 

Step 1: Identify the input data for the problem, 

includingVrated, RL, XL, PV, WT and MVbase to 

simulate the IEEE distribution network in 

Matpower. 

Step 2: Initialize the parameters for the Firefly 

Algorithm. 

Step 3: Select a bus location to install the charging 

station (from bus 2 to bus 33). 

Step 4: Run the algorithm to solve the optimization 

problem. 

Step 5: Optimize the power at the selected location. 

Step 6: Evaluate the objective function and update 

with better values. 

Step 7: If the maximum number of iterations is 

reached, proceed to step 8; otherwise, return to step 

4. 

Step 8: Compare the results at each charging station 

location chosen in step 3. 

Step 9: If the selected bus location is the final 

position, proceed to step 10; otherwise, return to 

step 3. 

Step 10: Find the optimal location for the charging 

station where the objective function has the smallest 

value. 

Step 11: Provide the optimal charging station value 

using the Fourier coefficient method. 

5. SIMULATION RESULTS  

Input data for the problem includes: possible bus 

locations for station installation (from 2 to 33), 

maximum charging and discharging power of a 

station, sampling period, charging and discharging 

efficiency of the station. 

The input data for the IEEE power grid includes 

branch parameters, load parameters, voltage 

parameters, maximum and minimum voltages; as 

well as data on typical load factors and the typical 

power output of solar and wind sources over 24 

hours. 

There are two types of distributed energy sources: 

wind turbines (WT) and photovoltaic (PV) panels 

connected to the distribution power system. For this 

problem, the system includes (Boonluk et al., 2020): 

− 2 wind turbines located at buses 18 and 24, with 

a capacity of 1 MW per turbine; 

− 3 photovoltaic systems located at buses 5, 21, 

and 31, with a capacity of 400 kVA per system; 

− 4 photovoltaic systems located at buses 8, 12, 28, 

and 33, with a capacity of 500 kVA per system. 

Figure 5. IEEE 33-bus electrical network with 

distributed energy sources 

The typical power output of wind and solar PV 

sources is referenced according to the following 

parameter set (Hung & Mithulananthan, 2012): 
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Table 1. Typical power output of wind and solar 

photovoltaic sources 

Hour PVs WTs Hour PVs WTs 

12--1 am 0 0.25 12--1 1 0.71 

1--2 0 0.235 1--2 0.95 0.805 

2--3 0 0.23 2--3 0.83 0.91 

3--4 0 0.235 3--4 0.72 0.96 

4--5 0 0.22 4--5 0.55 0.86 

5--6 0.05 0.225 5--6 0.3 0.81 

6--7 0.1 0.19 6--7 0.13 0.7 

7--8 0.27 0.17 7--8 0.05 0.585 

8--9 0.5 0.25 8--9 0 0.415 

9--10 0.7 0.37 9--10 0 0.325 

10--11 0.9 0.47 10--11 0 0.29 

11--12 pm 0.95 0.62 11--12 am 0 0.265 

 

Figure 6. Typical power generation profile of 

wind power over 24 hours 

 

Figure 7. Typical power generation profile of 

solar power over 24 hours 

 

Figure 8. Typical load factor profile for 4 

seasons over 24 hours 

For radial power networks, the load power values at 

each node can be calculated based on the voltage 

magnitude values (Boonluk et al., 2020): 

PL–i = P0i(ap + bp|Vi| + cp|Vi|2)                  (5.1) 

QL–i = Q0i(aq + bq|Vi| + cq|Vi|2)                  (5.2) 

In which, PL–i, and QL–i represent the real and 

reactive power at bus i, respectively. P0i , Q0i are the 

initial real and reactive power at bus i. The 

parameters ap + bp + cp = 1, aq + bq + cq = 1 are 

coefficients used in the load profile calculation. The 

base voltage (Vbase) = 12,66 kV, the base power 

(MVAbase) = 10 MVA. For this power grid, the 

parameters are set as ap = aq = 0.4, bp = bq = 0.3, 

and cp = cq = 0.3. Evaluate the charging station 

placement at each bus from 2 to 33, compute the cost 

function for each potential placement, Identify the 

bus with the lowest optimal cost function as the best 

location for the charging station. 

According to (Baran & Wu, 1989) the typical load 

profiles are provided for four seasons: spring, 

summer, autumn, and winter. For this paper, we will 

use the summer load profile, as it represents the 

highest and most extreme load scenario for 

calculations. 
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Table 2. Typical load factors for four seasons over 24 hours 

Time Winter Spring Summer Autumn Time Winter Spring Summer Autumn 

12--1 

am 
0.4757 0.3969 0.6400 0.3717 

12--1  

 
0.6745 0.5859 0.9900 0.5487 

1--2 0.4473 0.3906 0.6000 0.3685 1--2 0.6745 0.5796 1.0000 0.5428 

2--3 0.4260 0.3780 0.5800 0.3540 2--3 0.6603 0.5670 1.0000 0.5310 

3--4 0.4189 0.3654 0.5600 0.3422 3--4 0.6674 0.5544 0.9700 0.5192 

4--5 0.4189 0.3717 0.5600 0.3481 4--5 0.7029 0.5670 0.9600 0.5310 

5--6 0.4260 0.4095 0.5800 0.3835 5--6 0.7100 0.5796 0.9600 0.5428 

6--7 0.5254 0.4536 0.6400 0.4248 6--7 0.7100 0.6048 0.9300 0.5664 

7--8 0.6106 0.5355 0.7600 0.5015 7--8 0.6816 0.6174 0.9200 0.5782 

8--9 0.6745 0.5985 0.8700 0.5605 8--9 0.6461 0.6048 0.9200 0.5664 

9--10 0.6816 0.6237 0.9500 0.5841 9--10 0.5893 0.5670 0.9300 0.5310 

10--11 0.6816 0.6300 0.9900 0.5900 10--11 0.5183 0.5040 0.8700 0.4720 

11--12 

pm 
0.6745 0.6237 1.0000 0.5841 

11--12 

am 
0.4473 0.4410 0.7200 0.4130 

 
(a) 

 

 
(b) 

Figure 9. Cost optimization function results from bus 2 to bus 33 of a) FA, b) QBFA 

From the simulation results, the optimal cost 

function for both algorithms is best at bus 2 (Cost = 

1200$). 

The results in Figure 9 show that the optimal 

function achieves the minimum value at the first 

bus, then increases and stabilizes at $1800 to $2400 

at subsequent buses. The analysis focuses on cost 

fluctuations at the buses and spatial stability. 

For the FA, costs vary significantly between buses, 

ranging from a low of around $1200 to a peak near 

$2400, with no clear stabilization trend. The FA 

exhibits stronger cost fluctuations compared to the 

QBFA, indicating that QBFA may converge faster 

or better in terms of cost stability after the initial 

buses. 

In contrast, for the QBFA, the graph shows a similar 

fluctuation, but with a more stable trend, where 

costs remain within the range of $1800 to $2000 

after bus 2, with fewer large variations compared to 

the FA. QBFA tends to maintain a more consistent 

cost level after a certain number of buses (after bus 

10), whereas FA continues to show noticeable 

variations between buses. 

After bus 2, the system costs fluctuate and increase 

at other buses. If the objective is to minimize system 

costs, then bus 2 should be prioritized for EVCS 

installation. Stability in system cost is an important 

factor in determining the size and location of the 

EVCS, then the QBFA algorithm may offer better 

results than FA. 

QBFA has the capability to ensure consistency in 

reducing power losses at various locations, which is 

crucial for the planning and operation of distribution 

systems integrated with EVCS. 
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(a) 

 

 
(b) 

Figure 10. Power P when installing the charging station at bus 2 of a) FA, b) QBFA 

Both algorithms reach their peak values around 

20:00 to 22:00. FA in chart (a) reaches a higher peak 

of approximately 2.5 MW, while QBFA in chart (b) 

has a slightly lower peak, around 2.25 MW. Both 

algorithms experience a power drop between 10:00 

and 12:00. The minimum power in both cases 

reaches approximately 1 MW. While both 

algorithms follow a similar overall power pattern, 

FA exhibits larger fluctuations compared to QBFA. 

Specifically, FA shows stronger oscillations from 

6:00 to 12:00 and reaches a higher peak in the 

evening. 

QBFA presents a smoother curve with less 

fluctuation throughout the day, showing a less 

significant drop and more stability during peak 

hours. 

Power at the balancing node is also an important 

issue to consider. Data obtained in Figure 10 

indicates that the power changes minimally over 24 

hours, providing a stable 1 MW for the load. The 

results demonstrate the advantage of EVCS in 

maintaining and balancing power for the system, 

which is essential for ensuring stability during peak 

loads and when the grid has excess power. 

 
(a) 

 

 
(b) 

Figure 11. Charging/discharging power of the station over 24 hours at bus 2 of a) FA, b) QBFA

The charging station power is presented in Figure 

11, showing the charging or discharging rate for 

each hour. The maximum discharging power of the 

station is approximately 1.6 MW at 10 PM when the 

load is high and wind and solar power generation is 

low. The maximum charging power is about 2 MWh 

at 1 PM - 2 PM when wind and solar power sources 

are near peak.  There is no significant difference 

between the two algorithms when compared about 

charging/ discharging power of the station over 24 

hours at bus 2. 
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(a) 

 

 
(b) 

Figure 12. Cost optimization function results at bus 2 through iterations of a) FA, b) QBFA 

Figure 12 the analysis focuses on the convergence 

speed through the number of iterations, reflecting 

the performance over time. The objective function 

fluctuates significantly during the first 100 iterations 

(from $2600 down to $1150) in both algorithms. 

Changing the gamma coefficient from 0.04 to 0.02 

to 0.01 (at iteration intervals of 0 - 100 - 200 - 300) 

helps the system stabilize and approach a better 

minimum value. Both algorithms start with a high 

system cost of around $2600. FA has relatively 

smoother cost reductions compared to QBFA, 

especially during the first 50-100 iterations. FA 

seems to converge faster, reaching stability at 

around 100 iterations. QBFA shows larger 

variations in cost in the early stages, which might 

suggest instability or sensitivity in the optimization 

process. QBFA converges more slowly, with 

fluctuations continuing until around 150 iterations, 

after which it stabilizes. The two algorithms both 

relatively converge from the 200th iteration onward. 

QBFA is more computationally complex due to its 

reliance on quantum mechanics principles. FA may 

perform better due to its simplicity and efficiency. 

In some cases, QBFA may struggle with premature 

convergence to local optima, similar to FA. This can 

happen if the balance between exploration and 

exploitation is not well-maintained or if quantum-

inspired operators do not sufficiently diversify the 

search. Research showed that QBFA was more 

stable than FA in reducing cost fluctuations at 

different positions (bus). FA has the advantage of 

fast convergence, making it suitable for problems 

requiring quick optimization. This is of great 

significance in problems that require spatial 

stability. QBFA can ensure that the algorithm 

explores the search space more comprehensively, 

especially in complex nonlinear problems. 
Although QBFA converges slower than FA in the 

early stages, it has the potential to achieve higher-

quality solutions when handling large and complex 

problems. The use of QBFA in this study was not 

only aimed at immediate efficiency but also focused 

on testing and developing a new algorithm with 

superior potential for more complex problems. 

 
(a) 

 

 
(b) 

Figure 13. Charging/discharging energy over 24 hours at bus 2 of a) FA, b) QBFA 
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Data in Figure 13 describes the state of energy 

(SOE) of the charging station in both algorithms 

over 24 hours, showing similar patterns. From 1 AM 

to 8 AM, energy gradually decreases as the station 

is in a low discharging state. The station transitions 

from discharging to charging energy between 8 AM 

and 9 AM and switches back again between 5 PM 

and 6 PM. The station’s energy is lowest at around 

0.2 MWh between 8 AM and 9 AM and highest at 

about 12.25 MWh between 5 PM and 6 PM. -There 

is no significant difference between the two 

algorithms when compared at bus 2 about 

charging/discharging energy over 24 hours. 

 

(a) 

 

 

(b) 

Figure 14. Voltage in 24 hours at bus 21 of a) FA, b) QBFA 

Both algorithms follow a similar voltage fluctuation 

pattern over time, with a rise in voltage during the 

middle of the day (around 12:00-14:00) and a drop 

in the evening and late night (around 20:00-22:00). 

The maximum voltage in both algorithms occurs at 

around the same time, peaking between 12:00 and 

14:00. However, FA seems to reach a slightly higher 

peak voltage compared to QBFA, although the 

difference is minimal. Both charts show a voltage 

dip in the evening, with the voltage reaching its 

lowest point between 20:00 and 22:00. The patterns 

for both algorithms are nearly identical here, with 

QBFA possibly showing a slightly lower minimum 

voltage than FA. There is no major difference 

between the two algorithms when it comes to 

voltage behavior at bus 21 over 24 hours. 

 The above voltage distribution value can be seen 

that the voltage intensity is proportional to the DG 

capacity mobilized into the system. In this case, it is 

clear that the time frame from 8:00 to 18:00 is the 

time frame where the DG capacity from solar power 

and wind power is loaded into the grid at its highest 

level. Outside of this time frame, the mobilized 

capacity decreases, so the voltage intensity also 

decreases. This is a feature that investors need to 

care attention to in order to supplement the 

mobilized capacity from other suitable sources, 

maintain continuous operation and stabilize the 

quality of electricity. 

6. CONCLUSION 

The QBFA algorithm is an enhanced version of the 

FA algorithm, theoretically expected to yield better 

results than FA. However, when applied to location 

for installing evcs on the IEEE 33-bus power grid, 

only a portion of the algorithm was implemented, 

specifically the quantum Q-bit rotation gate, which 

led to less optimal results compared to the FA 

algorithm. The objective function set for this 

problem is to minimize the total costs incurred in the 

distribution power network, including voltage 

deviation costs, power loss, and peak demand costs. 

The installation of EVCS operating in the IEEE 33-

bus power grid was optimized using both FA and 

QBFA algorithms to optimize the objective 

function, and the results were compared to verify the 

accuracy of both methods. The findings indicate that 

the installation of EVCS can improve the efficiency 

of the distribution network by reducing voltage 

deviation costs, power loss, and peak demand. 

Additionally, EVCS can support the integration of 

renewable energy sources, which tend to have 

fluctuations, into the system. 

Through the simulation results, it can be concluded 

that the model applying QBFA improved from FA 

is a powerful algorithm, identifying good solutions 

with fast convergence and meeting the constraints 

and objectives. In addition to optimizing the 

location and size of EVCS, it also optimizes the 



CTU Journal of Innovation and Sustainable Development  Vol. 17, Special issue on ETMD (2025): 113-128 

127 

charging and discharging schedule of each EVCS 

location in the distribution network at each time 

point in 24 hours. The results indicate that the 

installation of charging stations can improve 

operational efficiency, reduce energy loss, 

effectively mobilize DG sources and peak load 

demand. EVCS charging and discharging schedule 

coordination can also support the integration of 

other highly volatile renewable energy sources, 

optimizing the use benefits. This solution can serve 

as a foundation for the development of EVCS 

infrastructure applying V2G technology in practice. 
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