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In this study, we present in detail the application of Grover's quantum 

algorithm to the searching problem of the secret key of a simple SPN 

(Substitution–permutation network) block cipher called Yo-yo. The main 

goal of the paper is to clarify the construction of the quantum circuit and 

the operation phases of Grover's algorithm to find the secret key with the 

condition of knowing at least 1 pair of plaintext-ciphertext. To achieve this 

goal, we consider 2 cases: the case where there is a unique key that 

satisfies and the case where there are 2 keys that satisfy at the same time. 

As a result, our implementation technique, implemented in the Qiskit 

programming language, requires only 17 qubits to find the key of the Yo-

yo block cipher correctly. This technique can be effectively applied on IBM 

quantum computers for large-scale SPN block ciphers, such as AES and 

GOST R.34.10.2015, which are widely used today. 
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1. INTRODUCTION 

Recently, there has been a lot of work focused on 

simulating quantum computers, as well as 

developing real quantum processors: in 2023, IBM 

announced its quantum computer chip and new 

Quantum System. According to IBM, this chip can 

serve as the building blocks for systems that are 

much larger and many times faster than traditional 

silicon supercomputers. IBM's new processor has 

1,000 qubits. According to the company, shortly, 

they will focus on the problem of error correction of 

microprocessors, instead of racing to increase the 

number of qubits. In early 2024, Chinese scientists 

achieved a breakthrough in quantum simulation, 

when they successfully built the world's largest ion 

trap system. This is the largest ion trap quantum 

simulation project carried out to date, marking an 

important milestone in quantum science. In recent 

years, there have been many publications on 

applying Grover's algorithm to find cryptographic 

keys (Grassl et al., 2016; Kim et al., 2018; 

Denisenko, 2019; Jaques et al., 2020). Among them, 

the most prominent works can be found in two 

directions:  

− Applying Grover in SPN block cipher key search 

as: in “Applying Grover’s algorithm to AES: 

Quantum resource estimates” (Grassl et al., 2016) 

the author forces on the quantum resource estimates 

in applying Grover’s algorithm to AES. In 

"Alternative Tower Field Construction for Quantum 

Implementation of the AES S-Box" (Chung et al., 

2022), the authors describe how to build a quantum 

circuit for the AES S-Box. Kim et al. (2018) 

discussed time-space trade-offs for key search on 

block ciphers in general and used AES as an 

example. Jaques et al. (2020), described 

implementations of the full Grover oracle for key 

search on AES and LowMC in Q#, including full 

implementations of the block ciphers themselves.  
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− Applying Grover's algorithm to find the key of 

Feistel architecture block cipher Denisenko (2019) 

presented in detail how to construct a quantum 

circuit for Grover's algorithm to find the key of 

small-sized Feistel block cipher system called SDES 

with only one pair of plain text and cipher text using 

Quipprer Quantum simulator. In the first direction, 

the authors only focus on building the optimal 

quantum circuit for Grover's algorithm in terms of 

quantum resources. The detailed presentation of the 

operation in Grover's algorithm is not clear because 

the quantum circuit for AES and LowMC block 

cipher algorithms is very large. Besides, for SPN 

cipher, no published work considers the case when 

there is more than 1 correct key. Thus, to clarify the 

details of the operation phases of Grover's algorithm 

in finding the key of the SPN block cipher system, 

similar to applying Grover's algorithm in finding the 

Feistel block cipher key such as SDES, it is 

necessary to apply this algorithm to a small-sized 

SPN block cipher. Therefore, in this paper, we will 

show how to apply Grover's algorithm to Yo-yo 

block cipher - a small block cipher with an 8-bit 

block length, and 8-bit key length, built on the SPN 

structure. The main goal of this paper is to show how 

to build a quantum circuit for Grover's algorithm, 

applied to the problem of finding the secret key of 

Yo-yo block cipher in the case of knowing at least 1 

plaintext-cipher pair. We consider 2 cases: there is 

only one satisfying key, and there are 2 satisfying 

keys. In addition, our implementation technique has 

an optimal implementation for the S-box component 

of SPN block cipher in Qiskit programming 

language. It requires only 17 qubits, and this can be 

very useful when applied to large-size SPN block 

ciphers such as AES and GOST R 34.12- 2015 on a 

real IBM quantum computer. In section 2, we 

describe how Yo-yo block cipher works. In section 

3, we describe Grover’s algorithm and how to apply 

it to an arbitrary block cipher. In section 3, we 

describe in detail how to construct a complete 

quantum circuit for the key searching problem for 

Yo-yo block cipher. In section 4, we show some 

results when applying Grover’s algorithm to search 

for the key of Yo-yo block cipher. We provide the 

source code of Yo-yo block cipher (written in C++), 

the source code of Grover's algorithm applied to the 

problem of finding the secret key of Yo-yo block 

cipher (written in Qiskit), and other necessary 

source codes for the testing process, which can be 

found at https://github.com/thangvu97/Grover-

Block-cipher. 

2. YO-YO BLOCK CIPHER DESCRIPTION 

Yo-yo is a block cipher with a 2-round SPN 

structure. 𝐸𝑌𝑜−𝑦𝑜: 𝑉8 × 𝑉8 → 𝑉8, where the master 

key K, plaintext and ciphertext are all 8 bits  

(Figure 1). 

 

Figure 1. Yo-yo block cipher 

In which the Sbox used is a 4-bit Sbox:  

Sbox C 5 6 B 9 0 A D 3 E F 8 4 7 1 2 

The round function of the Yo-yo block cipher is 

described as follows: 

𝐸𝑟(𝑝𝑡, 𝑘) = 𝑃𝑆𝑋𝑘(𝑝𝑡)      (1) 

In which, 𝑋 is a bitwise addition function: 

𝑋(𝑝𝑡, 𝑘) = 𝑝𝑡 ⊕ 𝑘       (2) 

The 𝑆 function is described as follows:  

Let 𝑥 = 𝑥7𝑥6𝑥5𝑥4𝑥3𝑥2𝑥1𝑥0; 𝑥𝑙 = 𝑥7𝑥6𝑥5𝑥4; 𝑥𝑟 =
𝑥3𝑥2𝑥1𝑥0. Then: 

𝑆(𝑥) = 𝑆𝑏𝑜𝑥(𝑥𝑙)||𝑆𝑏𝑜𝑥(𝑥𝑟)    (3), 

where “||” is a bit concatenation operator. 

𝑃 is a bit permutation function, which is described 

as follows: 

𝑃(𝑥7𝑥6𝑥5𝑥4𝑥3𝑥2𝑥1𝑥0) 

= (𝑥0𝑥5𝑥3𝑥1𝑥6𝑥4𝑥2𝑥7)      (4) 

𝑃𝑘 is a bit permutation function too, which is 

described as follows:  

𝑃𝑘(𝑘3𝑘2𝑘1𝑘0) = (𝑘1𝑘0𝑘2𝑘3) (5) 

The key generation function of the Yo-yo block 

cipher is described as follows: 

Let 𝑘 = 𝑘7𝑘6𝑘5𝑘4𝑘3𝑘2𝑘1𝑘0; 𝑘𝑙 = 𝑘7𝑘6𝑘5𝑘4; 𝑘𝑟 =
𝑘3𝑘2𝑘1𝑘0. Then: 
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𝑘𝑟1 = 𝑘 = 𝑘7𝑘6𝑘5𝑘4𝑘3𝑘2𝑘1𝑘0     (6) 

𝑘𝑟2 = 𝑃𝑘(𝑆𝑏𝑜𝑥(𝑘𝑙))||𝑃𝑘(𝑆𝑏𝑜𝑥(𝑘𝑟))   (7) 

Then, the encryption function of the Yo-yo block 

cipher is described as follows:  

𝐸𝑦𝑜−𝑦𝑜(𝑝𝑡, 𝑘) = 𝑃𝑆𝑋𝑘𝑟2
𝑃𝑆𝑋𝑘𝑟1

(𝑝𝑡)   (8) 

3. GROVER’S ALGORITHM  

Suppose having a set of 𝑁 = 2𝑛 elements. We need 

to find at least 1 element that satisfies a certain 

search condition (the set of elements that satisfies 

the search condition is not empty and contains 𝑀 

elements, 𝑀 ≤ 𝑁/2) Define a Boolean function 

𝑓: 𝑉𝑛 → 𝑉1 as follows: 

𝑓(𝑥) = 1 if and only if 𝑥 satisfies search criteria. 

A classical algorithm can solve this search problem 

with a complexity of 𝑂(𝑁/𝑀). With Grover's 

algorithm, the complexity is reduced to 𝑂(√𝑁/𝑀). 

Grover's algorithm only works if the above function 

𝑓 can be implemented. In different problems, this 

function 𝑓 will be different. 

For any arbitrary block cipher, the key searching 

problem using Grover's algorithm is described as 

follows. Consider a block cipher with 𝑚-bit long 

input and 𝑛-bit long key: 𝐸: 𝑉𝑛 × 𝑉𝑚 → 𝑉𝑚. Suppose 

we obtain some plaintext-ciphertext pairs 

corresponding to an unknown key 𝐾: 𝐶𝑖 =
𝐸(𝐾, 𝑃𝑖), 𝑖 ∈ 1, 𝑡̅̅ ̅̅ . If there exist multiple keys that 

satisfy the same condition, to find a unique key, the 

number of plaintext-ciphertext pairs must be no less 

than 𝑡 = ⌈𝑛/𝑚⌉ (Shannon, 1949). 

Then, the function 𝑓: 𝑉𝑛 → 𝑉1 is defined as follows: 

𝑓(𝑥) = ⋀ 𝜎(𝐸(𝑥, 𝑃𝑖) ⊕ 𝐶𝑖)

𝑡

𝑖=1

               (9) 

In which:  

𝜎: 𝑉𝑚 → 𝑉1: {
𝜎(𝑥) = 1 ⇔ 𝑥 = 0𝑚

𝜎(𝑥) = 0,           𝑜𝑡𝑤
     (10) 

In this paper, we used only 1 plaintext-ciphertext 

pair. We consider two cases. In the first case, the 

plaintext-ciphertext pair only has 1 satisfied key. In 

the second case, the plaintext-ciphertext pair has 

more than 1 satisfied key. In these two cases, 

Grover's algorithm works similarly. The only 

difference is the number of Grover iterations, which 

is presented in the following section.  

Grover's algorithm is described as follows (Lipton 

et al., 2021): 

Input:  a set 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑁} of 𝑁 = 2𝑛 

elements. Boolean function 𝑓: 𝑉𝑛 → 𝑉1, 𝑓(𝑥) = 1 if 

and only if 𝑎𝑥 satisfies the search criteria, in which 

𝑥 is the index of the element in the set 𝐴, 𝑥 ∈ 𝑉𝑛. 

Output: With probability > 1/2, an 𝑎𝑥′ that: 

𝑓(𝑥′) = 1. 

1. Initialization 𝑛 + 1 qubit: |Ψ0⟩ = |0⟩⊗𝑛|1⟩. 
Other auxiliary qubits are initialized 

depending on the function 𝑓. 

2. Apply Hadamard gates 𝐻⊗𝑛+1: 

|Ψ1⟩ =
1

√N
∑ |𝑖⟩

𝑁−1

𝑖=0

⊗
|0⟩ − |1⟩

√2
 

3. Apply Grover’s iteration 
𝜋

4
√𝑁/𝑀 times: 

3.1. Apply Grover Oracle to change the sign of 

the amplitude of the target state: |𝑖⟩
𝑂
→ (−1)𝑓(𝑖)|𝑖⟩ 

3.2. Apply Inversion about the mean: 

- Apply  𝐻⊗𝑛 

- Apply 2|0⟩⟨0| − 𝐼 

- Apply 𝐻⊗𝑛 

4. Measurement of qubits. With probability 𝑝 >
1

2
, we obtain an arbitrary 𝑥′: 𝑓(𝑥′) = 1, from 

which we obtain an 𝑎𝑥′. 

4. QUANTUM CIRCUIT FOR YO-YO 

BLOCK CIPHER AND QUANTUM 

CIRCUIT FOR GROVER’S ALGORITHM 

4.1. Quantum circuit for key addition function 

The key addition function can be implemented by 

using only CNOT gates. 

Using 8 qubits corresponding to the plaintext, and 8 

qubits corresponding to the key value, the quantum 

circuit for the key addition function is described as 

follows: 

 

Figure 2. Quantum circuit for key addition 

function 
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4.2. Quantum circuit for key addition function 

Yo-yo block cipher uses 4-bit Sbox: 

Sbox C 5 6 B 9 0 A D 3 E F 8 4 7 1 2 

The construction of a quantum circuit for a 4-bit 

Sbox using only basic NCT gates (NOT, CNOT, 

TOF) without auxiliary qubits can be done using the 

SAT Solver with some conditions (Chen et al., 

2024). We have built a SAT Solver tool in python 

language to search for NCT quantum circuit for 

Sbox of Yo-yo block cipher. The source code can be 

found at https://github.com/thangvu97/Grover-

Block-cipher. 

The quantum circuit for the Sbox of the Yo-yo block 

cipher is described below: 

 

Figure 3. Quantum Circuit for Sbox of Yo-

yo block cipher 

4.3. Quantum circuit for permutation P 

The permutation P can be described as follows: 

𝑃 = (
0 1 2 3 4 5 6 7
7 4 1 5 2 6 3 0

)

= (7 0)(6 3)(6 5)(4 2)(4 1) (11) 

From this, it can be seen that the permutation 𝑃 can 

be implemented using SWAP gates, to swap the 

positions of the qubits. The quantum circuit for the 

permutation 𝑃 is described as follows: 

 

Figure 4. Quantum Circuit for permutation 𝑷 

4.4. Quantum circuit for key generation 

function 

The key generation function of the Yo-yo block 

cipher is described as follows: 

Put 𝑘 = 𝑘7𝑘6𝑘5𝑘4𝑘3𝑘2𝑘1𝑘0; 𝑘𝑙 = 𝑘7𝑘6𝑘5𝑘4; 𝑘𝑟 =
𝑘3𝑘2𝑘1𝑘0. Then: 

𝑘𝑟1 = 𝑘 = 𝑘7𝑘6𝑘5𝑘4𝑘3𝑘2𝑘1𝑘0    (12) 

𝑘𝑟2 = 𝑃𝑘(𝑆𝑏𝑜𝑥(𝑘𝑙))||𝑃𝑘(𝑆𝑏𝑜𝑥(𝑘𝑟))   (13) 

The Sbox of the key generation function has been 

constructed in the above section. The quantum 

circuit for the permutation 𝑃𝑘 is also easily 

constructed using SWAP gates.  

Thus, the quantum circuit for the key generation 

function is described as follows: 

 

Figure 5. Quantum circuit for key generation 

function 
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4.5. Quantum circuit for Grover's algorithm 

for finding the secret key of Yo-yo block 

cipher 

Using quantum circuits in sections 4.1 to 4.4, we 

construct a quantum circuit for Grover's algorithm 

for finding the secret key of the Yo-yo block cipher. 

Suppose we obtained a plaintext-ciphertext pair. 

plaintext = "11011011", ciphertext= "00100010"; 

First, set the input of the quantum circuit to the 

obtained plaintext. To do this, simply use the NOT 

gates. Consider an example where plaintext= 

"11011011": 

 

Figure 6. Quantum circuit for plaintext 

“11011011” 

Note, that the 𝑞0 qubit is LSB (least significant bit) 

and 𝑞7 is MSB (most significant bit). 

Next, initialize the superposition of the key, and set 

up the auxiliary qubit 𝑎 (See steps 1 and 2 of 

Grover's algorithm). The quantum circuit now 

becomes: 

 

Figure 7. Quantum circuit that implements 

steps 1 and 2 of Grover's algorithm 

Now, apply Grover Oracle to change the sign of 

the amplitude: 

|𝑖⟩
𝑂
→ (−1)𝑓(𝑖)|𝑖⟩       (14) 

For the algorithm to find the secret key of a block 

cipher, the function 𝑓 has been defined in the above 

section as follows:  

𝑓(𝑥) = ⋀ 𝜎(𝐸(𝑥, 𝑃𝑖) ⊕ 𝐶𝑖)

𝑡

𝑖=1

        (15) 

Firstly, construct the circuit for the first round of the 

Yo-yo block cipher as follows: 

 
Figure 8. The first part of the complete circuit: 

First round of Yo-yo block cipher 
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The second round of the Yo-yo block cipher is 

constructed similarly to the first round. Note that the 

key generation circuit is not needed in the second 

round because it has been implemented in the first 

round of the algorithm. 

 

Figure 9. The second part of the complete 

circuit: Second round of Yo-yo block cipher 

Lastly, implement the function 𝑓 defined as above:  

𝑓(𝑥) = ⋀ 𝜎(𝐸(𝑥, 𝑃𝑖) ⊕ 𝐶𝑖)

𝑡

𝑖=1

               (16) 

In fact, this function 𝑓(𝑥) is responsible for 

checking the output after being encrypted. If the 

encrypted result matches the original ciphertext, the 

function 𝑓(𝑥) will give the result 1, otherwise it will 

give the result 0. This process can be done by using 

NOT gates and mcx gates (multi-controlled gates). 

After executing the function 𝑓(𝑥), it is necessary to 

bring the 8 qubits from 𝑞0 to 𝑞7 back to the initial 

plaintext state to be ready to perform the second 

Grover iteration. Similarly, it is necessary to bring 

the 8 qubits from 𝑞8 to 𝑞15 back to the state before 

executing the key generation function. Because the 

quantum circuit is symmetric, to perform these 

processes, it is only necessary to take the symmetry 

of the entire circuit through the mcx gate. 

The whole process is described as follows: 

 

Figure 10. Third part of the complete circuit: 

Check the output, and inversion circuit of the 

second round. 

 

Figure 11. The 4-th part of the complete circuit: 

Inversion of the first round and inversion of the 

key generation function 

Finally, apply Inversion about the mean to the qubits 

that contain the key value. The process is described 

as follows: 
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Figure 12. The 5-th part of the complete circuit: 

Inversion about the mean 

At this point, the first Grover iteration ends. The 

next Grover iteration performs the same as the first 

iteration. The number of Grover iterations needed to 

find the solution is ≈ 𝑅 =
𝜋

4
√

𝑁

𝑀
 (Nielsen & Chuang, 

2010).  After 𝑅 Grover iteration, perform a 

measurement on the qubits that contain the key 

value. The measurement will yield a correct value 

with probability >
1

2
. 

The complete circuit of Grover's algorithm for Yo-

yo block cipher’s key searching problem is 

described as follows: 

 

Figure 13. The complete quantum circuit of 

Grover's algorithm for Yo-yo block cipher’s key 

searching problem 

5. RESULTS 

5.1. First case: unique key exists 

Consider the case where plaintext = "11011011"; 

ciphertext = "00100010". In this case, there exists 

a unique secret key 𝐾 ∈ 𝑉8 satisfy the condition 

𝐸𝑦𝑜−𝑦𝑜(𝐾, plaintext ) = ciphertext .  
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The corresponding number of Grover iterations is: 

𝑅 =
𝜋

4
√

𝑁

𝑀
=

𝜋

4
√

28

1
≈ 12. 

After 12 Grover iterations, with 10.000.000 shots, 

Grover's algorithm successfully finds the correct 

secret key with probability ≈ 99,99501%. The 

probability distribution of the key values after the 

measurement is shown in Table 1. 

Table 1. Probability distribution of key values 

after measurement in the first case 

Yo-yo key 
Probability after making 

the measurement 

0000 0000 10−7 

0000 0001 2 × 10−7 

⋮ ⋮ 
00010010 0,9999501 

⋮ ⋮ 
11111110 2 × 10−7 

11111111 3 × 10−7 

5.2. Second case: exist 2 keys 

Consider the case where plaintext = "11001100"; 

ciphertext = "01011010". In this case, there are two 

secret keys 𝐾1, 𝐾2 ∈ 𝑉8 that satisfy the condition 

𝐸𝑦𝑜−𝑦𝑜(𝐾1, PT ) = CT, 𝐸𝑦𝑜−𝑦𝑜(𝐾2, PT) = CT. 

The corresponding number of Grover iterations is: 

𝑅 =
𝜋

4
√

𝑁

𝑀
=

𝜋

4
√

28

2
≈ 8. 

After 8 Grover iterations, with 10.000.000 shots, 

Grover's algorithm successfully finds the correct 

secret key with probability ≈ 99,56376%. The 

probability distribution of the key values after the 

measurement is shown in Table 2. 

Table 2. Probability distribution of key values 

after measurement in the second case 

Yo-yo key 
Probability after making the 

measurement 

0000 0000 10−5 

0000 0001 2 × 10−5 

⋮ ⋮ 
10111010 0,4976935 

⋮ ⋮ 
11001001 0, 4979432 

⋮ ⋮ 
11111110 10−5 

11111111 2 × 10−5 

6. CONCLUSIONS 

In this paper, the authors presented a quantum 

circuit for Grover's algorithm, applied to the 

problem of finding the secret key of the Yo-yo block 

cipher. This quantum circuit uses a total of 17 

qubits, of which 8 qubits are for the plaintext-

ciphertext, 8 qubits are for the key, and 1 auxiliary 

qubit in the use of the phase-kickback technique. 

The authors presented 2 cases: when there is only 1 

satisfying key, and when there are 2 satisfying keys. 

The required resources for the above quantum 

circuit are presented in the table below. It is 

observed that, in the case where only one key exists, 

12 iterations of Grover's algorithm are required to 

obtain the correct key. If the circuit depth for one 

iteration is 𝑙, then 12 iterations result in a total depth 

of 12 × 𝑙. When two keys exist, only 8 iterations are 

needed, resulting in a circuit depth of 8 × 𝑙. Clearly, 

this reduces the depth, but in practice, the resources 

(number of quantum logic gates, number of qubits) 

effectively double. In practical implementations, 

this trade-off must be carefully considered to 

determine the most optimal attack strategy. 

Table 3. Required resources for implementing Grover’s algorithm on Yo-yo block cipher 

Number of 

Grover iterations 

Required resources  

CNOT NOT TOF SWAP H gates Mcx gates Quantum depth 

1 92 59 48 44 27 2 61 

12 1104 631 576 528 225 24 699 

8 736 389 384 352 153 16 467 

ACKNOWLEDGMENT  

This work has been supported by the Academy of 

Cryptography Techniques under Project/Lab. 

 

  



CTU Journal of Innovation and Sustainable Development  Vol. 16, Special Issue on ISDS (2024): 8-16 

16 

REFERENCES 

Chen, J., Liu, Q., Fan, Y., Wu, L., Li, B., & Wang, M. 

(2024). New Sat-based model for Quantum Circuit 

decision problem: Searching for low-cost quantum 

implementation. IACR Communications in 

Cryptology. https://doi.org/10.62056/anmmp-4c2h 

Chung, D., Lee, S., Choi, D., & Lee, J. (2022). 

Alternative tower field construction for quantum 

implementation of the AES S-box. IEEE 

Transactions on Computers, 71(10), 2553–2564. 

Denisenko, D. V. (2019). Quantum circuits for S-box 

implementation without ancilla qubits. Journal of 

Experimental and Theoretical Physics, 128(6), 847–

855. https://doi.org/10.1134/s1063776119050108. 

Grassl, M., Langenberg, B., Roetteler, M., & Steinwandt, 

R. (2016). Applying Grover’s algorithm to AES: 

Quantum Resource Estimates. Lecture Notes in 

Computer Science, 29–43. 

Grover, L. K. (1996). A fast quantum mechanical 

algorithm for database search. Proceedings of the 

Twenty-Eighth Annual ACM Symposium on Theory 

of Computing  - STOC ’96, 212–219. 

Jaques, S., Naehrig, M., Roetteler, M., & Virdia, F. 

(2020). Implementing Grover oracles for Quantum 

Key Search on AES and lowmc. Lecture Notes in 

Computer Science, 280–310.   

Kim, P., Han, D., & Jeong, K. C. (2018). Time–space 

complexity of quantum search algorithms in 

symmetric cryptanalysis: Applying to AES and 

SHA-2. Quantum Information Processing, 17(12). 

Lipton, R. J., & Regan, K. W. (2021). Introduction to 

quantum algorithms via linear algebra. The MIT Press.  

Nielsen, M., & Chuang, I. (2010). Quantum 

Computation and Quantum Information Nielsen, 

Michael. Cambridge University Press.  

Shannon, C. E. (1949). Communication theory of 

secrecy systems. The Bell system technical 

journal, 28(4), 656-715. 

 


