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This study investigates the impact of inner-loop pressure regulation on the 

dynamic performance of pneumatic artificial muscle (PAM) systems using 

a dual-loop control architecture. Three pressure control strategies – 

Proportional-Integral (PI), Proportional-Integral-Derivative (PID), and 

Radial Basis Function neural network-tuned PID (RBF-PID) – are 

experimentally evaluated in terms of tracking accuracy, transient 

response, and disturbance rejection. Results show that the RBF-PID 

controller achieves the highest accuracy of pressure tracking , with a root-

mean-square error (RMSE) of 0.067 bar under a modulated sinusoidal 

input, outperforming PID (0.088 bar) and PI (0.094 bar) controllers. In 

position control tasks, all dual-loop configurations offer improved stability 

compared to the single-loop setup. The RBF-PID controller further 

enhances performance, achieving a settling time of 3.04 seconds, zero 

overshoot, and the shortest recovery time of 2.73 seconds under a 10-kg 

load disturbance. Although the performance gap between PI and PID 

remains modest, suggesting PI remains a practical solution for resource-

constrained applications, the RBF-PID controller provides significant 

benefits in adaptability and robustness. These findings underscore the 

importance of adaptive pressure regulation in improving the tracking 

accuracy and resilience of PAM-based actuators. The choice of control 

strategy should therefore be guided by the specific application context, 

balancing control performance with computational and hardware 

constraints. 
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1. INTRODUCTION 

Pneumatic Artificial Muscles (PAMs) have gained 

significant attention in soft robotics and assistive 

technologies due to their high compliance, 

lightweight structure, and excellent power-to-

weight ratio (Plettenburg, 2005; Kalita et al., 2022). 

Their practicality has been demonstrated in real-

world applications, such as lower-limb 

rehabilitation robots. For example, Tsai and Chiang 

(Tsai & Chiang, 2023) developed a system using a 

single PAM and torsion spring to achieve two-

degree-of-freedom motion. Structurally, a PAM 

consists of an internal elastic bladder surrounded by 

a braided mesh. When pressurized, the bladder 

expands radially and contracts axially, generating 
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tensile force; when depressurized, it returns to its 

original length (Zabihollah et al., 2024). This unique 

mechanism enables smooth, biomimetic motion but 

also introduces substantial challenges in control. 

The compressibility of air, nonlinear pressure–

length relationships, and system hysteresis lead to 

significant nonlinearity and dynamic delay, which 

complicate both force and position control (Jamian 

et al., 2020; Shakiba et al., 2021; Al Saaideh & Al 

Janaideh, 2022; Vo & Ahn, 2022). 

To address these complexities, many studies have 

adopted dual-loop control architectures, in which 

the inner loop regulates air pressure, while the outer 

loop controls the position or force of the actuator 

(Robinson et al., 2016; Lin et al., 2021). This 

structure is conceptually advantageous, as it 

decouples fast pneumatic dynamics from slower 

mechanical responses, potentially improving system 

stability and responsiveness. For example, (Tran et 

al., 2023) demonstrated that a dual-loop controller 

incorporating a Proportional-Integral (PI) pressure 

regulator achieved a settling time of 0.5 seconds for 

step inputs and 1.5 seconds for square-wave signals, 

with an overshoot of only 0.3 bar during position 

control tests under a 25 kg load and 65% stroke (23 

mm). However, most previous research has applied 

this dual-loop strategy without systematically 

comparing it to position-only control, and without 

quantitatively evaluating the benefit of inner-loop 

pressure control. Furthermore, few studies assess 

how pressure regulation affects robustness when the 

system is exposed to external disturbances, such as 

load variations or input noise (Takosoglu, 2020). 

This presents a clear gap in the literature that must 

be addressed to validate the true effectiveness of 

dual-loop architectures in practical PAM 

applications. 

Beyond dual-loop control, accurate pressure 

regulation is also crucial for other advanced PAM 

control strategies. In particular, model-based 

methods such as hysteresis inversion or feedforward 

compensation depend heavily on precise pressure 

tracking to ensure reliable actuator behavior. For 

example, (Zang et al., 2017) employed a modified 

Prandtl–Ishlinskii model for position control of a 

single PAM with better performance compared with 

earlier works (Choi et al., 2006; Liu et al., 2015). 

However, the effectiveness of such hysteresis 

modeling hinges on the assumption that pressure is 

well-regulated. Similarly, Zhang et al. (2024) also 

found that stable pressure dynamics are critical for 

direct inverse hysteresis compensation strategies 

with fuzzy sliding-mode controllers in controlling 

PAM-based humanoid robot manipulators. 

Therefore, pressure control is not merely an 

auxiliary task but a critical requirement in a wide 

range of PAM control paradigms. 

Addressing this issue requires a closer look at the 

pressure control strategies employed in the inner 

loop. Several methods have been explored for 

regulating air pressure in PAMs. The PI controller 

remains widely used due to its simplicity and low 

computational demands (Arun Jayakar & 

Tamilselvan, 2019; Zorro et al., 2022). However, in 

systems with strong nonlinearities and delays, PI 

control often results in overshoot, long settling time, 

and poor disturbance rejection (Massoud & Libby, 

2024). To overcome these limitations, advanced 

control techniques such as fuzzy logic, model 

predictive control, and gain scheduling have been 

proposed (Ruan & Yang, 2020; Hou et al., 2022; 

Flores et al., 2023). Although not applied to PAM 

systems, similar research has explored the use of 

adaptive learning methods; for example, Radial 

Basis Function Neural Network-tuned PID (RBF-

PID) controllers for real-time PID tuning in other 

dynamic systems, showing promising results (Wang 

et al., 2022). This approach dynamically adjusts the 

Proportional-Integral-Derivative (PID) parameters 

based on real-time error dynamics and system states, 

allowing improved tracking accuracy and 

adaptability. In one study, RBF-PID control applied 

to a robotic arm achieved 0.01% overshoot and 

reduced settling time from 2.2 s (obtained with a 

conventional PID controller) to just 1 s, even under 

noise. In another study about DC motor control, it 

halved the settling time (0.65 s vs. 1.35 s) and 

eliminated overshoot under parameter variations 

(Wang et al., 2022). However, there is limited 

evidence directly comparing their performance to PI 

controllers in PAM pressure control applications, 

particularly under disturbances or when integrated 

into full position control systems (Massoud & 

Libby, 2024). 

This study aims to evaluate systematically the role 

and effectiveness of inner-loop pressure control in 

PAM systems by addressing two key objectives: 

1. The first objective of this study is to compare 

the performance of three pressure control strategies: 

the discrete PI controller, the discrete PID 

controller, and the adaptive discrete RBF-PID 

controller. All controllers are evaluated under 

identical operating conditions, with pressure 

tracking accuracy assessed using the RMSE metric 
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during both contraction and extension phases of the 

PAM actuator. 

2. The second objective of this study is to 

investigate the influence of inner-loop pressure 

regulation on outer-loop position control 

performance. This is accomplished by analyzing 

and comparing the system’s dynamic behavior 

under three distinct control configurations: (1) 

position control without any form of pressure 

regulation, (2) position control incorporating a 

discrete PI controller in the inner pressure loop, and 

(3) position control employing an adaptive discrete 

RBF-PID controller for inner-loop pressure control. 

By evaluating these configurations under both 

nominal and disturbed conditions, the study aims to 

quantify the impact of pressure control quality on 

the overall precision and robustness of the PAM 

system. For each configuration, we evaluate 

performance using percentage overshoot (POT), rise 

time, and settling time, both under nominal 

conditions and with external disturbances, to assess 

not only control precision but also system 

robustness. 

Through this two-stage approach, the study provides 

new insights into the interaction between inner- and 

outer-loop dynamics in PAM-based systems and 

offers practical guidance for the design of adaptive, 

disturbance-resilient control strategies in real-world 

soft robotic applications. 

2. MATERIALS AND METHODS 

2.1. Experimental setup 

Figure 1 presents the experimental setup utilized in 

this study. A PAM with a diameter of 40 mm and an 

initial length of 300 mm (FESTO MAS-40-300N) 

was employed. Displacement measurements were 

acquired using an Accuracy™ KTC100 position 

sensor, while internal air pressure was monitored by 

a Honeywell pressure transducer. A FESTO MPYE 

5/3 proportional directional control valve managed 

the airflow to and from the actuator. The control 

system and data acquisition were developed in 

MATLAB/Simulink, operating with a sampling 

interval of 10 ms. All position and pressure signals 

were obtained from the physical model and digitized 

by a Texas Instruments C2000 LaunchPAD, which 

features a 12-bit analog-to-digital converter. 

 

Figure 1. Experiment setup 

2.2. Dual-loop control architecture 

In this study, the control system is designed based 

on a dual-loop architecture to leverage the distinct 

physical and dynamic characteristics of different 

components in the PAM system. As shown in Figure 

2, the architecture consists of: 

− An inner loop controller: Responsible for 

regulating the compressed air pressure supplied to 

the muscle. To confirm the better performance of the 

proposed discrete RBF-PID controller, conventional 

discrete PI and PID controllers were also 

implemented for comparison purposes. 

− An outer loop: Responsible for the position 

tracking of the PAM endpoint. In this study, a PID 

controller was used. 

This hierarchical structure separates fast-response 

pressure regulation from slower position control, 

thereby improving system stability, simplifying 

parameter tuning, and enhancing overall 

performance, as supported by previous research 

(Tran et al., 2023). 

2.3. Position controller in outer-loop 

The outer-loop discrete PID controller generates the 

the outer control signal ( )yu k  at discrete time step 

k as follows: 
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where ( )ye k  is the position error at time k and the 

sampling time is 0.01sT = s. The proportional, 

integral, and derivative gains were empirically set as 

15PK = , 4IK = , and 0.1DK = , respectively. 

 

Figure 2. Block diagram of the two-loop control structure 

The discrete-time control signal ( )yu k is converted 

to the reference pressure refp  for the inner 

pressure-control loop as follows: 

 ref yp G u=   (2) 

where 6 84(bar mm)G =  is the displacement-to-

pressure conversion ratio, experimentally 

determined based on the fact that the PAM exhibits 

a contraction of approximately 84 mm in response 

to the maximum input pressure of 6.0 bar and a load 

of 15–25 kg. 

2.4. Pressure controllers 

This study evaluates three pressure controllers, 

which are PI, PID, and adaptive RBF-PID 

controllers. The control signal is applied to a 

proportional valve to regulate airflow within the 

range of 0–6 bar. The inner pressure control system 

is a single-input single-output system with the 

associated signals as follows: 

• ( )refp k : Reference pressure at time step k, 

• ( )p k : Pneumatic pressure at time step k, 

• ( ) ( ) ( )refe k p k p k= − : Pressure error at time 

step k, 

• ( )u k : Control signal output at time k. 

2.4.1. Pressure control using a PI controller 

The output signal of the PI controller is given by: 

 1 1
0

( ) ( ) ( ) ( )
k

PI P I s
i

u k u k K e k K e k T
=

= =  +     (3) 

where 1PK  and 1IK  are the proportional and 

integral gains of the PI controller, respectively. 

These gains were empirically set as 1 2.2PK =  and 

1 4.6IK =  to achieve a short settling time, minimal 

steady-state error, and negligible overshoot. 

2.4.2. Pressure control using a PID controller 

The PID controller enhances pressure regulation by 

adding a derivative term to the PI structure. The 

derivative term predicts future error trends by 

estimating the rate of change of error, improving 

responsiveness, and reducing overshoot during 

sudden reference changes. While effective in 

improving transient behavior, PID control remains 

sensitive to noise and tuning complexity in 

nonlinear systems. 

 2 2
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D
s

u k u k

K e k K e i T
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where 2PK , 2DK , and 2IK  are the proportional, 

derivative, and integral gains of the PID controller, 

respectively. These gains were also empirically 

tuned and set to 2 2.0PK = , 2 0.2DK = , and

2 4.6IK = , respectively. 

2.4.3. Pressure control using an RBF-PID 

controller 

To enhance control performance for systems with 

nonlinear characteristics, delays, and dynamic 

variations, this study employs a discrete PID 

controller combined with a Radial Basis Function 

(RBF) neural network, forming an adaptive RBF-

PID controller (Figure 3). This control scheme 

allows real-time tuning of PID parameters, 

improving control accuracy and adaptability. 
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Figure 3. RBF-PID controller structure

The control law of the proposed RBF-PID is 

formulated similarly to the standard PID structure, 

as in Eq. (3).  
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However, the PID gains are continuously updated 

by the RBF neural network to minimize the cost 

function: 

  
21

( ) ( )
2

E k e k=  (6) 

where 

 ( ) ( ) ( )refe k p k p k= −  (7) 

Using a gradient descent learning mechanism, the 

proportional, integral, and derivative gains are 

updated as follows: 

 3 3 3( 1) ( ) ( )P P PK k K k K k+ = +  (8) 

 3 3 3( 1) ( ) ( )I I IK k K k K k+ = +  (9) 

 3 3 3( 1) ( ) ( )D D DK k K k K k+ = +  (10) 

After each time step k, the gain updates are 

respectively computed as: 
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where   is the learning rate; 
( )

( )

p k

u k




 is the Jacobian 

of the plant, estimated by the RBF network; and the 

partial derivatives of the discrete-time control signal 

u(k) with respect to KP3, KI3, and KD3 are computed 

as follows: 

 
3

( )
( )

( )P

u k

K k
e k


=


 (14) 

 
03( )

( )
( )

k

s
iI

u k
e k T

kK =

 
=   

  
 (15) 

 
3

( ) ( ) ( 1)

( )D s

u k e k e k

K k T

 − −
=


 (16) 

Figure 4 shows the structure of the RBF network 

used for the discrete RBF-PID controller. This 

network was designed based on previous reports 

(Jiang-Jiang et al., 2008; Hien et al., 2018). It has 1 
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hidden layer with 5 neurons. It receives the current 

control signal u(k) and two past pressure values p(k-

1) and p(k-2), forming the input vector as follows: 

  1( ) ( ) ( ) ( 2)
T

p k kk pk u −= −x  (17) 

 

Figure 4. RBF network structure 

The network output is computed as: 

 
1

ˆ
j

m
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=    (18) 

where jw  is the connection weight between the 

output neuron and the hidden neuron j, whose 

activation function is calculated as 
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where jb  and jc  are the width (spread) of the 

Gaussian activation function and the center vector 

of neuron j, respectively, and   denotes the 

Euclidean norm operation. 

The Jacobian for online update of PID gains is 

calculated from the network output as:  
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where 1 jc  and 1x  are the first elements of jc  and 

x , respectively. Therefore, 
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For Eq. (19) to hold, the RBF network parameters 

should be updated to minimize the estimation error: 

  
21

( ) ( )
2

RBF RBFE k e k=  (22) 

where 

 ˆ( ) ( ) ( )RBFe k p k p k= −  (23) 

In this study, the RBF network is trained with 

gradient descent and momentum. The connection 

weights, the widths of the Gaussian functions, and 

the centers of the hidden neurons are adjusted as 

follows: 
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The learning rate and momentum factor were 

chosen as 0.01 =  and 0.9 = , respectively. The 

initial values of the PID gains are selected based on 

the baseline performance of the conventional PID 

controller as 3(0) 3.2PK = , 3(0) 0.01DK = , 
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3(0) 2.0IK = . The width parameters were initially 

set at 3jb = . The center matrix was initialized at 

 

1 2 3 4 5

0 1.5 3 4.5 6

0 1.5 3 4.5 6

0 1.5 3 4.5 6

C =   

 
 
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 
  

c c c c c

 

3. RESULTS AND DISCUSSION 

3.1. Overall performance of the investigated 

pressure controllers 

3.1.1. Experiment 1: Pressure regulation with 

simple reference signals 

To evaluate the performance of the proposed RBF-

PID controller, two distinct reference signals – a 

damped triangular waveform and a damped 

sinusoidal waveform – were used to compare 

against conventional discrete PI and PID 

controllers. The damped triangular signal, 

characterized by sharp transitions and a linearly 

decreasing amplitude, posed a challenge in abrupt 

signal variations (Pref signal in Figure 5). In contrast, 

the damped sinusoidal signal provided a smoother 

and more gradual variation (Pref signal in Figure 6). 

Figures 5 and 6 show the pressure tracking results 

for the three controllers. All controllers generally 

followed the reference signals, but the discrete RBF-

PID controller achieved higher accuracy, 

particularly for the sinusoidal signal. The discrete 

RBF-PID achieved a lower RMSE of 0.069 bar, 

compared to 0.094 bar for PI and 0.088 bar for PID 

controllers (Table 1). 

 

Figure 5. Tracking performance with a damped 

triangular reference 

 

Figure 6. Tracking performance with a damped 

sinusoidal reference 

Table 1. RMSE for damped triangular and 

sinusoidal signals 

Discrete 

controller 

Damped 

triangular signal 

(bar) 

Damped 

sinusoidal signal 

(bar) 

PI 0.107 0.094 

PID 0.089 0.088 

RBF-PID 0.086 0.069 

3.1.2. Experiment 2: Pressure regulation with 

more complicated reference signals 

To further assess the robustness of the proposed 

controller, a second experiment employed more 

complex and dynamic reference signals, designed to 

simulate realistic pressure fluctuations. These 

signals featured varying amplitudes and non-

uniform decay patterns to challenge the adaptability 

of each controller. For comparison purposes, both 

reference signals had amplitudes ranging from 1.0 

to 5.5 bar, consistent with those in Experiment 1. 

The first signal was a triangular waveform with 

varying peak amplitudes (Pref signal in Figure 7), 

designed to introduce asymmetry and abrupt slope 

changes. The second signal was a modulated 

sinusoidal waveform with irregular amplitude decay 

(Pref signal in Figure 8), simulating oscillatory yet 

non-uniform pressure demands often encountered in 

real-world scenarios.  

As shown in Figures 7 and 8, all controllers 

maintained acceptable tracking. However, the 

discrete RBF-PID consistently showed closer 

adherence to the reference signals, particularly 

during abrupt changes. This was also reflected in 

RMSE values (Table 2), where the discrete RBF-

PID achieved 0.088 bar and 0.067 bar in tracking the 

triangular and modulated sinusoidal signals, 
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respectively. These results confirm that the discrete 

RBF-PID controller offers improved tracking 

accuracy, especially for signals with nonstationary 

or irregular characteristics. 

As highlighted in Figures 8 and 9, all controllers 

exhibited sufficient tracking performance, 

validating the necessity of incorporating an inner-

loop controller - even a simple PI - for effective 

pressure regulation. Nonetheless, the discrete RBF-

PID controller again outperformed both the PI and 

PID controllers, showing smaller deviations around 

rapid waveform changes and yielding lower RMSE 

values (Table 2). These findings confirm the 

advantage of the RBF-enhanced PID design in 

managing nonlinear and dynamic pneumatic system 

behavior.

 

Figure 7. Tracking with a triangular signal of 

variable amplitude 

 

Figure 8. Tracking with a modulated sinusoidal 

signal 

Table 2. RMSE for complex reference signals 

Discrete 

controller 

Variable 

triangular signal 

(bar) 

Modulated 

sinusoidal signal 

(bar) 

PI 0.111 0.094 

PID 0.104 0.088 

RBF-PID 0.088 0.067 

3.2. Performance of PAM position control with 

and without load disturbance 

Given that this study primarily focuses on the design 

of the discrete RBF-PID controller for pressure 

regulation, a discrete PID controller was employed 

for PAM position control across all tested 

configurations. System performance was evaluated 

under four different pressure control schemes using 

45-mm step inputs across two intervals:  

i) 0–9 seconds: Evaluation of transient 

characteristics. 

ii) 9–20 seconds: Assessment of response under 

external load disturbance, introduced by manually 

applying a 10-kg mass on the actuator. 

The four tested pressure control schemes were: 

1. Position-only control (without pressure 

feedback), 

2. Dual-loop control with discrete PI pressure 

regulation, 

3. Dual-loop control with discrete PID pressure 

regulation, 

4. Dual-loop control with discrete RBF-PID 

pressure regulation. 

Four key performance metrics, which are rise time, 

settling time, and percent overshoot (POT), are 

summarized in Table 3.  

Table 3. Step response characteristics under 

different pressure control schemes 

Discrete 

controller 

Rise 

time (s) 

Settling 

time (s) 

Percent of 

overshoot (%) 

None 0.06 7.73 6.32 

PI 1.36 7.51 2.82 

PID 1.37 7.50 2.73 

RBF-PID 1.40 3.04 0.00 
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3.2.1. Characteristics of the step responses 

As shown in Figure 9, omitting pressure feedback 

led to the shortest rise time (0.06 s), but poor 

damping and significant overshoot (6.32%) due to 

the unmitigated nonlinear dynamics of pneumatic 

actuation. 

 

Figure 9. Position and pressure responses using 

control without pressure feedback 

In contrast, all dual-loop configurations with 

pressure feedback (PI, PID, and RBF-PID) yielded 

slower but more stable responses, with reduced 

overshoot. The PI and PID controllers decreased the 

POT by more than 50% compared to the no-

feedback case. However, they did not substantially 

improve the settling time. Notably, the RBF-PID 

controller achieved complete overshoot suppression 

and reduced the settling time by nearly 60% (from 

7.73 s to 3.04 s), as shown in Figures 10–12. These 

results highlight the benefit of adaptive gain tuning 

via the RBF network in effectively compensating 

for transient nonlinearities and pressure 

fluctuations. 

3.2.2. System responses to load disturbances 

 

Figure 10. Position and pressure responses 

using dual-loop control with PI pressure 

regulation 

 

Figure 11. Position and pressure responses 

using dual-loop control with PID pressure 

regulation 

 

Figure 12. Position and pressure responses 

using dual-loop control with RBF-PID pressure 

regulation 

To assess robustness, a 10-kg external load was 

applied at steady state, causing a sudden PAM 

displacement of approximately 7.5 mm in all cases 

(Figure 12). Recovery time – the duration required 

to return to the reference position – varied 

significantly across controllers (Table 4).  

Table 4. Effect of pressure control on recovery 

time under external load disturbance 

Discrete 

controller 
Disturbance recovery time (s) 

None 9.95 

PI 5.76 

PID 5.68 

RBF-PID 2.73 

Without pressure regulation, recovery took 

approximately 9.95 s. Both PI and PID controllers 

reduced this to ~5.7 s (a 43% improvement). 

Impressively, the discrete RBF-PID controller 

enabled the fastest recovery at just 2.73 s. This result 

confirms both the advantage of dual-loop control in 

load disturbance scenarios and the superior 
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adaptability of the discrete RBF-PID controller, 

which effectively compensates for dynamic 

variations and nonlinear disturbances in real time. 

The effectiveness of real-time PID gain adaptation 

via the RBF network is further illustrated in Figure 

13, which shows the dynamic adjustments of the 

PID gains during the control process. Notably, 

significant gain updates occur around the period of 

10–14 seconds, coinciding with the period of 

external load disturbance. This adaptive response 

enables the controller to compensate rapidly for the 

introduced disturbance, contributing to faster 

recovery and improved overall stability. The ability 

to modify control gains in real time allows the 

discrete RBF-PID controller to maintain high 

tracking accuracy and robust disturbance rejection, 

confirming the advantage of using a learning-based 

approach in pneumatic control applications. 

 

Figure 13. PID gain updates with RBF-PID 

pressure regulation 

4. CONCLUSION 

Inner-loop pressure regulation plays a critical role in 

shaping the dynamic response of pneumatic 

artificial muscle (PAM) systems. Of the three 

evaluated strategies, the proposed adaptive discrete 

RBF-PID controller consistently demonstrated 

superior pressure tracking performance. It achieved 

the lowest root-mean-square error (RMSE) of 0.067 

bar under a modulated sinusoidal reference, 

outperforming the conventional discrete PID and 

discrete PI controllers, which recorded RMSEs of 

0.088 bar and 0.094 bar, respectively. However, the 

performance difference between discrete PI and 

discrete PID controllers remained relatively small 

across all test cases, particularly under noisy or 

irregular conditions. This suggests that, for 

applications with limited computational resources 

or operating in uncertain environments, the discrete 

PI controller remains a practical and robust choice, 

offering reliable performance with minimal 

implementation complexity. 

In position control tasks, the benefits of adaptive 

pressure regulation became even more apparent. All 

dual-loop configurations outperformed the single-

loop approach by enhancing system stability and 

transient behavior. Among them, the RBF-PID 

controller achieved the best overall performance, 

with a settling time of 3.04 seconds, zero overshoot, 

and the fastest recovery from external disturbances, 

returning to the reference position in just 2.73 

seconds after a 10-kg load perturbation. These 

results were supported by the observed real-time 

adjustments of PID gains, which confirmed the 

controller’s ability to adapt to dynamic changes and 

maintain stability under varying conditions. 

However, the improved performance of the discrete 

RBF-PID controller comes at the cost of increased 

computational demand. Its real-time learning and 

adaptive gain tuning require higher processing 

capacity, which may pose challenges for 

deployment on low-cost or embedded platforms, 

especially when paired with advanced outer-loop 

control strategies. 

In conclusion, the choice of control architecture 

should be guided by the specific application context, 

hardware limitations, and performance 

requirements. While the discrete RBF-PID 

controller is well-suited for precision-critical and 

adaptive systems, simpler approaches such as 

discrete PI control continue to offer a valuable 

balance between performance and practicality in 

resource-constrained scenarios. 
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