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This study investigates the impact of inner-loop pressure regulation on the
dynamic performance of pneumatic artificial muscle (PAM) systems using
a dual-loop control architecture. Three pressure control strategies —
Proportional-Integral (PI), Proportional-Integral-Derivative (PID), and
Radial Basis Function neural network-tuned PID (RBF-PID) — are
experimentally evaluated in terms of tracking accuracy, transient
response, and disturbance rejection. Results show that the RBF-PID
controller achieves the highest accuracy of pressure tracking , with a root-
mean-square error (RMSE) of 0.067 bar under a modulated sinusoidal
input, outperforming PID (0.088 bar) and PI (0.094 bar) controllers. In
position control tasks, all dual-loop configurations offer improved stability
compared to the single-loop setup. The RBF-PID controller further
enhances performance, achieving a settling time of 3.04 seconds, zero
overshoot, and the shortest recovery time of 2.73 seconds under a 10-kg
load disturbance. Although the performance gap between PI and PID
remains modest, suggesting PI remains a practical solution for resource-
constrained applications, the RBF-PID controller provides significant
benefits in adaptability and robustness. These findings underscore the
importance of adaptive pressure regulation in improving the tracking
accuracy and resilience of PAM-based actuators. The choice of control
strategy should therefore be guided by the specific application context,
balancing control performance with computational and hardware
constraints.

1. INTRODUCTION

Pneumatic Artificial Muscles (PAMs) have gained
significant attention in soft robotics and assistive
technologies due to their high compliance,
lightweight structure, and excellent power-to-
weight ratio (Plettenburg, 2005; Kalita et al., 2022).
Their practicality has been demonstrated in real-

world  applications, such as lower-limb
rehabilitation robots. For example, Tsai and Chiang
(Tsai & Chiang, 2023) developed a system using a
single PAM and torsion spring to achieve two-
degree-of-freedom motion. Structurally, a PAM
consists of an internal elastic bladder surrounded by
a braided mesh. When pressurized, the bladder
expands radially and contracts axially, generating
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tensile force; when depressurized, it returns to its
original length (Zabihollah et al., 2024). This unique
mechanism enables smooth, biomimetic motion but
also introduces substantial challenges in control.
The compressibility of air, nonlinear pressure—
length relationships, and system hysteresis lead to
significant nonlinearity and dynamic delay, which
complicate both force and position control (Jamian
et al., 2020; Shakiba et al., 2021; Al Saaideh & Al
Janaideh, 2022; Vo & Ahn, 2022).

To address these complexities, many studies have
adopted dual-loop control architectures, in which
the inner loop regulates air pressure, while the outer
loop controls the position or force of the actuator
(Robinson et al., 2016; Lin et al., 2021). This
structure is conceptually advantageous, as it
decouples fast pneumatic dynamics from slower
mechanical responses, potentially improving system
stability and responsiveness. For example, (Tran et
al., 2023) demonstrated that a dual-loop controller
incorporating a Proportional-Integral (PI) pressure
regulator achieved a settling time of 0.5 seconds for
step inputs and 1.5 seconds for square-wave signals,
with an overshoot of only 0.3 bar during position
control tests under a 25 kg load and 65% stroke (23
mm). However, most previous research has applied
this dual-loop strategy without systematically
comparing it to position-only control, and without
quantitatively evaluating the benefit of inner-loop
pressure control. Furthermore, few studies assess
how pressure regulation affects robustness when the
system is exposed to external disturbances, such as
load variations or input noise (Takosoglu, 2020).
This presents a clear gap in the literature that must
be addressed to validate the true effectiveness of
dual-loop architectures in practical PAM
applications.

Beyond dual-loop control, accurate pressure
regulation is also crucial for other advanced PAM
control strategies. In particular, model-based
methods such as hysteresis inversion or feedforward
compensation depend heavily on precise pressure
tracking to ensure reliable actuator behavior. For
example, (Zang et al., 2017) employed a modified
Prandtl-Ishlinskii model for position control of a
single PAM with better performance compared with
earlier works (Choi et al., 2006; Liu et al., 2015).
However, the effectiveness of such hysteresis
modeling hinges on the assumption that pressure is
well-regulated. Similarly, Zhang et al. (2024) also
found that stable pressure dynamics are critical for
direct inverse hysteresis compensation strategies
with fuzzy sliding-mode controllers in controlling
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PAM-based humanoid robot manipulators.
Therefore, pressure control is not merely an
auxiliary task but a critical requirement in a wide
range of PAM control paradigms.

Addressing this issue requires a closer look at the
pressure control strategies employed in the inner
loop. Several methods have been explored for
regulating air pressure in PAMs. The PI controller
remains widely used due to its simplicity and low
computational demands (Arun Jayakar &
Tamilselvan, 2019; Zorro et al., 2022). However, in
systems with strong nonlinearities and delays, PI
control often results in overshoot, long settling time,
and poor disturbance rejection (Massoud & Libby,
2024). To overcome these limitations, advanced
control techniques such as fuzzy logic, model
predictive control, and gain scheduling have been
proposed (Ruan & Yang, 2020; Hou et al., 2022;
Flores et al., 2023). Although not applied to PAM
systems, similar research has explored the use of
adaptive learning methods; for example, Radial
Basis Function Neural Network-tuned PID (RBF-
PID) controllers for real-time PID tuning in other
dynamic systems, showing promising results (Wang
et al., 2022). This approach dynamically adjusts the
Proportional-Integral-Derivative (PID) parameters
based on real-time error dynamics and system states,
allowing improved tracking accuracy and
adaptability. In one study, RBF-PID control applied
to a robotic arm achieved 0.01% overshoot and
reduced settling time from 2.2 s (obtained with a
conventional PID controller) to just 1 s, even under
noise. In another study about DC motor control, it
halved the settling time (0.65 s vs. 1.35 s) and
eliminated overshoot under parameter variations
(Wang et al., 2022). However, there is limited
evidence directly comparing their performance to PI
controllers in PAM pressure control applications,
particularly under disturbances or when integrated
into full position control systems (Massoud &
Libby, 2024).

This study aims to evaluate systematically the role
and effectiveness of inner-loop pressure control in
PAM systems by addressing two key objectives:

1. The first objective of this study is to compare
the performance of three pressure control strategies:
the discrete PI controller, the discrete PID
controller, and the adaptive discrete RBF-PID
controller. All controllers are evaluated under
identical operating conditions, with pressure
tracking accuracy assessed using the RMSE metric
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during both contraction and extension phases of the
PAM actuator.

2. The second objective of this study is to
investigate the influence of inner-loop pressure
regulation on outer-loop position control
performance. This is accomplished by analyzing
and comparing the system’s dynamic behavior
under three distinct control configurations: (1)
position control without any form of pressure
regulation, (2) position control incorporating a
discrete PI controller in the inner pressure loop, and
(3) position control employing an adaptive discrete
RBF-PID controller for inner-loop pressure control.
By evaluating these configurations under both
nominal and disturbed conditions, the study aims to
quantify the impact of pressure control quality on
the overall precision and robustness of the PAM
system. For each configuration, we evaluate
performance using percentage overshoot (POT), rise
time, and settling time, both under nominal
conditions and with external disturbances, to assess
not only control precision but also system
robustness.
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Through this two-stage approach, the study provides
new insights into the interaction between inner- and
outer-loop dynamics in PAM-based systems and
offers practical guidance for the design of adaptive,
disturbance-resilient control strategies in real-world
soft robotic applications.

2. MATERIALS AND METHODS
2.1. Experimental setup

Figure 1 presents the experimental setup utilized in
this study. A PAM with a diameter of 40 mm and an
initial length of 300 mm (FESTO MAS-40-300N)
was employed. Displacement measurements were
acquired using an Accuracy™ KTCI100 position
sensor, while internal air pressure was monitored by
a Honeywell pressure transducer. A FESTO MPYE
5/3 proportional directional control valve managed
the airflow to and from the actuator. The control
system and data acquisition were developed in
MATLAB/Simulink, operating with a sampling
interval of 10 ms. All position and pressure signals
were obtained from the physical model and digitized
by a Texas Instruments C2000 LaunchPAD, which
features a 12-bit analog-to-digital converter.
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Figure 1. Experiment setup

2.2. Dual-loop control architecture

In this study, the control system is designed based
on a dual-loop architecture to leverage the distinct
physical and dynamic characteristics of different
components in the PAM system. As shown in Figure
2, the architecture consists of:

— An inner loop controller: Responsible for
regulating the compressed air pressure supplied to
the muscle. To confirm the better performance of the
proposed discrete RBF-PID controller, conventional
discrete PI and PID controllers were also
implemented for comparison purposes.

— An outer loop: Responsible for the position
tracking of the PAM endpoint. In this study, a PID
controller was used.

This hierarchical structure separates fast-response
pressure regulation from slower position control,
thereby improving system stability, simplifying
parameter tuning, and enhancing overall
performance, as supported by previous research
(Tran et al., 2023).

2.3. Position controller in outer-loop

The outer-loop discrete PID controller generates the
the outer control signal u,, (k) at discrete time step

k as follows:
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where e, (k) is the position error at time k and the
sampling time is 7, =0.01s. The proportional,

integral, and derivative gains were empirically set as
Kp,=15, K; =4,and K, =0.1, respectively.

e | Pressure | # Control P
controller valve

y

PAM

Pressure
sensor

Displacement
sensor

Figure 2. Block diagram of the two-loop control structure

The discrete-time control signal u,, (k) is converted
to the reference pressure p,., for the inner

pressure-control loop as follows:
prgf :G'uy (2)

where G = 6/84(bar/mm) is the displacement-to-

pressure  conversion  ratio,  experimentally
determined based on the fact that the PAM exhibits
a contraction of approximately 84 mm in response
to the maximum input pressure of 6.0 bar and a load
of 15-25 kg.

2.4. Pressure controllers

This study evaluates three pressure controllers,
which are PI, PID, and adaptive RBF-PID
controllers. The control signal is applied to a
proportional valve to regulate airflow within the
range of 0—6 bar. The inner pressure control system
is a single-input single-output system with the
associated signals as follows:

*  p,(k): Reference pressure at time step £,

e p(k): Pneumatic pressure at time step £,
o e(k)=p,s(k)—p(k): Pressure error at time

step £,
e u(k): Control signal output at time £.
2.4.1. Pressure control using a PI controller

The output signal of the PI controller is given by:
k
u(k)=up; (k) =Kp, -e(k)+ K, - Z%]e(k)Ts 3)
i=

where Kp and K, are the proportional and
integral gains of the PI controller, respectively.

These gains were empirically set as K, =2.2 and
K, =4.6 to achieve a short settling time, minimal
steady-state error, and negligible overshoot.

2.4.2. Pressure control using a PID controller

The PID controller enhances pressure regulation by
adding a derivative term to the PI structure. The
derivative term predicts future error trends by
estimating the rate of change of error, improving
responsiveness, and reducing overshoot during
sudden reference changes. While effective in
improving transient behavior, PID control remains
sensitive to noise and tuning complexity in
nonlinear systems.

u(k) =up;p (k)
k
=Kp,-e(k)+ K- ;}ep(i)'Ts 4)
. e(k)—e(k-1)
T.

N

+Kp,

where Kp,, Kp,, and K, are the proportional,

derivative, and integral gains of the PID controller,
respectively. These gains were also empirically
tuned and set to Kp,=2.0, Kp,=0.2, and

K;, =4.6, respectively.

2.4.3. Pressure control using an RBF-PID
controller

To enhance control performance for systems with
nonlinear characteristics, delays, and dynamic
variations, this study employs a discrete PID
controller combined with a Radial Basis Function
(RBF) neural network, forming an adaptive RBF-
PID controller (Figure 3). This control scheme
allows real-time tuning of PID parameters,
improving control accuracy and adaptability.
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Figure 3. RBF-PID controller structure

The control law of the proposed RBF-PID is
formulated similarly to the standard PID structure,
as in Eq. (3).

u(k) = uppp_pp (k)

k
=Kpy-e(k)+ K3 - gbep 0)-T; )
k)—e(k—1
+KD3.€( ) ;( )

s
However, the PID gains are continuously updated
by the RBF neural network to minimize the cost
function:

E(k) = %[e(k)]z (6)
where

(k) = prey (k) = p(k) (7

Using a gradient descent learning mechanism, the
proportional, integral, and derivative gains are
updated as follows:

Kp3(k+1) = Kp3 (k) + AK p3 (k) (®)
K3(k+1) =K 3(k)+AK 5(k) ©)
Kps(k+1) = Kpy (k) + AK ps (k) (10)

After each time step k, the gain updates are
respectively computed as:
OE(k)
OK ps ()
- OE(k) op(k) ou(k) (an
Op(k) ou(k) OK p3(k)
Ip(k) _ou(k)

=140 50 K s (K)

AK p3 (k) =-n

OE(k)
0K 3 (k)
__y B ) out)
ap(k) du(k) oK (k)
op(k) ou(k)

=710 Buh) oKy )

AK5(k)=-n

OE (k)
OK 3 (k)
B0 ) oy
op(k) ou(k) 0K p;(k)

ety 28 )
ou(k) OK py (k)

op(k)
u(k

AK ps(k)=-n

where 77 is the learning rate; is the Jacobian

of the plant, estimated by the RBF network; and the
partial derivatives of the discrete-time control signal
u(k) with respect to Kp3, K3, and Kp3 are computed
as follows:

ou(k)

oK) (1
ouk) (X '

K, y(k) [Eoe(k) T“] (1

ou(k)  e(k)—e(k 1)
OK py (k) T,

s

(16)

Figure 4 shows the structure of the RBF network
used for the discrete RBF-PID controller. This
network was designed based on previous reports
(Jiang-Jiang et al., 2008; Hien et al., 2018). It has 1
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hidden layer with 5 neurons. It receives the current
control signal u(k) and two past pressure values p(k-
1) and p(k-2), forming the input vector as follows:

(k) =[uk) pk-1) pk-2]  (17)

Figure 4. RBF network structure

The network output is computed as:

w.-h. (18)

P= 4Lw;-h;

Mz

1

J

where w; is the connection weight between the

output neuron and the hidden neuron j, whose
activation function is calculated as

oo el
T

19)
where b; and ¢; are the width (spread) of the

Gaussian activation function and the center vector
denotes the

of neuron j, respectively, and

Euclidean norm operation.

The Jacobian for online update of PID gains is
calculated from the network output as:

op op = Cj =%
—r—=Ywh ——— 20
ou ou =77 blz. (20)
where ¢|; and x, are the first elements of ¢; and
x , respectively. Therefore,

6[7 m c—u
PD_syp 21
ou  ja bjz, @h

For Eq. (19) to hold, the RBF network parameters
should be updated to minimize the estimation error:
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ERBF(k)%[eRBF(k)]Z 22)

where
ensr (k) = p(k) — p(k) (23)

In this study, the RBF network is trained with
gradient descent and momentum. The connection
weights, the widths of the Gaussian functions, and
the centers of the hidden neurons are adjusted as
follows:

w, (k+1) = w, (k) + Aw, (k) 24)
b, (k+1)=b;(k)+Ab; (k) 25)
¢;(k+1)=c,(k)+Ac, (k) (26)

where

_ OE ggr (k)
Ay (k) =11 ow, (k)
+a(wj(k)—wj(k—1)) 27)
=T1€rpF (k)h_,- (k)
+a(wj(k)—wj(k—1))
OF pgr- (k)
Ab. (k) = —p —RBEZ")
J ab; (k)
+a(b; (k)—b; (k1))
[x(k)—e; ) (28)
= neggr (K)w, (k)h, (")b;—(;i)
+a(bj(k)—bj(k—1))
OF nr (k)
Ac . (k) = —p =RBF\Z)
¢;(k)=-n o, (&)

+a(e; (k) —¢;(k-1))

x(k)—c.(k) @
= neggr (k)w; (k)hj (k)bjz—(k])

+a(c; (k) —¢;(k-1))

The learning rate and momentum factor were
chosen as 7=0.01 and o =0.9, respectively. The

initial values of the PID gains are selected based on
the baseline performance of the conventional PID
controller as Kp3(0)=3.2, Kp;3(0)=0.01,
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K;3(0)=2.0. The width parameters were initially

setat b ;= 3. The center matrix was initialized at

C :[cl c, ¢ ¢4 c5]
0 15 3 45 6
=0 15 3 45 o6
0 15 3 45 6

3. RESULTS AND DISCUSSION

3.1. Overall performance of the investigated
pressure controllers

3.1.1. Experiment 1: Pressure regulation with
simple reference signals

To evaluate the performance of the proposed RBF-
PID controller, two distinct reference signals — a
damped triangular waveform and a damped
sinusoidal waveform — were used to compare
against conventional discrete PI and PID
controllers. The damped triangular signal,
characterized by sharp transitions and a linearly
decreasing amplitude, posed a challenge in abrupt
signal variations (Prsignal in Figure 5). In contrast,
the damped sinusoidal signal provided a smoother
and more gradual variation (P signal in Figure 6).

Figures 5 and 6 show the pressure tracking results
for the three controllers. All controllers generally
followed the reference signals, but the discrete RBF-
PID controller achieved higher accuracy,
particularly for the sinusoidal signal. The discrete
RBF-PID achieved a lower RMSE of 0.069 bar,
compared to 0.094 bar for PI and 0.088 bar for PID
controllers (Table 1).
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Figure S. Tracking performance with a damped

triangular reference
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Figure 6. Tracking performance with a damped
sinusoidal reference

Table 1. RMSE for damped triangular and
sinusoidal signals

Discrete Damped Damped
controller triangular signal sinusoidal signal

(bar) (bar)
PI 0.107 0.094
PID 0.089 0.088
RBF-PID 0.086 0.069

3.1.2. Experiment 2: Pressure regulation with
more complicated reference signals

To further assess the robustness of the proposed
controller, a second experiment employed more
complex and dynamic reference signals, designed to
simulate realistic pressure fluctuations. These
signals featured varying amplitudes and non-
uniform decay patterns to challenge the adaptability
of each controller. For comparison purposes, both
reference signals had amplitudes ranging from 1.0
to 5.5 bar, consistent with those in Experiment 1.

The first signal was a triangular waveform with
varying peak amplitudes (P signal in Figure 7),
designed to introduce asymmetry and abrupt slope
changes. The second signal was a modulated
sinusoidal waveform with irregular amplitude decay
(Pyer signal in Figure 8), simulating oscillatory yet
non-uniform pressure demands often encountered in
real-world scenarios.

As shown in Figures 7 and 8, all controllers
maintained acceptable tracking. However, the
discrete RBF-PID consistently showed closer
adherence to the reference signals, particularly
during abrupt changes. This was also reflected in
RMSE values (Table 2), where the discrete RBF-
PID achieved 0.088 bar and 0.067 bar in tracking the
triangular and modulated sinusoidal signals,
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respectively. These results confirm that the discrete
RBF-PID controller offers improved tracking
accuracy, especially for signals with nonstationary
or irregular characteristics.

As highlighted in Figures 8 and 9, all controllers
exhibited  sufficient tracking  performance,
validating the necessity of incorporating an inner-
loop controller - even a simple PI - for effective
pressure regulation. Nonetheless, the discrete RBF-
PID controller again outperformed both the PI and
PID controllers, showing smaller deviations around
rapid waveform changes and yielding lower RMSE
values (Table 2). These findings confirm the
advantage of the RBF-enhanced PID design in
managing nonlinear and dynamic pneumatic system
behavior.
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Table 2. RMSE for complex reference signals

. Variable Modulated
Discrete . . . . .
controller triangular signal sinusoidal signal

(bar) (bar)
PI 0.111 0.094
PID 0.104 0.088
RBF-PID 0.088 0.067

3.2. Performance of PAM position control with
and without load disturbance

Given that this study primarily focuses on the design
of the discrete RBF-PID controller for pressure
regulation, a discrete PID controller was employed
for PAM position control across all tested
configurations. System performance was evaluated
under four different pressure control schemes using
45-mm step inputs across two intervals:

i) 0-9 seconds:
characteristics.

Evaluation of transient

ii) 9-20 seconds: Assessment of response under
external load disturbance, introduced by manually
applying a 10-kg mass on the actuator.

The four tested pressure control schemes were:

1. Position-only  control

feedback),

(without  pressure

2. Dual-loop control with discrete PI pressure
regulation,

3. Dual-loop control with discrete PID pressure
regulation,

4. Dual-loop control with discrete RBF-PID
pressure regulation.

Four key performance metrics, which are rise time,
settling time, and percent overshoot (POT), are
summarized in Table 3.

Table 3. Step response characteristics under
different pressure control schemes

Discrete Rise Settling Percent of
controller time (s) time (s) overshoot (%)
None 0.06 7.73 6.32
PI 1.36 7.51 2.82
PID 1.37 7.50 2.73
RBF-PID 1.40 3.04 0.00
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3.2.1. Characteristics of the step responses

As shown in Figure 9, omitting pressure feedback
led to the shortest rise time (0.06 s), but poor
damping and significant overshoot (6.32%) due to
the unmitigated nonlinear dynamics of pneumatic
actuation.

Without pressure feedback

50 | 6
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40 |
El s 5
E304, -1 )
= oot o
i 2
g 20 I Vet 12 é
[a¥ —y A
10 - Pyl |
-°p
0 : : : 0
0 5 10 15 20

Time (s)

Figure 9. Position and pressure responses using
control without pressure feedback

In contrast, all dual-loop configurations with
pressure feedback (PI, PID, and RBF-PID) yielded
slower but more stable responses, with reduced
overshoot. The PI and PID controllers decreased the
POT by more than 50% compared to the no-
feedback case. However, they did not substantially
improve the settling time. Notably, the RBF-PID
controller achieved complete overshoot suppression
and reduced the settling time by nearly 60% (from
7.73 s to 3.04 s), as shown in Figures 10—12. These
results highlight the benefit of adaptive gain tuning
via the RBF network in effectively compensating
for transient nonlinearities and  pressure
fluctuations.

3.2.2. System responses to load disturbances

PI pressure feedback
50 T T T 6
o — d

40 r/ >
) 45
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Figure 10. Position and pressure responses
using dual-loop control with PI pressure
regulation
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PID pressure feedback
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Figure 11. Position and pressure responses
using dual-loop control with PID pressure
regulation
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Figure 12. Position and pressure responses
using dual-loop control with RBF-PID pressure
regulation

To assess robustness, a 10-kg external load was
applied at steady state, causing a sudden PAM
displacement of approximately 7.5 mm in all cases
(Figure 12). Recovery time — the duration required
to return to the reference position — varied
significantly across controllers (Table 4).

Table 4. Effect of pressure control on recovery
time under external load disturbance

?(:;i:ﬁ:fer Disturbance recovery time (s)
None 9.95
PI 5.76
PID 5.68
RBF-PID 2.73
Without pressure regulation, recovery took

approximately 9.95 s. Both PI and PID controllers
reduced this to ~5.7 s (a 43% improvement).
Impressively, the discrete RBF-PID controller
enabled the fastest recovery at just 2.73 s. This result
confirms both the advantage of dual-loop control in
load disturbance scenarios and the superior
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adaptability of the discrete RBF-PID controller,
which effectively compensates for dynamic
variations and nonlinear disturbances in real time.

The effectiveness of real-time PID gain adaptation
via the RBF network is further illustrated in Figure
13, which shows the dynamic adjustments of the
PID gains during the control process. Notably,
significant gain updates occur around the period of
10-14 seconds, coinciding with the period of
external load disturbance. This adaptive response
enables the controller to compensate rapidly for the
introduced disturbance, contributing to faster
recovery and improved overall stability. The ability
to modify control gains in real time allows the
discrete  RBF-PID controller to maintain high
tracking accuracy and robust disturbance rejection,
confirming the advantage of using a learning-based
approach in pneumatic control applications.
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Figure 13. PID gain updates with RBF-PID
pressure regulation

4. CONCLUSION

Inner-loop pressure regulation plays a critical role in
shaping the dynamic response of pneumatic
artificial muscle (PAM) systems. Of the three
evaluated strategies, the proposed adaptive discrete
RBF-PID controller consistently demonstrated
superior pressure tracking performance. It achieved
the lowest root-mean-square error (RMSE) of 0.067
bar under a modulated sinusoidal reference,
outperforming the conventional discrete PID and
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discrete PI controllers, which recorded RMSEs of
0.088 bar and 0.094 bar, respectively. However, the
performance difference between discrete PI and
discrete PID controllers remained relatively small
across all test cases, particularly under noisy or
irregular conditions. This suggests that, for
applications with limited computational resources
or operating in uncertain environments, the discrete
PI controller remains a practical and robust choice,
offering reliable performance with minimal
implementation complexity.

In position control tasks, the benefits of adaptive
pressure regulation became even more apparent. All
dual-loop configurations outperformed the single-
loop approach by enhancing system stability and
transient behavior. Among them, the RBF-PID
controller achieved the best overall performance,
with a settling time of 3.04 seconds, zero overshoot,
and the fastest recovery from external disturbances,
returning to the reference position in just 2.73
seconds after a 10-kg load perturbation. These
results were supported by the observed real-time
adjustments of PID gains, which confirmed the
controller’s ability to adapt to dynamic changes and
maintain stability under varying conditions.

However, the improved performance of the discrete
RBF-PID controller comes at the cost of increased
computational demand. Its real-time learning and
adaptive gain tuning require higher processing
capacity, which may pose challenges for
deployment on low-cost or embedded platforms,
especially when paired with advanced outer-loop
control strategies.

In conclusion, the choice of control architecture
should be guided by the specific application context,
hardware limitations, and performance
requirements. While the discrete RBF-PID
controller is well-suited for precision-critical and
adaptive systems, simpler approaches such as
discrete PI control continue to offer a valuable
balance between performance and practicality in
resource-constrained scenarios.
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