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Diseases affecting tomato leaves represent a major risk to worldwide 

agricultural output and overall food security. In this study, we propose a 

innovative, lightweight and efficient deep learning (DL) approach for the 

classification of tomato leaf disease. Our architecture integrates the 

MobileNetV3Small backbone to extract multi-level features from input 

images, while Squeeze-and-Excitation (SE) blocks strengthen the focus on 

channel-wise features. A key component of our model is the incorporation 

of a Transformer-based module, which is applied to the fused features to 

extract long-range spatial interactions and contextual relationships. This 

hybrid approach enables the model to better distinguish between complex 

disease patterns in categories. The experimental findings indicate that the 

proposed model attains a high classification accuracy of 99.02%. The 

model also exhibits fast convergence and strong generalization, making it 

highly applicable for real-time deployment and resource-constrained 

agricultural environments. This work contributes a powerful and efficient 

solution to intelligent plant disease monitoring in the field of precision 

agriculture. 
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1. INTRODUCTION 

The tomato is a vital crop that plays a central role in 

global agriculture. Not only are tomatoes a daily 

staple in countless diets around the world, but they 

also help ensure food security in both developed and 

developing countries. Rich in vitamins, minerals, 

and antioxidants, tomatoes offer significant health 

benefits. Studies have shown that people who 

consume tomatoes on a regular basis have a reduced 

risk of developing serious diseases - including 

multiple cancer types, osteoporosis, and 

cardiovascular diseases (Palozza et al., 2011; 

Bhowmik et al., 2012; Martí et al., 2016). This 

impressive nutritional profile has earned tomatoes a 

reputation as a “superfood”, making them essential 

for maintaining a healthy diet. Despite its many 

benefits, tomato crop faces numerous challenges 

during cultivation. One of the most critical issues is 

the occurrence of leaf diseases. Such diseases, 

resulting from infections by bacteria, fungi, or 

viruses, can cause significant yield losses and 

deteriorate the quality of the harvest. For tomato 

growers around the world, and especially in 

countries such as Vietnam, early and reliable 

identification of these diseases is crucial (Choi et al., 

2020; Rivarez et al., 2021; Yan et al., 2021). When 

a disease outbreak is detected in its early stages, 

farmers can take immediate action to control its 

spread, preserving both the quantity and quality of 

their crops. This not only helps protect farmer 

income but also ensures that consumers continue to 

have access to nutritious produce. Tomato leaf 

disease classification is not only vital for diagnosis 
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and treatment but also significant due to its 

economic implications. Tomato diseases can cause 

substantial financial losses for farmers, driven by 

decreased yields and increased management costs. 

Efficient disease control strategies, such as 

cultivating resistant cultivars and applying 

integrated pest management, are essential to 

minimize these impacts and ensure sustainable 

tomato production (Zheng et al., 2020; Panno et al., 

2021). In light of these challenges, there is a 

pressing need for innovative and automated 

methods for early disease detection in tomato plants. 

Advances in DL (Wang et al., 2020; Wani et al., 

2025) and computer vision (Hassaballah et al., 

2019) have paved the way for the development of 

state-of-the-art diagnostic systems. Using the power 

of modern neural network architectures, researchers 

can now build models that are capable of accurately 

classifying and diagnosing tomato leaf diseases 

(Basavaiah & Arlene Anthony, 2020; Trivedi et al., 

2021; Thangaraj et al., 2022).  

This paper presents a novel hybrid model that 

integrates MobileNetV3Small as a lightweight 

backbone with SE blocks and a Transformer 

Encoder. The aim is to develop an efficient and 

effective system for the early diagnosis of tomato 

leaf diseases. By blending the strengths of these 

components, the proposed model offers both high 

accuracy in detecting diseases and the potential for 

faster and more accessible implementation in real-

world scenarios. Ultimately, this work contributes to 

improved disease management strategies, protecting 

crop yield and quality, and thus supporting both the 

agricultural community and consumers worldwide. 

This paper is organized as follows: Section 2 

presents an overview of prior studies on tomato leaf 

disease detection using DL methods, highlighting 

existing methods. Section 3 describes the dataset 

used in this research, including data sources, pre-

processing, and class distribution. Section 4 

introduces the proposed model architecture, which 

combines MobileNetV3Small, Squeeze-and-

Excitation (SE) blocks, and a Transformer Encoder 

to improve classification accuracy. Section 5 details 

the experimental setup and discusses the results 

obtained, including evaluation metrics and 

comparative performance. Finally, Section 6 

provides the conclusion of the paper and highlights 

potential future directions for the deployment of the 

model in real-world agricultural applications. 

2. RELATED WORK 

Utilizing Convolutional Neural Networks (CNNs) 

in plant leaf disease detection highlights a 

substantial improvement in agricultural research 

and technology, which combines artificial 

intelligence (AI) with image analysis to enhance 

crop health monitoring. As global demand for 

efficient agricultural practices grows, the 

automation and precision offered by CNNs have 

become increasingly notable for their ability to 

identify plant diseases in the early stages, ultimately 

leading to better yield and resource management. 

Early research indicates that CNNs outperform 

traditional detection methods, providing accurate 

classifications and information on disease severity, 

transforming the conventional approach to plant 

health assessment and management (Jafar et al., 

2024; Rastogi et al., 2024). CNNs leverage DL 

techniques to extract features autonomously from 

images, allowing them to differentiate effectively 

between healthy and diseased plant leaves. Studies 

have shown that CNN-based models can achieve 

highly accurate results, often exceeding 90% - in 

classifying various plant diseases, making them a 

preferred choice over traditional machine learning 

(ML) approaches, for example, SVM or KNN, 

which typically produce lower accuracy (Agarwal et 

al., 2020; Sakkarvarthi et al., 2022; Padhi et al., 

2025). However, despite their advantages, 

challenges including the need for large, high-quality 

datasets, the risk of overfitting, and significant 

computational requirements pose hurdles for real-

world implementation and accessibility in 

agricultural settings (Alzubaidi et al., 2021; Sarkar 

et al., 2023; Shah & Sureja, 2025). Prominent 

datasets such as PlantVillage have facilitated the 

training and evaluation of CNN models, yet issues 

of class imbalance and environmental variability 

continue to complicate the detection process. To 

resolve these challenges, researchers have explored 

the development of lightweight deep neural 

architectures, including MobileNet and 

EfficientNet, which are optimized for deployment 

on mobile devices and IoT systems. For example, 

several studies (Ferentinos, 2018; Mukti & Biswas, 

2019; Chen et al., 2020; Hassan, 2021) utilized 

transfer learning with CNN to achieve high 

accuracy in the detection of plant diseases, 

highlighting the potential of these methods in 

practical applications. 

Moreover, integrating these advanced models into 

practical applications, such as mobile devices and 

IoT systems, remains an ongoing challenge for 

researchers aiming to bridge the gap between 

theoretical performance and field efficacy 

Addressing these limitations and improving the 
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robustness of the model will be crucial to the 

continued evolution of plant leaf disease detection 

technologies, further solidifying the role of CNNs in 

modern agriculture. 

In recent years, hybrid models - combinations of 

multiple ML or DL techniques - have emerged as a 

promising direction in the detection of plant disease. 

These models aim to take advantage of the strengths 

of different algorithms to improve classification 

accuracy, generalization, and robustness under real-

world conditions. For example, several studies 

(Sultana & Reza, 2022; Lamba et al., 2023; Prince 

et al., 2024; Barman et al., 2024) have integrated 

CNNs with traditional classifiers such as SVM or 

Random Forests, where CNNs serve as automatic 

feature extractors and the classical models handle 

the final classification task. This approach can 

mitigate overfitting issues often associated with 

deep neural networks, especially when working 

with small or imbalanced datasets. 

Other hybrid architectures combine multiple deep 

learning model, such as CNNs and RNNs, enabling 

the system to capture both spatial and temporal 

patterns in datasets with time-sequenced or multi-

angle images (David et al., 2021; Pandey et al., 

2025). In addition, some frameworks incorporate 

attention mechanisms (Pandey & Jain, 2022; Duhan 

et al., 2024; Wang et al., 2024) to enrich the input 

representation, thus enhancing the model’s 

interpretability and robustness. 

Building upon the insights and limitations identified 

in previous studies, this paper introduces a novel 

hybrid model that combines MobileNetV3Small as 

a lightweight and efficient backbone, SE blocks for 

channel-wise attention, and a Transformer Encoder 

to capture global contextual dependencies. The 

proposed architecture is designed to achieve early 

and accurate detection of tomato leaf diseases while 

preserving computational efficiency, thereby 

enabling operation on low-resource hardware. By 

leveraging the complementary strengths of these 

components, our model aims to bridge the gap 

between high-performance disease classification 

and practical field deployment. Ultimately, this 

work seeks to contribute to improved disease 

management strategies, safeguard crop productivity 

and quality, and promote more resilient and 

sustainable agricultural practices. 

3. DATASET AND METHODOLOGICAL 

APPROACH  

3.1. Data collection and preparation 

The "Tomato Leaf Disease Classification" dataset 

(ARUN, 2022) comprises more than 32,500 leaf 

images of tomato plants, capturing a wide variety of 

scenarios obtained from both controlled laboratory 

settings and in-the-wild environments. This 

extensive dataset encompasses 11 classes, including 

10 distinct disease categories. The primary objective 

is to facilitate the development of a lightweight yet 

robust classification model capable of accurately 

predicting tomato leaf diseases for offline 

deployment in mobile applications. 

 

Figure 1. Examples of representative pictures extracted from the dataset 
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Figure 2. Total number of images per class 

The majority of the initial images are derived from 

the PlantVillage dataset. In order to improve both 

the variability and resilience of the dataset, a wide 

range of offline augmentation methods was 

employed. The applied techniques comprised 

flipping, gamma adjustment, noise addition, PCA-

based color transformation, as well as rotation and 

scaling. Moreover, recent additions to the dataset 

have been generated using Generative Adversarial 

Networks (GANs). A specific subset of the dataset, 

comprising images of Taiwanese tomato leaves, 

underwent additional augmentation processes such 

as multi-angle rotations, mirroring, and brightness 

reduction. These meticulous augmentation 

strategies have significantly enriched the dataset, 

thus improving the generalizability and 

performance of classification models developed 

using this resource. Figure 1 presents representative 

images drawn from the dataset, and Figure 2 

presents the total number of images per class. 

3.2. The overall methodology 

The proposed model (Figure 3) is a hybrid deep 

learning architecture that leverages both 

convolutional and attention-based mechanisms to 

improve feature representation and improve 

classification performance for the recognition of 

tomato leaf disease.  

 

Figure 3. The overall methodology for tomato leaf disease classification 

The architecture is based on a MobileNetV3Small 

backbone, which processes input RGB images of 

size 224×224. Two key feature maps are extracted 

from this backbone: one from the final layer 

(activation-17) and another from an intermediate 

layer (expanded-conv-project-bn) to enable 
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multiscale feature learning. Each of these feature 

maps is passed through a SE block to apply channel 

attention, thereby emphasizing the most informative 

features. Following this, Global Average Pooling 

(GAP) is applied to decrease the spatial dimensions 

and retain the most salient global information. The 

results generated by both branches are concatenated 

to perform multiscale feature fusion, combining 

fine-grained and high-level semantic information. 

The fused feature vector is then fed into a 

Transformer Encoder block, which introduces self-

attention to capture global dependencies and 

contextual relationships between features. 

Subsequently, the enriched feature representation is 

passed through a Dense layer. Finally, a prediction 

layer outputs the classification results, identifying 

the type of tomato leaf disease present in the input 

picture. 

This multi-branch, attention-augmented 

architecture effectively captures both local and 

global feature interactions, leading to improved 

robustness and accuracy in classifying visually 

similar disease symptoms under varying 

environmental conditions. 

3.3. Mathematical representation of the 

proposed model 

Let the input image be denoted as 𝐼 ∈ 𝑅𝟚𝟚𝟜×𝟚𝟚𝟜×𝟛 . 

This image is fed into the MobileNetV3Small 

backbone 𝑓MobNet(⋅), which extracts multilevel 

features from two specific layers: 

Final layer feature map: 

𝐹high = 𝑓MobNet
final (𝐼) ∈ 𝑅𝐻𝟙×𝑊𝟙×𝐶𝟙 

Intermediate layer feature map: 

𝐹low = 𝑓MobNet
inter (𝐼) ∈ 𝑅𝐻𝟚×𝑊𝟚×𝐶𝟚 

These feature maps are passed through SE blocks to 

apply channel attention. For a feature map 𝐹 ∈
𝑅𝐻×𝑊×𝐶, the SE block computes: 

Squeeze operation: 

𝑧𝑐 =
1

𝐻 ⋅ 𝑊
∑ ∑ 𝐹𝑖,𝑗,𝑐

𝑊

𝑗=1

𝐻

𝑖=1

 for 𝑐 = 1, … , 𝐶 

Excitation operation: 

𝑠𝑐 = σ(𝑊2 ⋅ δ(𝑊1 ⋅ 𝑧))
𝑐
 

Where 𝑊1, 𝑊2 are learnable parameters of the fully 

dense layers, σ is the sigmoid function, and δ is the 

ReLU activation function. 

Recalibration: 

𝐹𝑖,𝑗,𝑐
′ = 𝑠𝑐 ⋅ 𝐹𝑖,𝑗,𝑐 

where ⋅ denotes scalar multiplication, applying 

channel-wise attention to enhance informative 

features. 

Next, a GAP is applied to both recalibrated features 

𝐹high
′  and 𝐹low

′ : 

𝑓high = GAP(𝐹high
′ ), 𝑓low = GAP(𝐹low

′ ) 

These vectors are then concatenated to form a fused 

feature vector using multi-scale fusion: 

𝑓fused = Concat(𝑓high, 𝑓low) 

To capture long-range dependencies, the fused 

vector is passed through a Transformer Encoder: 

𝑓trans = TransformerEncoder(𝑓fused) 

Finally, the model performs classification using 

fully connected layers and softmax activation: 

𝑦̂ = Softmax (Dense(Dropout(𝑓trans))) 

4. RESULTS AND DISCUSSION 

Figure 4 illustrates the performance of the proposed 

model on training and validation sets across 20 

epochs. The left section of the figure presents the 

training and validation accuracy, while the right 

subfigure presents the corresponding loss curves. As 

observed, both accuracy metrics show a steady 

increase during the training process, with validation 

accuracy aligning closely with training accuracy, 

which implies robust generalization. The highest 

validation accuracy was achieved at epoch 20, 

reaching approximately 99.1%. However, the loss 

curves demonstrate a consistent downward trend, 

with both training and validation loss converging 

steadily. The lowest validation lows was recorded at 

epoch 19, suggesting minimal overfitting. In 

general, the learning curves confirm that the model 

converges effectively and maintains high 

performance in the training and validation datasets. 
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Figure 4. Curves of training and validation accuracy and loss across 20 epochs 

Figure 5 illustrates the confusion matrix for the 

proposed classification model, which was evaluated 

on a multi-class plant disease dataset comprising 10 

distinct classes and 1 healthy class. The model 

demonstrates high overall classification 

performance, with most samples correctly classified 

along the main diagonal. In particular, the classes 

Late blight, Tomato mosaic virus, and Healthy 

achieved near-perfect classification accuracy, with 

389, 273, and 386 correct predictions, respectively. 

Misclassifications are relatively infrequent but 

present in some categories. For example, a small 

number of Early blight samples were misclassified 

as Late blight (5 instances) and Leaf Mold (1 

instance), suggesting a minor confusion between 

visually similar symptoms. Similarly, the class 

Tomato Yellow Leaf Curl Virus exhibited some 

confusion with Late blight and Early blight, with 2 

and 1 misclassified samples, respectively. Overall, 

the confusion matrix indicates that the model is 

effective in distinguishing between most types of 

disease, although further improvements could be 

made to enhance its discriminative capacity among 

closely related conditions. 

 

Figure 5. Confusion matrix for tomato leaf disease classification 
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Figure 6. Performance metrics for various tomato leaf disease classes 

Figure 6 presents the classification efficacy of the 

proposed approach across 11 classes of tomato leaf 

disease. The results indicate that the model attains 

consistently robust classification metrics, indicating 

its robustness and generalization capability. 

Notably, the class Target-Spot attained perfect 

precision (1.0000) and near-perfect recall (0.9956), 

resulting in an F1-score of 0.9978. Similarly, the 

classes healthy and powdery-mildew achieved 

perfect recall (1.0000) with corresponding F1-

scores of 0.9974 and 0.9960, respectively. The 

overall accuracy of the model on the test set reaches 

99.02%, while the macro-averaged and weighted-

averaged F1-scores are also consistently high at 

99.08% and 99.02%, respectively. These metrics 

highlight the model's effectiveness in accurately 

distinguishing between various categories of tomato 

leaf disease, even those with relatively few samples, 

such as powdery mildew (125 images). 

Table 1. Comparison of recent methods for tomato leaf disease classification 

Paper Model Samples Classes Accuracy 

Paul et al., 2023 Custom model 32,535 11 95.00% 

Osmenaj et al., 2025 Ensemble models 11,000 10 98.00% 

Rashid et al., 2025 A Light Weighted Method 18,835 10 98.77% 

Chen et al., 2022 AlexNet 22,390 10 98.00% 

Das et al., 2025 XLTLDisNet 16,011 10 97.24% 

Zhao et al., 2021 ResNet50+SeNet 22,925 10 96.81% 

Our model MobiTran-SE 32,535 11 99.02% 

Table 1 summarizes a comparison of recent deep 

learning-based approaches for predicting tomato 

leaf disease. The models vary in terms of 

architectural complexity, dataset size, number of 

target classes, and accuracy achieved. Among the 

reviewed works, the ensemble-based method in 

(Osmenaj et al., 2025) and the lightweight model in 

(Rashid et al., 2025) demonstrated high 

performance, achieving accuracies of 98.00% and 

98.77%, respectively, on datasets ranging from 

11,000 to 18,835 images. Traditional architectures 

such as AlexNet and ResNet50 combined with SE 

blocks (Zhao et al., 2021) also reported competitive 

results in moderately sized datasets. Our proposed 

approach, MobiTran-SE, utilizes the complete 

dataset of 32,535 images in 11 disease categories 

and outperforms all previous methods, achieving a 

state-of-the-art accuracy of 99.02%. This highlights 

the effectiveness of combining MobileNetV3Small, 

Squeeze-and-Excitation blocks, and a Transformer-

based encoder in a lightweight framework tailored 

for plant disease classification tasks. 

5. CONCLUSION 

In this paper, we present a novel, lightweight, and 

effective deep learning architecture designed for the 

classification of tomato leaf diseases. The model 

employs the MobileNetV3Small backbone to 

extract hierarchical features from input images and 

incorporates Squeeze-and-Excitation (SE) blocks to 

enhance channel-wise attention and emphasize 

informative features. An essential component of the 
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model is the integration of a Transformer-based 

encoder, which operates on the fused feature 

representation to capture long-range spatial 

dependencies and enrich contextual understanding 

across the input. The experimental results 

demonstrate the effectiveness of the proposed 

model, achieving a classification accuracy of 

99.02% on the test set. In addition, high precision, 

recall, and F1-scores were observed in all classes, 

including those with relatively limited sample sizes. 

The training and validation curves further confirm 

the stability and generalization capability of the 

model, with minimal overfitting observed 

throughout the training process. These results 

confirm the potential of the proposed architecture as 

a practical solution for real-world agricultural 

applications, particularly in scenarios where 

computational efficiency and accurate disease 

identification are essential. Future work will explore 

the integration of this model into mobile or edge 

devices to support in-field real-time plant health 

monitoring systems. 
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