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Diseases affecting tomato leaves represent a major risk to worldwide
agricultural output and overall food security. In this study, we propose a
innovative, lightweight and efficient deep learning (DL) approach for the
classification of tomato leaf disease. Our architecture integrates the
MobileNetV3Small backbone to extract multi-level features from input
images, while Squeeze-and-Excitation (SE) blocks strengthen the focus on
channel-wise features. A key component of our model is the incorporation
of a Transformer-based module, which is applied to the fused features to
extract long-range spatial interactions and contextual relationships. This
hybrid approach enables the model to better distinguish between complex
disease patterns in categories. The experimental findings indicate that the
proposed model attains a high classification accuracy of 99.02%. The
model also exhibits fast convergence and strong generalization, making it
highly applicable for real-time deployment and resource-constrained
agricultural environments. This work contributes a powerful and efficient
solution to intelligent plant disease monitoring in the field of precision
agriculture.

1. INTRODUCTION

The tomato is a vital crop that plays a central role in
global agriculture. Not only are tomatoes a daily
staple in countless diets around the world, but they
also help ensure food security in both developed and
developing countries. Rich in vitamins, minerals,
and antioxidants, tomatoes offer significant health
benefits. Studies have shown that people who
consume tomatoes on a regular basis have a reduced
risk of developing serious diseases - including
osteoporosis, and
cardiovascular diseases (Palozza et al., 2011;
Bhowmik et al., 2012; Marti et al., 2016). This
impressive nutritional profile has earned tomatoes a
reputation as a “superfood”, making them essential
for maintaining a healthy diet. Despite its many

multiple  cancer

types,

benefits, tomato crop faces numerous challenges
during cultivation. One of the most critical issues is
the occurrence of leaf diseases. Such diseases,
resulting from infections by bacteria, fungi, or
viruses, can cause significant yield losses and
deteriorate the quality of the harvest. For tomato
growers around the world, and especially in
countries such as Vietnam, early and reliable
identification of these diseases is crucial (Choi et al.,
2020; Rivarez et al., 2021; Yan et al., 2021). When
a disease outbreak is detected in its early stages,
farmers can take immediate action to control its
spread, preserving both the quantity and quality of
their crops. This not only helps protect farmer
income but also ensures that consumers continue to
have access to nutritious produce. Tomato leaf
disease classification is not only vital for diagnosis
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and treatment but also significant due to its
economic implications. Tomato diseases can cause
substantial financial losses for farmers, driven by
decreased yields and increased management costs.
Efficient disease control strategies, such as
cultivating resistant cultivars and applying
integrated pest management, are essential to
minimize these impacts and ensure sustainable
tomato production (Zheng et al., 2020; Panno et al.,
2021). In light of these challenges, there is a
pressing need for innovative and automated
methods for early disease detection in tomato plants.
Advances in DL (Wang et al., 2020; Wani et al.,
2025) and computer vision (Hassaballah et al.,
2019) have paved the way for the development of
state-of-the-art diagnostic systems. Using the power
of modern neural network architectures, researchers
can now build models that are capable of accurately
classifying and diagnosing tomato leaf diseases
(Basavaiah & Arlene Anthony, 2020; Trivedi et al.,
2021; Thangaraj et al., 2022).

This paper presents a novel hybrid model that
integrates MobileNetV3Small as a lightweight
backbone with SE blocks and a Transformer
Encoder. The aim is to develop an efficient and
effective system for the early diagnosis of tomato
leaf diseases. By blending the strengths of these
components, the proposed model offers both high
accuracy in detecting diseases and the potential for
faster and more accessible implementation in real-
world scenarios. Ultimately, this work contributes to
improved disease management strategies, protecting
crop yield and quality, and thus supporting both the
agricultural community and consumers worldwide.

This paper is organized as follows: Section 2
presents an overview of prior studies on tomato leaf
disease detection using DL methods, highlighting
existing methods. Section 3 describes the dataset
used in this research, including data sources, pre-

processing, and class distribution. Section 4
introduces the proposed model architecture, which
combines  MobileNetV3Small, = Squeeze-and-

Excitation (SE) blocks, and a Transformer Encoder
to improve classification accuracy. Section 5 details
the experimental setup and discusses the results
obtained, including evaluation metrics and
comparative performance. Finally, Section 6
provides the conclusion of the paper and highlights
potential future directions for the deployment of the
model in real-world agricultural applications.

2. RELATED WORK

Utilizing Convolutional Neural Networks (CNNs)
in plant leaf disease detection highlights a
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substantial improvement in agricultural research
and technology, which combines artificial
intelligence (AI) with image analysis to enhance
crop health monitoring. As global demand for
efficient agricultural practices grows, the
automation and precision offered by CNNs have
become increasingly notable for their ability to
identify plant diseases in the early stages, ultimately
leading to better yield and resource management.
Early research indicates that CNNs outperform
traditional detection methods, providing accurate
classifications and information on disease severity,
transforming the conventional approach to plant
health assessment and management (Jafar et al.,
2024; Rastogi et al., 2024). CNNs leverage DL
techniques to extract features autonomously from
images, allowing them to differentiate effectively
between healthy and diseased plant leaves. Studies
have shown that CNN-based models can achieve
highly accurate results, often exceeding 90% - in
classifying various plant diseases, making them a
preferred choice over traditional machine learning
(ML) approaches, for example, SVM or KNN,
which typically produce lower accuracy (Agarwal et
al., 2020; Sakkarvarthi et al., 2022; Padhi et al.,
2025). However, despite their advantages,
challenges including the need for large, high-quality
datasets, the risk of overfitting, and significant
computational requirements pose hurdles for real-
world implementation and accessibility in
agricultural settings (Alzubaidi et al., 2021; Sarkar
et al,, 2023; Shah & Sureja, 2025). Prominent
datasets such as PlantVillage have facilitated the
training and evaluation of CNN models, yet issues
of class imbalance and environmental variability
continue to complicate the detection process. To
resolve these challenges, researchers have explored
the development of lightweight deep neural
architectures, including MobileNet and
EfficientNet, which are optimized for deployment
on mobile devices and IoT systems. For example,
several studies (Ferentinos, 2018; Mukti & Biswas,
2019; Chen et al., 2020; Hassan, 2021) utilized
transfer learning with CNN to achieve high
accuracy in the detection of plant diseases,
highlighting the potential of these methods in
practical applications.

Moreover, integrating these advanced models into
practical applications, such as mobile devices and
IoT systems, remains an ongoing challenge for
researchers aiming to bridge the gap between
theoretical performance and field efficacy
Addressing these limitations and improving the
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robustness of the model will be crucial to the
continued evolution of plant leaf disease detection
technologies, further solidifying the role of CNNs in
modern agriculture.

In recent years, hybrid models - combinations of
multiple ML or DL techniques - have emerged as a
promising direction in the detection of plant disease.
These models aim to take advantage of the strengths
of different algorithms to improve classification
accuracy, generalization, and robustness under real-
world conditions. For example, several studies
(Sultana & Reza, 2022; Lamba et al., 2023; Prince
et al., 2024; Barman et al., 2024) have integrated
CNNs with traditional classifiers such as SVM or
Random Forests, where CNNs serve as automatic
feature extractors and the classical models handle
the final classification task. This approach can
mitigate overfitting issues often associated with
deep neural networks, especially when working
with small or imbalanced datasets.

Other hybrid architectures combine multiple deep
learning model, such as CNNs and RNNs, enabling
the system to capture both spatial and temporal
patterns in datasets with time-sequenced or multi-
angle images (David et al., 2021; Pandey et al.,
2025). In addition, some frameworks incorporate
attention mechanisms (Pandey & Jain, 2022; Duhan
et al., 2024; Wang et al., 2024) to enrich the input
representation, thus enhancing the model’s
interpretability and robustness.

Building upon the insights and limitations identified
in previous studies, this paper introduces a novel
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hybrid model that combines MobileNetV3Small as
a lightweight and efficient backbone, SE blocks for
channel-wise attention, and a Transformer Encoder
to capture global contextual dependencies. The
proposed architecture is designed to achieve early
and accurate detection of tomato leaf diseases while
preserving computational efficiency, thereby
enabling operation on low-resource hardware. By
leveraging the complementary strengths of these
components, our model aims to bridge the gap
between high-performance disease classification
and practical field deployment. Ultimately, this
work seeks to contribute to improved disease
management strategies, safeguard crop productivity
and quality, and promote more resilient and
sustainable agricultural practices.

3. DATASET AND METHODOLOGICAL
APPROACH

3.1. Data collection and preparation

The "Tomato Leaf Disease Classification" dataset
(ARUN, 2022) comprises more than 32,500 leaf
images of tomato plants, capturing a wide variety of
scenarios obtained from both controlled laboratory
settings and in-the-wild environments. This
extensive dataset encompasses 11 classes, including
10 distinct disease categories. The primary objective
is to facilitate the development of a lightweight yet
robust classification model capable of accurately
predicting tomato leaf diseases for offline
deployment in mobile applications.

healthy

Late_blight

Late_blight spider_mite

Leafl Mold

Figure 1. Examples of representative pictures extracted from the dataset
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Figure 2. Total number

The majority of the initial images are derived from
the PlantVillage dataset. In order to improve both
the variability and resilience of the dataset, a wide
range of offline augmentation methods was
employed. The applied techniques comprised
flipping, gamma adjustment, noise addition, PCA-
based color transformation, as well as rotation and
scaling. Moreover, recent additions to the dataset
have been generated using Generative Adversarial
Networks (GANSs). A specific subset of the dataset,
comprising images of Taiwanese tomato leaves,
underwent additional augmentation processes such
as multi-angle rotations, mirroring, and brightness
reduction. These meticulous augmentation
strategies have significantly enriched the dataset,

Squeeze-and-Excitation

1500 2000 2500

Mumber of images

3000 3500 4000

of images per class

thus improving the generalizability and
performance of classification models developed
using this resource. Figure 1 presents representative
images drawn from the dataset, and Figure 2
presents the total number of images per class.

3.2. The overall methodology

The proposed model (Figure 3) is a hybrid deep
learning  architecture  that leverages both
convolutional and attention-based mechanisms to
improve feature representation and improve
classification performance for the recognition of
tomato leaf disease.

. Global Average

Input Image Last Layer of the
(224=224 RGEB nackbang Block
image) activation_17 {Channsl Attention}

Poal

MobikeNety3Small — Cﬁm‘f;a;;‘” |
Backbone " usion)
Int dinka Layer: Squesre-and-Excitation
- nmiarmeciats Layer- Elock *  Gilobal Avesage Pocl
B B e {Channal Atlzntion)
Transformer Encoder Fused feature

Prediction Droput
Figure 3. The overall methodology for

The architecture is based on a MobileNetV3Small
backbone, which processes input RGB images of
size 224x224. Two key feature maps are extracted
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from this backbone: one from the final layer
(activation-17) and another from an intermediate
layer  (expanded-conv-project-bn) to  enable
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multiscale feature learning. Each of these feature
maps is passed through a SE block to apply channel
attention, thereby emphasizing the most informative
features. Following this, Global Average Pooling
(GAP) is applied to decrease the spatial dimensions
and retain the most salient global information. The
results generated by both branches are concatenated
to perform multiscale feature fusion, combining
fine-grained and high-level semantic information.
The fused feature vector is then fed into a
Transformer Encoder block, which introduces self-
attention to capture global dependencies and
contextual  relationships  between  features.
Subsequently, the enriched feature representation is
passed through a Dense layer. Finally, a prediction
layer outputs the classification results, identifying
the type of tomato leaf disease present in the input
picture.

This multi-branch, attention-augmented
architecture effectively captures both local and
global feature interactions, leading to improved
robustness and accuracy in classifying visually
similar  disease = symptoms under varying
environmental conditions.
3.3. Mathematical representation of the
proposed model
Let the input image be denoted as I € R?24x224x3
This image is fed into the MobileNetV3Small
backbone fyopnet(t), Which extracts multilevel
features from two specific layers:

Final layer feature map:

_ gfinal HyxW7qXC
Fhigh - MobNet(I) € RTT1TM

Intermediate layer feature map:

inter

Flow = MobNet(I) € RHZXWZXCZ

These feature maps are passed through SE blocks to
apply channel attention. For a feature map F €
RHXWXC 'the SE block computes:

Squeeze operation:

H

L w
Z, = WZZF”"C forc=1,..,C
j=1

i=1
Excitation operation:

S. = cs(W2 -8(Wy -z))c
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Where W,, W, are learnable parameters of the fully
dense layers, o is the sigmoid function, and § is the
ReLU activation function.

Recalibration:

F/

Jc = S¢ - Fi,j,c
where - denotes scalar multiplication, applying
channel-wise attention to enhance informative

features.

Next, a GAP is applied to both recalibrated features
F};igh and Fllow:

fiigh = GAP(Fyign), fiow = GAP(Fyyy,)

These vectors are then concatenated to form a fused
feature vector using multi-scale fusion:

ffused = Concat(fhigh: fiow)

To capture long-range dependencies, the fused
vector is passed through a Transformer Encoder:

firans = TransformerEncoder (fiseq)

Finally, the model performs classification using
fully connected layers and softmax activation:

¥ = Softmax (Dense(Dropout(ftrans)))

4. RESULTS AND DISCUSSION

Figure 4 illustrates the performance of the proposed
model on training and validation sets across 20
epochs. The left section of the figure presents the
training and validation accuracy, while the right
subfigure presents the corresponding loss curves. As
observed, both accuracy metrics show a steady
increase during the training process, with validation
accuracy aligning closely with training accuracy,
which implies robust generalization. The highest
validation accuracy was achieved at epoch 20,
reaching approximately 99.1%. However, the loss
curves demonstrate a consistent downward trend,
with both training and validation loss converging
steadily. The lowest validation lows was recorded at
epoch 19, suggesting minimal overfitting. In
general, the learning curves confirm that the model
converges effectively and maintains high
performance in the training and validation datasets.
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Figure 4. Curves of training and validation accuracy and loss across 20 epochs

Figure 5 illustrates the confusion matrix for the
proposed classification model, which was evaluated
on a multi-class plant disease dataset comprising 10
distinct classes and 1 healthy class. The model
demonstrates high overall classification
performance, with most samples correctly classified
along the main diagonal. In particular, the classes
Late blight, Tomato mosaic virus, and Healthy
achieved near-perfect classification accuracy, with
389, 273, and 386 correct predictions, respectively.

Misclassifications are relatively infrequent but
present in some categories. For example, a small

number of Early blight samples were misclassified
as Late blight (5 instances) and Leaf Mold (1
instance), suggesting a minor confusion between
visually similar symptoms. Similarly, the class
Tomato Yellow Leaf Curl Virus exhibited some
confusion with Late blight and Early blight, with 2
and 1 misclassified samples, respectively. Overall,
the confusion matrix indicates that the model is
effective in distinguishing between most types of
disease, although further improvements could be
made to enhance its discriminative capacity among
closely related conditions.
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Figure 5. Confusion matrix for tomato leaf disease classification
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Class

Precision Recall F1-Score Support

Bacterial _spot 0.9887 0.9860 0.9873 356
Early _blight 0.9934 09710 0.9821 310
Late blight 0.9725 0.9949 0.9836 391
Leaf Mold 0.9943 0.9836 0.9914 350
Septoria_leaf spot 0.9917 0.9862 0.9890 363
Spider _mitesTwo_spotted spider mite 0.99509 1.0000 0.9954 218
Target_Spot 1.0000 0.9956 0.9978 228
Tomato_Yellow Leaf Curl Virus 0.9880 0.9802 0.9841 253
Tomato_mosaic_virus 0.9927 0.9964 0.9945 274
healthy 0.9948 1.0000 0.9974 386
powdery mildew 0.9921  1.0000 0.9960 125
Accuracy - - 0.9902 3254
Macro Avg 0.9908 0.9908 0.9908 3254
Weighted Avg 0.9902 0.9902 0.9902 3254

Figure 6. Performance metrics for various tomato leaf disease classes

Figure 6 presents the classification efficacy of the
proposed approach across 11 classes of tomato leaf
disease. The results indicate that the model attains
consistently robust classification metrics, indicating
its robustness and generalization capability.
Notably, the class Target-Spot attained perfect
precision (1.0000) and near-perfect recall (0.9956),
resulting in an F1-score of 0.9978. Similarly, the
classes healthy and powdery-mildew achieved
perfect recall (1.0000) with corresponding F1-

scores of 0.9974 and 0.9960, respectively. The
overall accuracy of the model on the test set reaches
99.02%, while the macro-averaged and weighted-
averaged Fl-scores are also consistently high at
99.08% and 99.02%, respectively. These metrics
highlight the model's effectiveness in accurately
distinguishing between various categories of tomato
leaf disease, even those with relatively few samples,
such as powdery mildew (125 images).

Table 1. Comparison of recent methods for tomato leaf disease classification

Paper Model Samples Classes Accuracy
Paul et al., 2023 Custom model 32,535 11 95.00%
Osmenaj et al., 2025 Ensemble models 11,000 10 98.00%
Rashid et al., 2025 A Light Weighted Method 18,835 10 98.77%
Chen et al., 2022 AlexNet 22,390 10 98.00%
Das et al., 2025 XLTLDisNet 16,011 10 97.24%
Zhao et al., 2021 ResNet50+SeNet 22,925 10 96.81%
Our model MobiTran-SE 32,535 11 99.02%

Table 1 summarizes a comparison of recent deep
learning-based approaches for predicting tomato
leaf disease. The models vary in terms of
architectural complexity, dataset size, number of
target classes, and accuracy achieved. Among the
reviewed works, the ensemble-based method in
(Osmenaj et al., 2025) and the lightweight model in
(Rashid et al., 2025) demonstrated high
performance, achieving accuracies of 98.00% and
98.77%, respectively, on datasets ranging from
11,000 to 18,835 images. Traditional architectures
such as AlexNet and ResNet50 combined with SE
blocks (Zhao et al., 2021) also reported competitive
results in moderately sized datasets. Our proposed
approach, MobiTran-SE, utilizes the complete
dataset of 32,535 images in 11 disease categories
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and outperforms all previous methods, achieving a
state-of-the-art accuracy of 99.02%. This highlights
the effectiveness of combining MobileNetV3Small,
Squeeze-and-Excitation blocks, and a Transformer-
based encoder in a lightweight framework tailored
for plant disease classification tasks.

5. CONCLUSION

In this paper, we present a novel, lightweight, and
effective deep learning architecture designed for the
classification of tomato leaf diseases. The model
employs the MobileNetV3Small backbone to
extract hierarchical features from input images and
incorporates Squeeze-and-Excitation (SE) blocks to
enhance channel-wise attention and emphasize
informative features. An essential component of the
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model is the integration of a Transformer-based
encoder, which operates on the fused feature

representation to capture long-range spatial
dependencies and enrich contextual understanding
across the input. The experimental results

demonstrate the effectiveness of the proposed
model, achieving a classification accuracy of
99.02% on the test set. In addition, high precision,
recall, and F1-scores were observed in all classes,
including those with relatively limited sample sizes.
The training and validation curves further confirm
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