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This paper presents DNet-nSA, a novel deep learning architecture 

designed to enhance multi-label classification of chest X-ray (CXR) images 

by integrating n self-attention blocks into the DenseNet framework. While 

convolutional neural networks (CNNs) are effective at identifying local 

patterns, they frequently face challenges in capturing long-range 

dependencies and global context, which are essential for detecting 

spatially distributed abnormalities in CXR images. By embedding self-

attention mechanisms, DNet-nSA allows the network to better capture non-

local interactions and highlight diagnostically relevant regions. We 

propose and evaluate two variants: DNet-1SA and DNet-2SA, 

corresponding to the number of self-attention modules used. Experiments 

conducted on the ChestX-ray14 dataset demonstrate that the proposed 

models outperform the baseline DenseNet, the contrastive learning 

approach MoCoR101, and the self-supervised learning model 

MoBYSwinT, achieving a notable AUC of 0.822, confirming the 

effectiveness of self-attention in improving multi-label CXR image 

classification. 
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1. INTRODUCTION 

Chest X-ray imaging plays an important role in 

diagnosing lung diseases due to its ability to provide 

detailed images of the lung structures. According to 

the World Health Organization, lung diseases such 

as chronic obstructive pulmonary disease (COPD) 

and lung cancer are leading causes of high mortality 

rates globally. COPD accounts for over 3 million 

deaths annually, while lung cancer was estimated to 

cause 1.8 million deaths in 2020. CXR images help 

detect and diagnose lung diseases such as 

pneumonia, tuberculosis as well as lung cancer. 

Moreover, the cost of X-ray imaging is typically 

lower than that of many other imaging methods, 

such as CT scans or MRIs, making it a popular 

option at various healthcare facilities. In addition to 

its cost-effectiveness, X-rays have the advantage of 

easy accessibility in most healthcare settings. 

Diagnosis through imaging methods like CXR 

images relies heavily on the experience and 

expertise of the doctor. While CXR images provide 

detailed images of the lung structure, the 

interpretation relies on the physician's observational 

and analytical skills, which can pose a potential risk 

of misdiagnosis. 

In this paper, we introduce DNet-nSA, a novel deep 

learning architecture designed to improve CXR 

image classification by incorporating n self-

attention blocks (Vaswani et al., 2017) into the 

DenseNet (Huang et al., 2017). The addition of self-
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attention significantly improves the models' ability 

to capture long-range dependencies and global 

context, which traditional convolutional layers often 

fail to represent adequately due to their inherently 

local patterns in CXR images. Therefore, our 

proposed DNet-nSA enhances the network’s ability 

to capture non-local interactions and emphasize 

diagnostically significant regions. We propose and 

assess two variants, DNet-1SA and DNet-2SA, 

based on the number of self-attention modules used. 

Evaluations on the ChestX-ray14 dataset show that 

our models outperform the baseline DenseNet 

(Huang et al., 2017), the contrastive learning 

approach MoCoR101 (Sowrirajan et al., 2021), and 

the self-supervised learning model MoBYSwinT 

(Vo & Do, 2024a), achieving an AUC of 0.822. The 

empirical results demonstrate the efficacy of self-

attention in advancing multi-label CXR image 

classification. 

The remainder of this paper is as follows: Section 2 

reviews related work on lung disease classification 

using CXR images. Section 3 presents the proposed 

method. Section Error! Reference source not f

ound. shows the experimental results and analysis. 

Finally, the paper concludes with a summary and 

directions for future work. 

2. RELATED WORK 

Deep learning has been extensively used for CXR-

based lung disease diagnosis (Çallı et al., 2021; 

Hage Chehade et al., 2024; Koyyada & Singh, 

2024). Galán-Cuenca et al. (2024) applied Siamese 

networks (Chicco, 2021) to handle data imbalance, 

improving the F1 score by 5.6%. Vo and Do (2024b) 

used contrastive learning with nonlinear classifiers, 

achieving 87.9% accuracy. Shelke et al. (2021) used 

VGG-16 (Simonyan & Zisserman, 2015) and 

DenseNet-161 (Huang et al., 2017) for Covid-19 

detection, reaching 98.9%. Chen and Lin (2024) 

proposed a multi-task contrastive learning model for 

pneumonia and COVID-19. Adjei-Mensah et al. 

(2024) introduced Cov-Fed, a federated model with 

attention, achieving 87.65%. Poloju et al. (Poloju & 

Rajaram, 2025) combined ensemble methods with 

Emperor Penguin Optimization and SVM (Vapnik, 

2000), reaching 97.5%. Verma et al. (2024) 

compared seven classifiers (Hastie et al., 2009) on 

CXR features like LBP, HOG, and pixel descriptors. 

However, CXR images often exhibit multiple 

pathologies simultaneously, such as both 

pneumonia and lung cancer. Diagnoses may vary 

across doctors due to differing expertise, causing 

inconsistencies. Datasets like ChestX-ray14 (X. 

Wang et al., 2017), CheXpert (Irvin et al., 2019), 

VinDr-CXR (Nguyen et al., 2022), and Padchest 

(Bustos et al., 2020) reflect this reality by providing 

multi-label annotations. Therefore, multi-label 

classification is essential for detecting multiple 

conditions in a single image and improving 

diagnostic accuracy. 

Multi-label CXR classification is challenging and 

has attracted much research interest (Hasanah et al., 

2025). HydraViT (Öztürk et al., 2025) combines a 

transformer and multi-branch module to learn 

disease co-occurrence, improving AUC by up to 

2.1%. Wang et al. (2024) used local and global 

graphs to model pathology correlations. Hasanah et 

al. (2024) fused CheXNet with the Feature Pyramid 

Network to extract multi-scale features. Vo and Do 

(2024a) applied self-supervised contrastive learning 

with SwinT-compact, reaching 0.809 AUC. Zhao 

and Wang (2025) used large-kernel CNNs and 

GCNs for long-range dependency and disease 

relation modeling. Lu et al. (2024) proposed 

CvTGNet, combining Vision Transformer 

(Dosovitskiy et al., 2020) and GCN to enhance CXR 

diagnosis. 

3. INTEGRATING SELF-ATTENTION INTO 

DENSENET FOR MULTI-LABEL CHEST 

X-RAY IMAGE CLASSIFICATION 

Our investigation aims to develop an advanced deep 

learning architecture for accurately classifying 

multi-label CXR images, as illustrated in Figure 1. 

In past years, deep convolutional neural networks 

(CNNs) such as VGG-16 (Simonyan & Zisserman, 

2015), DenseNet (Huang et al., 2017), ResNet (He 

et al., 2015), Inception (Szegedy et al., 2016), and 

EfficientNet (Tan & Le, 2021) have achieved 

remarkable success in image classification. 

However, these architectures are fundamentally 

limited by the locality of convolutional operations, 

which constrain their receptive regions and hinder 

the modeling of long-range dependencies. This 

limitation becomes critical in domains like CXR 

image analysis, where diagnostically relevant 

patterns are distributed across spatially distant 

regions of the image. Capturing such global context 

is essential for accurate multi-label classification in 

medical imaging. 
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Figure 1. DenseNet with n Self-Attention (DNet-nSA) for multi-label chest X-ray images

To overcome the limitations of conventional CNNs 

in capturing global context, we propose enhancing 

deep neural networks with self-attention 

mechanisms. The main idea is to integrate self-

attention into a CNN-based architecture to enable 

the model to explore and aggregate information 

dynamically across all spatial locations within the 

feature map. Unlike standard convolutional layers, 

which operate on fixed, local receptive regions, self-

attention performs the network to model long-range 

dependencies by allowing each spatial position to 

attend to every other position. This global 

interaction is particularly beneficial for medical 

imaging tasks, such as CXR  image analysis. By 

embedding self-attention into convolutional 

backbones, the model gains the ability to reason 

holistically about the image content, leading to 

improved performance in complex multi-label 

classification scenarios. 

The underlying mechanics of self-attention are 

detailed as follows. Each self-attention block is 

based on the scaled dot-product attention 

mechanism, a core component of Transformer 

architectures. Given an input feature map 𝐹 ∈
𝑅𝐻×𝑊×𝐶, the block first projects it into three distinct 

representations: query Q, key K, and value V, via 

learned linear transformations implemented as 

dense layers (see Equation 1). These tensors are 

reshaped to a 2D format to facilitate efficient 

attention computation over spatial dimensions. 

𝑄 = 𝐹𝑊𝑄 ,  𝐾 = 𝐹𝑊𝐾 ,  𝑉 = 𝐹𝑊𝑉 (1) 

The attention weights are obtained by computing 

pairwise similarities between the query and key 

vectors, scaled by the dimensionality of the query 

space to ensure numerical stability. A softmax 

operation is applied to yield a normalized attention 

map, which is then used to aggregate the value 

representations. This process enables the model to 

incorporate information from all spatial locations, 

effectively capturing long-range dependencies and 

global context (see Equation 2). 

𝐴 = softmax (
𝑄𝐾⊤

√𝑑
) ,  𝑂 = 𝐴𝑉 (2) 

The output of the attention module is then reshaped 

back to the original spatial dimensions and fused 

with the input feature map via a residual connection. 

Finally, a layer normalization step is applied to 

stabilize training dynamics and promote better 

gradient flow across layers (see Equation 3).  

𝐹̂ = Reshape(𝑂) + 𝐹,Output = LayerNorm(𝐹̂)(3) 

This architecture enhances the representational 

power of convolutional backbones like DenseNet, 

particularly in tasks where spatially distant features 

are semantically correlated, such as in CXR image 

analysis. 

Stacking multiple self-attention layers allows the 

model to iteratively refine its understanding of 

spatial dependencies, enhancing its capacity 

progressively to model complex, spatially 

distributed patterns. 

Algorithm 1 illustrates how to build the model for 

DenseNet enhanced with stacked self-attention 

blocks. A base model (i.e. DenseNet121) extracts 

intermediate features, which are refined through 

self-attention to capture global context, for 

improving multi-label CXR image classification. 
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4. EXPERIMENTAL RESULTS 

To evaluate the effectiveness of the proposed 

method for multi-label CXR classification, we 

assess model performance using the Area Under the 

ROC Curve (AUC). As a standard metric for multi-

label tasks, AUC provides a robust measure of the 

model’s discriminative ability across all classes, 

offering comprehensive insight into its predictive 

performance. 

We first developed a fine-tuned DenseNet (Huang 

et al., 2017) baseline, optimized for the multi-label 

classification of CXR images. Building upon this 

foundation, we created DNet-nSA, an enhanced 

architecture that incorporates stacked self-attention 

blocks atop the original DenseNet backbone to 

capture global contextual dependencies. Moreover, 

we proposed the DNet-MHSA architecture for the 

integration of a DNet121 backbone with a multi-

head self-attention mechanism. The training DNet-

nSA, DNet-MHSA were implemented in Python 

using the Keras API  (Chollet, 2015) with 

TensorFlow (Abadi et al., 2016) as the backend, 

leveraging GPU acceleration for efficient 

computation. 

We are particularly interested in comparing our 

method with the contrastive learning approach 

MoCoR101 (Sowrirajan et al., 2021), which utilizes 

MoCo with a ResNet101 backbone (He et al., 2015), 

and with the self-supervised learning model 

MoBYSwinT (Vo & Do, 2024a), based on MoBY 

(Xie et al., 2021) and the Swin Transformer 

architecture (Liu et al., 2021).  
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All experiments were conducted on a high-

performance Ubuntu 22.04 system with an Intel 

Core i7-14700K CPU (20 cores, 64 GB RAM) for 

preprocessing. Model training leveraged a ROG 

Strix RTX 4090 GPU (24 GB VRAM, 16,384 

CUDA cores) to accelerate deep learning 

computations. 

4.1. Chest X-Ray image dataset 

We evaluated the proposed method on the ChestX-

Ray14 dataset (Wang et al., 2017), a large-scale 

NIH-released collection of 112,120 frontal CXR 

images from 30,805 patients (from 1992 to 2015), 

annotated with 14 thoracic pathologies. The dataset 

is split into training (70%), validation (15%), and 

test (15%) sets, with 78,484, 16,818, and 16,818 

images, respectively (see Table 1). Each image is 

multi-labelled based on the presence of one or more 

conditions (e.g., Atelectasis, Effusion, Pneumonia), 

facilitating the training of multi-label classification 

models (see examples in Figure 2). Labels are binary 

per class (0: absence, 1: presence).

Table 1. Multi-label Chest X-Ray 14 dataset 

Class Train (0) Train (1) Valid (0) Valid (1) Test (0) Test (1) 

Class 0 70,387 8,097 15,080 1,738 15,094 1,724 

Class 1 76,528 1,956 16,403 415 16,413 405 

Class 2 69,116 9,368 14,812 2,006 14,875 1,943 

Class 3 64,569 13,915 13,844 2,974 13,813 3,005 

Class 4 74,456 4,028 15,934 884 15,948 870 

Class 5 74,054 4,430 15,873 945 15,862 956 

Class 6 77,488 996 16,604 214 16,597 221 

Class 7 74,789 3,695 15,997 821 16,032 786 

Class 8 75,235 3,249 16,129 689 16,089 729 

Class 9 76,863 1,621 16,485 333 16,469 349 

Class 10 76,724 1,760 16,446 372 16,434 384 

Class 11 77,305 1,179 16,557 261 16,572 246 

Class 12 76,096 2,388 16,277 541 16,362 456 

Class 13 78,327 157 16,789 29 16,777 41 

 

(a) Mass, Pleural Thickening 

 

(b) Effusion, Consolidation, Edema 

 

(c) Atelectasis, Pleural Thickening, 

Effusion, Pneumothorax 

Figure 2. Samples of Chest X-Ray images with multi-label annotations 

4.2. Tuning parameters 

Fine-tuning was performed by retraining the top 

layers of each architecture, with the best 

performance achieved by updating the top 10 layers 

of DenseNet121. All models, including the baseline 

DNN, the proposed DNN with self-attention blocks 

(DNet-nSA, DNet-MHSA), MoCoR101, and 

MoBYSwinT, were trained using a batch size of 32 

for 20 epochs with early stopping, optimized with 

Adam (learning rate 0.0001). The AUC metric was 

employed as the optimization objective to guide 

learning in the multi-label classification setting. 
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4.3. Classification results 

Table 2 presents the Area Under the Curve (AUC) 

performance of six different models for multi-label 

classification of CXR images across 14 classes. The 

compared models include MoCoR101 (A ResNet-

101 backbone pre-trained using MoCo), 

MoBYSwinT (A Swin Transformer pre-trained with 

MoBY), DNet121 (DenseNet-121 baseline), DNet-

1SA and DNet-2SA (DenseNet with one and two 

self-attention blocks), and DNet-MHSA (DenseNet 

with Multi-Head Self-Attention). The highest 

average AUC is highlighted in bold, and the second-

highest is shown in italics. Figure 3 visualizes the 

average AUC per model. 

Table 2. Multi-label CXR image classification results of different models 

Class MoCoR101 MoBYSwinT DNet121 DNet-1SA DNet-2SA DNet-MHSA 

Class 0 0.775 0.779 0.803 0.796 0.780 0.806 

Class 1 0.868 0.906 0.899 0.911 0.891 0.859 

Class 2 0.862 0.858 0.879 0.889 0.884 0.880 

Class 3 0.696 0.699 0.716 0.709 0.720 0.714 

Class 4 0.780 0.799 0.839 0.849 0.851 0.837 

Class 5 0.695 0.708 0.761 0.751 0.776 0.752 

Class 6 0.714 0.746 0.736 0.737 0.756 0.713 

Class 7 0.845 0.850 0.873 0.877 0.873 0.866 

Class 8 0.776 0.791 0.802 0.796 0.795 0.773 

Class 9 0.874 0.887 0.875 0.882 0.890 0.864 

Class 10 0.843 0.833 0.876 0.865 0.882 0.875 

Class 11 0.764 0.785 0.756 0.776 0.789 0.781 

Class 12 0.749 0.769 0.758 0.763 0.783 0.775 

Class 13 0.864 0.923 0.734 0.822 0.838 0.867 

Average 0.793 0.809 0.807 0.816 0.822 0.811 

 

Figure 3. Comparison of average AUC across different models 

Among all models, DNet-2SA achieves the highest 

overall performance with an average AUC of 0.822. 

This demonstrates the effectiveness of incorporating 

two self-attention blocks into the DenseNet 

architecture. The improvement is consistent across 

most classes, suggesting that deeper attention can 

help the model capture more complex relationships 

in medical images. DNet-1SA follows with an 

average AUC of 0.816, indicating that even a single 

self-attention block provides significant gains over 

the baseline DNet121, which records an average 

AUC of 0.807. Interestingly, DNet-MHSA achieves 

0.811, slightly lower than DNet-2SA, suggesting 

that multi-head self-attention does not necessarily 

outperform simpler attention schemes in this setting. 

The MoBYSwinT model, which uses a Swin 

Transformer pre-trained with self-supervised 

learning, performs well with an average AUC of 

0.809. It even outperforms DNet121, highlighting 

the potential of transformer-based models in 

medical image analysis. However, MoBYSwinT 

still falls short of the attention-enhanced DenseNet 

variants. Notably, MoBYSwinT is the best in Class 

13, achieving an AUC of 0.923, significantly 

outperforming all other models for that class. This 

may reflect the capacity of transformer models to 

better capture long-range dependencies or 

underrepresented patterns when provided with 

sufficient pretraining. On the other hand, 

MoCoR101 based on ResNet-101 and MoCo 
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pretraining, shows the lowest overall performance 

(average AUC of 0.793), suggesting that its self-

supervised features are less transferable to the 

medical imaging domain compared to other 

methods evaluated. 

From a class-wise perspective, Class 1 and Class 9 

consistently achieve high AUCs across all models, 

often exceeding 0.87. In contrast, Class 3, Class 5, 

and Class 6 are among the most challenging, with 

AUCs generally below 0.78. These disparities may 

arise from class imbalance, ambiguous visual 

features, or high inter-class similarity in those 

disease types. With a range from 0.734 using 

DNet121 to 0.923 using MoBYSwinT, Class 13 

demonstrates a significant difference in 

performance between models, suggesting the 

models are sensitive to feature extraction methods 

within this class. 

Overall, the results suggest that attention 

mechanisms integrated into CNN backbones, 

particularly DNet-2SA, offer the most reliable 

performance for multi-label CXR classification. 

Although transformer-based models like 

MoBYSwinT show promising results, especially on 

certain difficult classes, they may require larger 

datasets or more specialized fine-tuning to fully 

exploit their advantages. DenseNet-121 remains a 

strong baseline, and the consistent performance 

gains observed with added attention validate the use 

of attention-based enhancements in medical image 

analysis. Future work may focus on hybrid 

architectures that combine CNN and transformer 

components, or ensemble methods that leverage the 

strengths of both model families to further boost 

classification accuracy across all classes. 

5. CONCLUSION AND FUTURE WORKS 

We presented DNet-nSA, a novel architecture that  

 

 

integrates self-attention mechanisms into DenseNet 

to improve multi-label classification of CXR 

images. Our approach addresses a key limitation of 

traditional CNNs, by embedding n self-attention 

blocks to enhance spatial feature representation, 

their inability to effectively model long-range 

dependencies and global context. We introduced 

two variants, DNet-1SA and DNet-2SA, and 

demonstrated their effectiveness on the ChestX-

ray14 dataset. The proposed models outperformed 

several strong baselines, including the original 

DenseNet, the contrastive learning approach 

MoCoR101, and the self-supervised learning model 

MoBYSwinT. Notably, DNet-2SA achieved an 

AUC of 0.822, demonstrating the benefit of 

incorporating self-attention for multi-label CXR 

image classification. These results confirm that self-

attention provides valuable enhancements to 

convolutional architectures in the context of medical 

image classification. 

In future work, we plan to extend DNet-nSA by 

exploring adaptive attention placement and dynamic 

routing strategies for better computational 

efficiency and performance trade-offs. We also aim 

to evaluate the model on additional multi-label CXR 

datasets such as CheXpert and VinDr-CXR to 

further validate its generalizability across diverse 

clinical settings. Finally, integrating explainability 

techniques to visualize attention maps may enhance 

interpretability and support clinical decision-

making. 
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