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Revised 17 Aug 2025 designed to enhance multi-label classification of chest X-ray (CXR) images
Accepted 8 Oct 2025 by integrating n self-attention blocks into the DenseNet framework. While

convolutional neural networks (CNNs) are effective at identifying local
patterns, they frequently face challenges in capturing long-range
dependencies and global context, which are essential for detecting
spatially distributed abnormalities in CXR images. By embedding self-
DenseNet, chest X-ray image, attention mechanisms, DNet-nSA allows the network to better capture non-
multi-label classification, local interactions and highlight diagnostically relevant regions. We
self-attention propose and evaluate two variants: DNet-1SA and DNet-2S4,
corresponding to the number of self-attention modules used. Experiments
conducted on the ChestX-rayl4 dataset demonstrate that the proposed
models outperform the baseline DenseNet, the contrastive learning
approach  MoCoR101, and the self-supervised learning model
MoBYSwinT, achieving a notable AUC of 0.822, confirming the
effectiveness of self-attention in improving multi-label CXR image
classification.

Keywords

1. INTRODUCTION option at various healthcare facilities. In addition to
its cost-effectiveness, X-rays have the advantage of
easy accessibility in most healthcare settings.
Diagnosis through imaging methods like CXR
images relies heavily on the experience and
expertise of the doctor. While CXR images provide
detailed images of the lung structure, the
interpretation relies on the physician's observational
and analytical skills, which can pose a potential risk

Chest X-ray imaging plays an important role in
diagnosing lung diseases due to its ability to provide
detailed images of the lung structures. According to
the World Health Organization, lung diseases such
as chronic obstructive pulmonary disease (COPD)
and lung cancer are leading causes of high mortality
rates globally. COPD accounts for over 3 million
deaths annually, while lung cancer was estimated to

cause 1.8 million deaths in 2020. CXR images help of misdiagnosis.

detect and diagnose lung diseases such as In this paper, we introduce DNet-nSA, a novel deep
pneumonia, tuberculosis as well as lung cancer. learning architecture designed to improve CXR
Moreover, the cost of X-ray imaging is typically image classification by incorporating n self-
lower than that of many other imaging methods, attention blocks (Vaswani et al., 2017) into the

such as CT scans or MRIs, making it a popular DenseNet (Huang et al., 2017). The addition of self-
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attention significantly improves the models' ability
to capture long-range dependencies and global
context, which traditional convolutional layers often
fail to represent adequately due to their inherently
local patterns in CXR images. Therefore, our
proposed DNet-nSA enhances the network’s ability
to capture non-local interactions and emphasize
diagnostically significant regions. We propose and
assess two variants, DNet-1SA and DNet-2SA,
based on the number of self-attention modules used.
Evaluations on the ChestX-ray14 dataset show that
our models outperform the baseline DenseNet
(Huang et al.,, 2017), the contrastive learning
approach MoCoR 101 (Sowrirajan et al., 2021), and
the self-supervised learning model MoBYSwinT
(Vo & Do, 2024a), achieving an AUC of 0.822. The
empirical results demonstrate the efficacy of self-
attention in advancing multi-label CXR image
classification.

The remainder of this paper is as follows: Section 2
reviews related work on lung disease classification
using CXR images. Section 3 presents the proposed
method. Section Error! Reference source not f
ound. shows the experimental results and analysis.
Finally, the paper concludes with a summary and
directions for future work.

2. RELATED WORK

Deep learning has been extensively used for CXR-
based lung disease diagnosis (Calli et al., 2021;
Hage Chehade et al.,, 2024; Koyyada & Singh,
2024). Galan-Cuenca et al. (2024) applied Siamese
networks (Chicco, 2021) to handle data imbalance,
improving the F1 score by 5.6%. Vo and Do (2024b)
used contrastive learning with nonlinear classifiers,
achieving 87.9% accuracy. Shelke et al. (2021) used
VGG-16 (Simonyan & Zisserman, 2015) and
DenseNet-161 (Huang et al., 2017) for Covid-19
detection, reaching 98.9%. Chen and Lin (2024)
proposed a multi-task contrastive learning model for
pneumonia and COVID-19. Adjei-Mensah et al.
(2024) introduced Cov-Fed, a federated model with
attention, achieving 87.65%. Poloju et al. (Poloju &
Rajaram, 2025) combined ensemble methods with
Emperor Penguin Optimization and SVM (Vapnik,
2000), reaching 97.5%. Verma et al. (2024)
compared seven classifiers (Hastie et al., 2009) on
CXR features like LBP, HOG, and pixel descriptors.

However, CXR images often exhibit multiple
pathologies  simultaneously, such as both
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pneumonia and lung cancer. Diagnoses may vary
across doctors due to differing expertise, causing
inconsistencies. Datasets like ChestX-rayl4 (X.
Wang et al., 2017), CheXpert (Irvin et al., 2019),
VinDr-CXR (Nguyen et al., 2022), and Padchest
(Bustos et al., 2020) reflect this reality by providing
multi-label annotations. Therefore, multi-label
classification is essential for detecting multiple
conditions in a single image and improving
diagnostic accuracy.

Multi-label CXR classification is challenging and
has attracted much research interest (Hasanah et al.,
2025). HydraViT (Oztiirk et al., 2025) combines a
transformer and multi-branch module to learn
disease co-occurrence, improving AUC by up to
2.1%. Wang et al. (2024) used local and global
graphs to model pathology correlations. Hasanah et
al. (2024) fused CheXNet with the Feature Pyramid
Network to extract multi-scale features. Vo and Do
(2024a) applied self-supervised contrastive learning
with SwinT-compact, reaching 0.809 AUC. Zhao
and Wang (2025) used large-kernel CNNs and
GCNs for long-range dependency and disease
relation modeling. Lu et al. (2024) proposed
CvTGNet, combining Vision Transformer
(Dosovitskiy et al., 2020) and GCN to enhance CXR
diagnosis.

3. INTEGRATING SELF-ATTENTION INTO
DENSENET FOR MULTI-LABEL CHEST
X-RAY IMAGE CLASSIFICATION

Our investigation aims to develop an advanced deep
learning architecture for accurately classifying
multi-label CXR images, as illustrated in Figure 1.

In past years, deep convolutional neural networks
(CNNs) such as VGG-16 (Simonyan & Zisserman,
2015), DenseNet (Huang et al., 2017), ResNet (He
et al., 2015), Inception (Szegedy et al., 2016), and
EfficientNet (Tan & Le, 2021) have achieved
remarkable success in image classification.
However, these architectures are fundamentally
limited by the locality of convolutional operations,
which constrain their receptive regions and hinder
the modeling of long-range dependencies. This
limitation becomes critical in domains like CXR
image analysis, where diagnostically relevant
patterns are distributed across spatially distant
regions of the image. Capturing such global context
is essential for accurate multi-label classification in
medical imaging.
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Figure 1. DenseNet with n Self-Attention (DNet-nSA) for multi-label chest X-ray images

To overcome the limitations of conventional CNNs
in capturing global context, we propose enhancing
deep neural networks with self-attention
mechanisms. The main idea is to integrate self-
attention into a CNN-based architecture to enable
the model to explore and aggregate information
dynamically across all spatial locations within the
feature map. Unlike standard convolutional layers,
which operate on fixed, local receptive regions, self-
attention performs the network to model long-range
dependencies by allowing each spatial position to
attend to every other position. This global
interaction is particularly beneficial for medical
imaging tasks, such as CXR image analysis. By
embedding self-attention into  convolutional
backbones, the model gains the ability to reason
holistically about the image content, leading to
improved performance in complex multi-label
classification scenarios.

The underlying mechanics of self-attention are
detailed as follows. Each self-attention block is
based on the scaled dot-product attention
mechanism, a core component of Transformer
architectures. Given an input feature map F €
RHXWXC 'the block first projects it into three distinct
representations: query O, key K, and value V, via
learned linear transformations implemented as
dense layers (see Equation 1). These tensors are
reshaped to a 2D format to facilitate efficient
attention computation over spatial dimensions.

Q=FW, K=FW,, V=FW, (1)

The attention weights are obtained by computing
pairwise similarities between the query and key
vectors, scaled by the dimensionality of the query

22

space to ensure numerical stability. A softmax
operation is applied to yield a normalized attention
map, which is then used to aggregate the value
representations. This process enables the model to
incorporate information from all spatial locations,
effectively capturing long-range dependencies and
global context (see Equation 2).

-
QK ) 0=
Vd

The output of the attention module is then reshaped
back to the original spatial dimensions and fused
with the input feature map via a residual connection.
Finally, a layer normalization step is applied to
stabilize training dynamics and promote better
gradient flow across layers (see Equation 3).

AV

A= softmax< 2

F = Reshape(0) + F,Output = LayerNorm(F)(3)

This architecture enhances the representational
power of convolutional backbones like DenseNet,
particularly in tasks where spatially distant features
are semantically correlated, such as in CXR image
analysis.

Stacking multiple self-attention layers allows the
model to iteratively refine its understanding of

spatial dependencies, enhancing its capacity
progressively to model complex, spatially
distributed patterns.

Algorithm 1 illustrates how to build the model for
DenseNet enhanced with stacked self-attention
blocks. A base model (i.e. DenseNet121) extracts
intermediate features, which are refined through
self-attention to capture global context, for
improving multi-label CXR image classification.
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Algorithm 1: DenseNet with stacked Self-attention blocks (DNet-nSA)

Input:

Image shape (H, W, C), training data (Xtrain, Ytrain ), num__labels

Base model DenseNet,

Number of blocks n

// Stack nSA

// Attention map

// Attention output

// Residual connection

QOutput:
Model
1 Function BuildModel (input_ shape,num_ labels):
2 DNet = DenseNet121(weights—"imagenet", include top—False,
input_shape=input_shape);
3 F + output feature map from base model;
4 F’ + StackSelfAttention(F', num_blocks=n) ;
5 x + GlobalAveragePooling2D(F');
6 output — Dense(num_ labels, activation—"sigmoid")(z);
T Create M odel with input and output ;
8 return M odel
o Function StackSelfAttention(F, num_ blocks):
10 for i + | to num_ blocks do
11 L F + SelfAttentionBlock(F)
12 return F
13 Function SelfAttentionBlock(F):
14 C + number of channels in F};
15 Compute Q = Dense(C/8)(F);
16 Compute K = Dense(C/8)(F);
17 Compute V = Dense(C)(F);
18 Reshape @, K,V to 2D shape (H x W,C);
19 A = Softmax (:}Fé—l) ;
20 0O=AV;
21 Reshape O to shape of F';
22 F+«F+0;
23 Normalize F with LayerNorm;
24 return F

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed
method for multi-label CXR classification, we
assess model performance using the Area Under the
ROC Curve (AUC). As a standard metric for multi-
label tasks, AUC provides a robust measure of the
model’s discriminative ability across all classes,
offering comprehensive insight into its predictive
performance.

We first developed a fine-tuned DenseNet (Huang
et al., 2017) baseline, optimized for the multi-label
classification of CXR images. Building upon this
foundation, we created DNet-nSA, an enhanced
architecture that incorporates stacked self-attention
blocks atop the original DenseNet backbone to
capture global contextual dependencies. Moreover,

23

we proposed the DNet-MHSA architecture for the
integration of a DNet121 backbone with a multi-
head self-attention mechanism. The training DNet-
nSA, DNet-MHSA were implemented in Python
using the Keras API  (Chollet, 2015) with
TensorFlow (Abadi et al., 2016) as the backend,
leveraging GPU acceleration for efficient
computation.

We are particularly interested in comparing our
method with the contrastive learning approach
MoCoR101 (Sowrirajan et al., 2021), which utilizes
MoCo with a ResNet101 backbone (He et al., 2015),
and with the self-supervised learning model
MoBYSwinT (Vo & Do, 2024a), based on MoBY
(Xie et al., 2021) and the Swin Transformer
architecture (Liu et al., 2021).
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All experiments were conducted on a high-
performance Ubuntu 22.04 system with an Intel
Core i17-14700K CPU (20 cores, 64 GB RAM) for
preprocessing. Model training leveraged a ROG
Strix RTX 4090 GPU (24 GB VRAM, 16,384
CUDA cores) to accelerate deep learning
computations.

4.1. Chest X-Ray image dataset

We evaluated the proposed method on the ChestX-
Rayl4 dataset (Wang et al., 2017), a large-scale
NIH-released collection of 112,120 frontal CXR

Table 1. Multi-label Chest X-Ray 14 dataset
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images from 30,805 patients (from 1992 to 2015),
annotated with 14 thoracic pathologies. The dataset
is split into training (70%), validation (15%), and
test (15%) sets, with 78,484, 16,818, and 16,818
images, respectively (see Table 1). Each image is
multi-labelled based on the presence of one or more
conditions (e.g., Atelectasis, Effusion, Pneumonia),
facilitating the training of multi-label classification
models (see examples in Figure 2). Labels are binary
per class (0: absence, 1: presence).

Class Train (0) Train (1) Valid (0) Valid (1) Test (0) Test (1)
Class 0 70,387 8,097 15,080 1,738 15,094 1,724
Class 1 76,528 1,956 16,403 415 16,413 405
Class 2 69,116 9,368 14,812 2,006 14,875 1,943
Class 3 64,569 13,915 13,844 2,974 13,813 3,005
Class 4 74,456 4,028 15,934 884 15,948 870
Class 5 74,054 4,430 15,873 945 15,862 956
Class 6 77,488 996 16,604 214 16,597 221
Class 7 74,789 3,695 15,997 821 16,032 786
Class 8 75,235 3,249 16,129 689 16,089 729
Class 9 76,863 1,621 16,485 333 16,469 349
Class 10 76,724 1,760 16,446 372 16,434 384
Class 11 77,305 1,179 16,557 261 16,572 246
Class 12 76,096 2,388 16,277 541 16,362 456
Class 13 78,327 157 16,789 29 16,777 41

(a) Mass, Pleural Thickening

(b) Effusion, Consolidation, Edema (c) Atelectasis, Pleural Thickening,

Effusion, Pneumothorax

Figure 2. Samples of Chest X-Ray images with multi-label annotations

4.2. Tuning parameters

Fine-tuning was performed by retraining the top
layers of each architecture, with the best
performance achieved by updating the top 10 layers
of DenseNet121. All models, including the baseline
DNN, the proposed DNN with self-attention blocks

24

(DNet-nSA, DNet-MHSA), MoCoR101, and
MoBYSwinT, were trained using a batch size of 32
for 20 epochs with early stopping, optimized with
Adam (learning rate 0.0001). The AUC metric was
employed as the optimization objective to guide
learning in the multi-label classification setting.
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4.3. Classification results

Table 2 presents the Area Under the Curve (AUC)
performance of six different models for multi-label
classification of CXR images across 14 classes. The
compared models include MoCoR101 (A ResNet-
101  backbone pre-trained wusing MoCo),
MoBYSwinT (A Swin Transformer pre-trained with

Vol. 17, Special issue on ISDS (2025): 20-28

MoBY), DNet121 (DenseNet-121 baseline), DNet-
ISA and DNet-2SA (DenseNet with one and two
self-attention blocks), and DNet-MHSA (DenseNet
with Multi-Head Self-Attention). The highest
average AUC is highlighted in bold, and the second-
highest is shown in italics. Figure 3 visualizes the
average AUC per model.

Table 2. Multi-label CXR image classification results of different models

Class MoCoR101 MoBYSwinT  DNetl121 DNet-1SA  DNet-2SA DNet-MHSA
Class 0 0.775 0.779 0.803 0.796 0.780 0.806
Class 1 0.868 0.906 0.899 0911 0.891 0.859
Class 2 0.862 0.858 0.879 0.889 0.884 0.880
Class 3 0.696 0.699 0.716 0.709 0.720 0.714
Class 4 0.780 0.799 0.839 0.849 0.851 0.837
Class 5 0.695 0.708 0.761 0.751 0.776 0.752
Class 6 0.714 0.746 0.736 0.737 0.756 0.713
Class 7 0.845 0.850 0.873 0.877 0.873 0.866
Class 8 0.776 0.791 0.802 0.796 0.795 0.773
Class 9 0.874 0.887 0.875 0.882 0.890 0.864
Class 10 0.843 0.833 0.876 0.865 0.882 0.875
Class 11 0.764 0.785 0.756 0.776 0.789 0.781
Class 12 0.749 0.769 0.758 0.763 0.783 0.775
Class 13 0.864 0.923 0.734 0.822 0.838 0.867
Average 0.793 0.809 0.807 0.816 0.822 0.811
T T T T

DNet-MHSA | 0.811 -

DNet-2SA | 0.822 |-

DNet-1SA | 0.816 -

DNet121 | 0.807 =

MoBYSwinT | 0.809 =

MoCoR101 | 0.793 -

| | | | |
0.77 0.78 0.79 0.8 0.81 0.82 0.83

Average AUC

Figure 3. Comparison of average AUC across different models

Among all models, DNet-2SA achieves the highest
overall performance with an average AUC of 0.822.
This demonstrates the effectiveness of incorporating
two self-attention blocks into the DenseNet
architecture. The improvement is consistent across
most classes, suggesting that deeper attention can
help the model capture more complex relationships
in medical images. DNet-1SA follows with an
average AUC of 0.816, indicating that even a single
self-attention block provides significant gains over
the baseline DNetl121, which records an average
AUC of 0.807. Interestingly, DNet-MHSA achieves
0.811, slightly lower than DNet-2SA, suggesting
that multi-head self-attention does not necessarily
outperform simpler attention schemes in this setting.

25

The MoBYSwinT model, which uses a Swin
Transformer pre-trained with self-supervised
learning, performs well with an average AUC of
0.809. It even outperforms DNetl21, highlighting
the potential of transformer-based models in
medical image analysis. However, MoBYSwinT
still falls short of the attention-enhanced DenseNet
variants. Notably, MoBYSwinT is the best in Class
13, achieving an AUC of 0.923, significantly
outperforming all other models for that class. This
may reflect the capacity of transformer models to
better capture long-range dependencies or
underrepresented patterns when provided with
sufficient pretraining. On the other hand,
MoCoR101 based on ResNet-101 and MoCo
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pretraining, shows the lowest overall performance
(average AUC of 0.793), suggesting that its self-
supervised features are less transferable to the
medical imaging domain compared to other
methods evaluated.

From a class-wise perspective, Class 1 and Class 9
consistently achieve high AUCs across all models,
often exceeding 0.87. In contrast, Class 3, Class 5,
and Class 6 are among the most challenging, with
AUC:s generally below 0.78. These disparities may
arise from class imbalance, ambiguous visual
features, or high inter-class similarity in those
disease types. With a range from 0.734 using
DNetl121 to 0.923 using MoBYSwinT, Class 13
demonstrates a  significant  difference in
performance between models, suggesting the
models are sensitive to feature extraction methods
within this class.

Overall, the results suggest that attention
mechanisms integrated into CNN backbones,
particularly DNet-2SA, offer the most reliable
performance for multi-label CXR classification.
Although  transformer-based  models  like
MoBY SwinT show promising results, especially on
certain difficult classes, they may require larger
datasets or more specialized fine-tuning to fully
exploit their advantages. DenseNet-121 remains a
strong baseline, and the consistent performance
gains observed with added attention validate the use
of attention-based enhancements in medical image
analysis. Future work may focus on hybrid
architectures that combine CNN and transformer
components, or ensemble methods that leverage the
strengths of both model families to further boost
classification accuracy across all classes.

5. CONCLUSION AND FUTURE WORKS
We presented DNet-nSA, a novel architecture that
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