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Article info. ABSTRACT

Received 13 Jul 2025 In this paper, we propose a novel ensemble method, termed Bagged Vision
Revised 15 Aug 2025 Transformers (BagViT), to enhance the classification accuracy for Chest
Accepted 2 Oct 2025 X-ray (CXR) images. BagViT constructs an ensemble of independent

Vision Transformer (ViT) models, each of which is trained on a bootstrap
sample (sampling with replacement) drawn from the original training
dataset. To enhance model diversity, we use MixUp to generate synthetic
training examples and introduce training randomness by varying the
Bagging, deep learning, lung number of training epochs and selectively fine-tuning the top layers of each

Keywords

disease classification, vision model. Final predictions are obtained through majority voting.
transformer (ViI), X-ray Experimental results on a real-world dataset collected from Chau Doc
images Hospital (An Giang, Vietnam) demonstrate that BagViT significantly

outperforms fine-tuned baselines such as VGG16, ResNet, DenseNet, ViT.
Our BagViT achieves a classification accuracy of 72.25%, highlighting the
effectiveness of ensemble learning with transformer architectures in
scenarios with complex CXR images.

1. INTRODUCTION individuals and resulting in over 1,000 deaths each

Lung diseases represent a critical and enduring day (Global Asthma Network, 2022).

challenge to global public health. Prevalent Quick and accurate diagnosis is essential for guiding
conditions such as asthma, pneumonia, tuberculosis, effective clinical decision-making and improving
lung cancer, and chronic obstructive pulmonary patient prognosis in cases of pulmonary disease.
disease (COPD) contribute substantially to global Chest X-ray (CXR) imaging remains a foundation
morbidity and remain among the leading causes of in the diagnostic workflow for respiratory
mortality (Yadav et al., 2023). According to the conditions, owing to its ability to capture high-
World Health Organization (WHO), pneumonia was resolution structural information of the thoracic
the foremost cause of death among children under cavity. CXR imaging facilitates the detection of
five years of age in 2019, accounting for various  pulmonary  pathologies, including
approximately 740,180 fatalities, representing 14% pneumonia, tuberculosis, and malignancies such as
of all deaths in this age group (World Health lung cancer. Compared to more advanced imaging

Organization, 2022). Similarly, the Global Asthma modalities such as computed tomography (CT) or

Report 2022 highlights asthma as a pervasive magnetic resonance imaging (MRI), CXR offers a

chronic illness, affecting an estimated 262 million cost-effective and widely accessible solution,
particularly in resource-limited settings.
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Despite its advantages, the diagnostic accuracy of
CXR imaging is inherently dependent on the
interpretive skill of the clinician. The nuanced visual
patterns associated with different pulmonary
diseases demand considerable expertise, and even
experienced radiologists may be prone to inter-
observer variability or diagnostic oversight.
Therefore, enhancing the reliability and consistency
of CXR interpretation remains a pressing objective
in modern medical imaging and computer-aided
diagnosis.

In this paper, we propose Bagged Vision
Transformers (BagViT), an ensemble learning
framework based on Vision Transformers (ViT)
(Dosovitskiy et al., 2020). BagViT constructs a
collection of VIT models, each trained
independently on a bootstrap sample drawn from the
original training set. To introduce model diversity
and enhance generalization, each ViT is trained for
a randomly selected number of epochs (ranging
from 8 to 12), and selectively fine-tuned on top
layers sampled from 36, 38, 40, 42, 44. Furthermore,
the MixUp technique (Zhang et al., 2018) is used to
generate  synthetic training examples. Final
predictions are obtained through majority voting
over the ensemble members. This ensemble strategy
mitigates  overfitting and  leverages  the
representational power of transformer architectures,
making it  well-suited for  high-variance
classification tasks such as CXR image recognition.

Empirical evaluation on a real-world dataset
collected from Chau Doc General Hospital (An
Giang province, Viet Nam) demonstrates that
BagViT achieves superior performance compared to
fine-tuned  baselines.  Specifically, BagViT
outperforms VGG16 (Simonyan & Zisserman,
2014), ResNet (He et al., 2016), DenseNet (Huang
et al.,, 2017), standalone ViT (Dosovitskiy et al.,
2020), achieving a top-1 classification accuracy of
72.25%.

The rest of this paper is structured as follows.
Section 2 reviews related work on CXR image
classification. Section 3 presents our proposed
BagViT algorithm for effective CXR image
classification. Section 4 shows the experimental
results, followed by conclusions and future work in
Section 5.

2. RELATED WORK

Deep learning has emerged as a foundation in chest
X-ray (CXR)-based lung disease diagnosis, with
numerous research demonstrating its effectiveness
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across diverse architectures and learning paradigms
(Callr et al.,, 2021; Hage Chehade et al., 2024;
Koyyada & Singh, 2024). Do et al. (2022) proposed
a hybrid approach that combines fine-tuned pre-
trained deep networks with a support vector
machine (SVM) (Vapnik, 1995) classifier for
detecting COVID-19 from CXR images. By
leveraging the nonlinear decision boundaries of
SVMs on top of deep networks, the method
achieved superior performance, reaching a
classification accuracy of 96.16%, outperforming
all individual deep models. To address the pervasive
issue of data imbalance in medical imaging, Galan-
Cuenca et al. (2024) used Siamese networks
(Chicco, 2021), achieving a 5.6% improvement in
F1 score by leveraging similarity-based learning.
Vo and Do (2024) integrated contrastive learning
with nonlinear classifiers, resulting in an accuracy
of 87.9%, while Shelke et al. (2021) applied deep
convolutional architectures such as VGG-16
(Simonyan & Zisserman, 2014) and DenseNet-161
(Huang et al., 2017), reaching a detection accuracy
of 98.9% for COVID-19. Chen and Lin (2024)
proposed a multi-task contrastive learning
framework that jointly addressed pneumonia and
COVID-19 detection, demonstrating the utility of
task-aware representations in CXR analysis.

Recent advances have also focused on privacy-
preserving and optimization-driven strategies.
Adjei-Mensah et al. (2024) introduced Cov-Fed, a
federated learning model incorporating attention
mechanisms, achieving an accuracy of 87.65%
while preserving data privacy across institutions.
Poloju and Rajaram (Poloju & Rajaram, 2024)
proposed a hybrid model combining ensemble
learning, Emperor Penguin Optimization, and SVM,
reporting a high diagnostic accuracy of 97.5%.
Additionally, Verma et al. (2024) conducted a
comparative study of classical machine learning
classifiers (Hastie et al., 2009) using handcrafted
CXR features.

Despite these advances, CXR image classification
remains inherently challenging. The domain suffers
from a lack of large-scale annotated datasets, as
CXR is often region-specific and requires domain
expertise for accurate labeling. Moreover, the subtle
visual differences between some pathological
classes, like the overlapping radiographic features
of pneumonia and other lung diseases, result in low
inter-class variance, which makes the discrimination
task difficult. In parallel, the intrinsic complexity of
CXR images, which often include anatomical
overlaps, imaging artifacts, and comorbid
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conditions, introduces significant noise into the
data. These factors collectively limit the
effectiveness of conventional learning algorithms
and emphasize the necessity for robust, data-
efficient models capable of  extracting
discriminative features under noisy and ambiguous
conditions.

3. PROPOSED APPROACH

Our investigation aims to create a robust machine
learning method for accurately classifying CXR
images. The task presents several challenges,
including the limited size and heterogeneity of
annotated CXR datasets, high visual similarity
among certain radiographic features of pneumonia
and other lung diseases, and substantial variability
in 1image quality arising from inconsistent
conditions.

Vision Transformer (ViT) (Dosovitskiy et al., 2020)
has demonstrated state-of-the-art performance
across various vision tasks due to its ability to:

Self-attention mechanisms model

dependencies;

long-range

— Learn rich semantic representations from images
without requiring convolutional inductive biases;

— Be scalable and pre-trainable, enabling fine-
tuning for downstream tasks like CXR image
classification.
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However, ViTs generally require extensive training
data to achieve robust generalization. In the context
of CXR images, where datasets are often small and
diverse, directly training a ViT can result in

significant overfitting and increased output
variance.
In machine learning, model generalization

performance is analyzed by the bias—variance
decomposition (Breiman, 1996): bias measures
errors from incorrect model assumptions, while
variance reflects sensitivity to variations in the
training data.

ViTs, being highly expressive, tend to have low bias
but high variance, especially when trained on small
or heterogeneous annotated datasets, such as CXR
images. This leads to unstable predictions and poor
generalization.

Therefore, our proposed Bagged Vision
Transformers (BagViT) framework mitigates the
high variance typically observed in small-scale and
diversity of CXR image datasets by integrating three
complementary strategies: data diversity via
bootstrap sampling, model diversity through
randomized training configurations, and robust
prediction aggregation using majority voting.

Training Dataset D

Bootstrap Sample D, Bootstrap Sample Ds Bootstrap Sample Dar

Train ViT:
(Random Epochs &
Fine-tuning top layers)

Train ViT2
(Random Epochs &
Fine-tuning top layers)

Train ViTar
(Random Epochs &
Fine-tuning top layers)

{Enscmble {ViT1, ViTaz,..., ViTM}}

Figure 1. BagViT algorithm for training an ensemble of ViT models on bootstrap samples with
random training settings

The BagViT described in Algorithm 1 and Figure 1,
learns an ensemble of ViT models to improve
classification performance on limited image
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datasets. Each ViT model is trained independently
on a bootstrap sample drawn with replacement from
the original training CXR image dataset,
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introducing data diversity. For every model, a
random number of training epochs (between 8 and
12), selectively fine-tuning top layers sampled from
36, 38, 40, 42, 44, and the data augmentation MixUp
(Zhang et al., 2018) are used to further increase
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variance reduction. This randomness in both data
and training configuration helps mitigate overfitting
and stabilizes generalization, especially under
small-scale and diversity of CXR image data
regimes.

Algorithm 1: BagViT for training an ensemble of ViT models

Input: Training dataset D = {(z;, y;)}?Y,, number of models M
Output: Ensemble of Vision Transformer (ViT) models

{ViTy,...,ViTa}

1 for m+ 1 to M do

2 Sample bootstrap dataset D,,, from D with replacement;

3 Initialize ViT model ViT,,;

4 Randomly choose number of training epochs
Epm ~U{8,9,10,11,12};

5 Randomly choose fine-tuning top layers L,, ~ V{36, 38,40, 42, 44};

6 Configure ViT model ViT,,, with the MLP head having num_classes
and L,, fine-tuning top layers;

7 Train ViT,, on D,, using data augmentation MixUp for F,, epochs;

8 return {ViTy, ViTs,...,ViTa};

New CXR Image =

Vil

ViTu

[Majority Vote: {f1,-..,9m} ‘

Final prediction: ¢

Figure 2. BagViT prediction of a new CXR image via majority voting

The class prediction of a new CXR image is
described in Algorithm 2 and Figure 2 is then
determined by majority voting over predictions
produced by all trained ViT models.

The BagViT framework offers several
advantages for CXR image classification:

key

1. Reduced variance: By aggregating predictions
from multiple diverse models, BagViT stabilizes
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ViT outputs, mitigating sensitivity to minor data
variations.

2. Enhanced generalization: The ensemble improves
performance on unseen CXR images, particularly in
cases of domain shifts or limited training data.

3. Increased robustness to overfitting: Bootstrap
sampling prevents any single model from overfitting
the entire data distribution, minimizing the impact
of rare or biased samples.
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Algorithm 2: BagViT prediction via majority voting

Input: Ensemble of ViT models {ViT;, ViT2

Output: Predicted class label g
1 form+1to M do
2 L Jm + ViTm(z) ;
3 iy + MajorityVote({g1, 2, . ... Um});
4 return 7;

., ViTar }, input image =

// Predict with m-th ViT model

4. EXPERIMENTAL RESULTS
4.1. Technical implementation

To assess the effectiveness of the proposed method
for classifying CXR images, we developed and
implemented BagViT using Python. The model
architecture and training procedures were built with
PyTorch (Paszke et al., 2019) and the Keras deep
learning library (Chollet et al., 2015), using
TensorFlow (Abadi et al, 2015) as the
computational backend for efficient GPU-
accelerated operations. We employed Scikit-learn
(Pedregosa et al., 2011) for machine learning
utilities and OpenCV (Itseez, 2015) for image
processing tasks.

We also aim to evaluate the performance of the
BagViT algorithm against various fine-tuning
strategies applied to deep neural networks, such as
VGG16 (Simonyan & Zisserman, 2014), ResNet
(Heetal., 2016), DenseNet (Huang et al., 2017), and
ViT (Dosovitskiy et al., 2020).

4.2. Hardware setup

All experiments were performed on a high-
performance Linux workstation running Ubuntu
22.04. The system was equipped with an Intel(R)
Core 17-14700K processor (3.4 GHz, 20 cores), 64
GB of RAM, and a ROG Strix GeForce RTX 4090
GPU with 24 GB of GDDR6X VRAM and 16,384
CUDA cores, delivering significant acceleration for
matrix computations and deep learning tasks.

4.3. Dataset description

We used a chest X-ray (CXR) dataset collected from
the General Hospital of An Giang Province,
developed as part of our prior work (Truong et al.,
2024). The dataset comprises 17,973 CXR images
extracted from the hospital’s electronic medical
records (EMRs), with all images undergoing
standardized preprocessing prior to model training
and evaluation. Ground-truth labels were derived
from discharge diagnoses documented in the EMRs,
including 12 pulmonary classes: Normal, Chronic
Obstructive Pulmonary Disease (COPD), COVID-
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19, Asthma, Tuberculosis, Pulmonary Edema,
Respiratory Failure, Pleural Effusion,
Pneumothorax, Malignant Neoplasm, Pneumonia,
and Pulmonary Collapse. The dataset was randomly
partitioned into a training set containing 14,371
images and a test set with 3,602 images, as detailed
in Table 1.

4.4. Tuning parameters

To optimize the performance of the deep neural
networks, we used selective fine-tuning strategies
tailored to the architectural characteristics of each
model. Specifically, we fine-tuned the top 15 layers
of the VGG16 network, targeting the deeper
convolutional blocks responsible for high-level
feature abstraction. For ResNet, we updated the top
100 layers, leveraging the residual structure to adapt
mid-to-high-level features without destabilizing the
earlier representations. In the case of DenseNet, we
fine-tuned the top 50 layers to recalibrate densely
connected feature pathways while preserving the
lower-layer feature reuse. For the Vision
Transformer (ViT), we fine-tuned the top 40
transformer layers, focusing on the deeper self-
attention blocks to adapt high-level token
interactions to the target domain. This layer-specific
tuning approach balances model plasticity and
stability, facilitating efficient domain adaptation
while mitigating overfitting.

Table 1. Description of the CXR image dataset

No Label Train set Test set
1 Normal 2,469 618
2 COPD 490 123
3 Covid-19 2,000 501
4 Asthma 153 39
5  Tuberculosis 657 165
6 Pulmonary Oedema 149 38
7  Respiratory Failure 1,105 277
8  Pleural Effusion 452 114
9  Pneumothorax 213 54
10 Malignant Neoplasm 128 33
11 Pneumonia 6,472 1,618
12 Pulmonary Collapse 83 22

Total 14,371 3,602
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During the training of VGG16, ResNet, DenseNet,
and ViT networks, we used the Adam optimizer
with a learning rate of 0.0001 and trained the models
for 50 epochs.

BagViT trains 50 ViT models, each set up with a
randomly chosen number of epochs ranging from 8
to 12 and a number of top layers for fine-tuning
randomly selected from 36, 38, 40, 42, 44.

4.5. Classification results for CXR images

Fine-tuned models VGG16, ResNet, DenseNet, and
ViT are referred to as FT-VGG16, FT-ResNet, FT-
DenseNet, and FT-ViT, respectively. Our Bagged
Vision Transformers model is denoted as BagViT.

We report the overall classification accuracy for
CXR images in Table 2 and Figure 3. The highest
accuracy is highlighted in bold, and the second-
highest is shown in italics.

BagViT | 72.25

FT-ViT ] 69.09

FT-DenseNet 61.16

FT-ResNet50 59.59

FI-VGG16 64.87

56 58 60 62 64 66 68 70 T2 T4

Classification accuracy (%)

Figure 3. Overall classification accuracy for
CXR images

FT-VGGI16 and FT-DenseNet, among the baseline
fine-tuned convolutional networks, show similar
performance, with accuracies of 64.87% and
64.16%, respectively. FT-ResNet50 underperforms
slightly, achieving an accuracy of 59.59%, which
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may be attributed to its deeper architecture requiring
more data to fine-tune effectively or potential
overfitting due to the dataset scale.

Table 2. Overall classification accuracy for CXR

images
No Visual approach Accuracy (%)
1 FT-VGGl16 64.87
2 FT-ResNet50 59.59
3 FT-DenseNet 64.16
4  FT-ViT 69.09
5 BagViT 72.25
Notably, FT-ViT outperforms all CNN-based

models, attaining an accuracy of 69.09%. This result
illustrates the strength of transformer-based
architectures in capturing global contextual
information, which is particularly advantageous in
medical imaging tasks where long-range
dependencies and subtle inter-regional features are
important.

The proposed BagViT model, which incorporates
ensemble learning with ViTs, achieves the highest
accuracy at 72.25%, demonstrating a significant
improvement over all individual models. This
performance gain shows the effectiveness of
ensemble-based models in enhancing generalization
and robustness, especially in complex CXR image
classification  tasks involving noisy and
heterogeneous medical data. Overall, the results
indicate that ViT-based architectures, particularly
when combined via bagging, randomized training
configurations, and majority voting, offer a
promising direction for advancing automated CXR
interpretation.

We further evaluated the performance of BagViT by
varying the number of ensemble members (denoted
as nbag), with the corresponding results presented
in Figure 4.

70

Accuracy

1 10 20

30 40 50

Number of ViT Models (nbag)

Figure 4. Classification accuracy according to the number of ViT models in the BagViT ensemble
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The highest performance was attained with an
accuracy of 72.25% (with 39 or 48 ViT models).
This enhancement indicates that BagViT effectively
boosts generalization by integrating multiple ViT-
based learners through a bagging approach. The
ensemble structure of BagViT likely reduces
variance and enhances robustness, which is
particularly advantageous in cases with subtle inter-
class differences, such as CXR image classification.
These results clearly show that BagViT offers a
superior solution for the classification of CXR
images, outperforming individual models.

5. CONCLUSIONS AND FUTURE WORK

We proposed Bagged Vision Transformers
(BagViT), a robust ensemble learning framework
for the classification of CXR images. BagViT
constructs an ensemble of independently trained
ViT models, each trained on a bootstrap sample of
the original training set. To enhance model
diversity, we used MixUp augmentation to generate
synthetic training instances and introduced training
variability by randomizing the number of training
epochs and selectively fine-tuning only the top
layers of each model. Final predictions are
aggregated via majority voting, resulting in
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