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Ovarian fullness of female mud crabs (Scylla paramamosain) is key 

determinant of market value but is still assessed subjectively by hand. 

Spectrometry offers an objective alternative, and our previous studies 

under in vitro and semi-in vivo conditions demonstrated the potential of 

spectrometric features for discrimination of crab tissues (meat, ovary, 

hepatopancreas, and shell). However, it was still challenging to apply 

under in vivo conditions. This study aims to detect the ovary region in live 

mud crabs while keeping  the ‘in vivo’ condition by combining a custom 

multispectral-imaging system and simple ML techniques. A special optical 

setup and a concise multispectral camera were included in the system 

aiming to acquire the transmission image through the intact carapace 

practically in the crab-farming fields. The ovary region was predicted 

pixel-wise and patch-wise using conventional classifiers (Logistic 

Regression, Random Forest, Gradient Boosting, k-NN, and SVM) and 

Convolutional Neural Networks (CNN), enhanced by Principal Component 

Analysis (PCA) for feature transformation. The patch-wise random forest 

model with PCA (7×7 patches) achieved superior performance, with an 

accuracy of 0.872 and an F1-score of 0.872, outperforming other methods. 

These findings mark a significant advancement in the application of 

multispectral imaging for automated, non-destructive quality assessment 

in live aquaculture specimens. 
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1. INTRODUCTION 

Scylla paramamosain, commonly known as the mud 

crab, is a crustacean of significant economic value, 

widely cultivated and harvested across numerous 

regions globally (Keenan et al., 1998; Shelley & 

Lovatelli, 2011; Bhuiyan et al., 2021). Within the 

supply chain—from farmers to collectors and 

exporters, mud crabs are graded and traded based on 

quality assessments that consider both external traits 

(e.g., body weight, size, and appendage condition) 

and internal criteria. For female crabs, ovarian 

fullness is the most critical internal factor 

determining economic value, while meat yield is a 

key criterion for male crabs (C-AID Consultants, 

2016). 

Assessing internal attributes such as ovarian fullness 

poses a notable challenge, as external quality traits 

can be evaluated through visual inspection or 

weighing, whereas current methods rely on indirect, 

manual techniques. These include palpating the 
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carapace for firmness or inspecting the crab’s 

carapace under strong light, which are highly 

subjective and often yield inconsistent results 

among assessors (C-AID Consultants, 2016). This 

has driven a growing demand for objective, 

reproducible, and non-invasive approaches to 

internal quality evaluation in mud crabs. 

Numerous studies have advanced our understanding 

of the biological, biochemical, and morphological 

dynamics of the ovary, hepatopancreas, and muscle 

tissues in Scylla paramamosain under varying 

environmental and physiological conditions 

(Aaqillah-Amr et al., 2018; Wu et al., 2019; Amin-

Safwan et al., 2019; Wu et al., 2020; Han et al., 

2024; Fang et al., 2025; Jiang et al., 2025; Yu et al., 

2025). However, these investigations predominantly 

depend on invasive sampling and laboratory-based 

biochemical analyses, limiting their applicability in 

live settings.  

The spectrometric technique is one of the promising 

tools for non-destructive internal quality 

assessment. There were several attempts to integrate 

machine learning (ML) methods with multispectral 

and hyperspectral imaging (MSI/HSI) for non-

destructive quality evaluation in various aquatic 

products. In fish, shrimp, and other seafood, ML 

models—ranging from partial least squares 

regression to convolutional neural networks—

combined with MSI/HSI have accurately predicted 

freshness, chemical composition, and adulteration 

(Moosavi-Nasab et al., 2021; Kong et al., 2022; Li 

et al., 2023; Shao et al., 2023; Zhang et al., 2020; 

Ismail et al., 2023). For example, Wold et al. (2024) 

developed a rapid, non-invasive method using near-

infrared spectroscopy and ML to quantify meat 

content in live red king crab legs, achieving high 

accuracy (R² = 0.83–0.90, RMSEP = 6.1–6.2%) 

depending on the specific trial and validation set. 

These advancements underscore the potential of 

spectral imaging and ML for internal quality 

assessment in live crustaceans. Despite these 

progressions, robust, real-time solutions for non-

destructive ovary detection in live Scylla 

paramamosain remain elusive due to the crab’s 

complex internal structure, crab morphology, and 

lack of annotated datasets or spectral characteristics.  

Towards automatic internal quality grading of mud 

crabs, our research group has been focused on a 

practical technique of ML-assisted spectrometry by 

strategically iterative prototyping of various 

spectrometric systems for in-vitro, semi-in vivo and 

in vivo conditions (Tran et al., 2024). Initial in-vitro 

studies have shown potential in differentiating 

internal components (e.g., meat, ovary, 

hepatopancreas, and shell) in mud crabs, with 

principal component analysis (PCA) and machine 

learning to yield encouraging classification results 

(Tran et al., 2024; Vo et al., 2025). However, the in-

vitro studies required destructive sampling or were 

impractical for large-scale, in vivo applications, 

remaining a critical gap in scalable and efficient 

internal organ detection. 

This study aims to detect ovary region in live mud 

crabs while keeping ‘in vivo’ condition by 

combining a custom multispectral-imaging system 

and simple ML techniques. The system includes a 

special optical setup and a concise multispectral 

camera to acquire the transmission image through 

the intact carapace practically in the crab-farming 

fields. The ML techniques to be examined include 

patch-wise classification with Random Forest and 

CNN models. 

The remainder of this paper is as follows: Section 2 

describes the materials and methods, including 

sample preparation, the design of the custom 

multispectral imaging system, data acquisition, and 

preprocessing steps. Section 3 presents the results 

and discussion, evaluating the feasibility of the 

proposed ovary region detection framework. 

Finally, section 4 concludes with a summary of key 

findings and proposes directions for future research. 

2. METHOD 

2.1. Sample preparation 

Fifty female mud crabs (Scylla paramamosain) were 

sourced from commercial aquaculture ponds in Bac 

Lieu province, Mekong Delta, Viet Nam during 

June–July 2025. Experienced farmers selected the 

crabs to ensure a high-quality, representative 

sample, using visual assessment of external features 

to capture a diverse range of maturity stages. After 

collection, crabs were promptly transported to the 

laboratory under controlled conditions to maintain 

stable conditions and minimize physiological 

changes. Upon arrival, each crab was individually 

weighed and measured to record key physical 

characteristics, including body weight, carapace 

width, and carapace length (Figure 1a). The crabs 

exhibited a mean carapace width of 106.6 mm 

(range: 96.0–115.0 mm), a mean carapace length of 

79.0 mm (range: 70.0–85.0 mm), and a mean body 

weight of 229.2 g (range: 160.0–285.0).  

Each crab was first imaged with the intact carapace 

under ‘in vivo’ conditions. Subsequently, the crabs 
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were euthanized, and their carapaces were carefully 

removed to expose internal organs, particularly the 

ovary (Figure 1b). This step enabled precise 

identification and annotation of the ovary region, 

serving as the ground truth for model development.  

It should be noted that this destructive step was 

performed solely to obtain ground-truth annotations 

of the ovary region. This procedure was necessary 

only during dataset preparation and annotation, 

while all multispectral imaging of intact crabs was 

conducted under in vivo conditions. Thus, the 

imaging methodology itself remains entirely non-

destructive. 

Additionally, the ovaries were extracted and 

weighed, providing quantitative data for further 

analysis and validation. All sample preparation 

steps, including physical measurements, ovary 

extraction, and imaging, followed a standardized 

workflow to ensure reproducibility and minimize 

variability across the dataset. 

 
Figure 1. (a) Physical measurement of carapace and body weight; (b) Carapace removal for ovary 

annotation

2.2. A custom multispectral imaging system  

A custom multispectral imaging system was 

developed for live mud crabs, optimized to capture 

internal organ characteristics, particularly the ovary, 

through the carapace (Figure 2). The system 

comprises three main components: (1) halogen 

bulbs as the illumination source, (2) collimating 

optics, and (3) an imaging unit, designed for high-

quality, non-invasive imaging. 

The illumination source consists of two parallel 

lines of halogen bulbs delivering uniform, 

collimated light through the crab sample. The first 

line (L1) comprised three halogen bulbs arranged as 

50 W–100 W–50 W (12VDC), while the second line 

(L2) used a single 100 W (12VDC) bulb positioned 

opposite L1. This arrangement illuminated the crab 

from both sides, with L1 targeting the crab’s mouth 

and L2 illuminating the rear, ensuring full carapace 

coverage. Each line was equipped with optical 

components: light from the bulbs passed through 

two Fresnel lens bars (focal length: 12 mm; size: 200 

mm × 35 mm) and a cylindrical plano-convex lens 

(focal length: 23.9 mm; size: 200 mm × 31 mm). 

This setup produced a collimated, line-shaped beam 

(approximately 200 mm long and 10 mm wide), 

selectively illuminating the target region of the crab 

to minimize stray light and enhance signal clarity. 

The distance between the cylindrical lenses of the 

two lines was set to approximately 190 mm for 

optimal alignment and light transmission. 

To ensure consistent positioning and registration of 

the crab during imaging, a custom sample holder 

was used to maintain the crab in a fixed orientation, 

enabling repeatable imaging with and without the 

carapace. A shield plate with an oval cutout was 

placed between the camera and sample to allow only 

the carapace to be illuminated and captured. 

Additional light shields and a dark slide eliminated 

ambient light, ensuring a controlled imaging 

environment. 
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Figure 2. Multispectral imaging setup: (a) schematic of the optical setup; (b) practical implementation

A commercial multispectral camera (MONARCH II 

EVK UNS54000) was mounted vertically above the 

sample, equipped with an f/4.7 aperture lens 

(effective focal length: 4.98 mm). It provided a field 

of view of 31.5° (horizontal) and 25.5° (vertical), 

capturing images at 1280 × 1024 pixels. Spectral 

imaging spanned ten bands centered at 713, 736, 

759, 782, 805, 828, 851, 874, 897, and 920 nm. The 

lens-to-sample distance was fixed at 300.0 mm for 

consistent imaging geometry. 

Multispectral images were acquired at four exposure 

times (167, 200, 250, and 500 ms) to account for 

varying tissue density and light penetration. 

Reference RGB images, captured using an 8 MP 

CMOS camera, shared identical fields of view to 

facilitate downstream analysis and mask transfer. 

2.3. Data acquisition  

Multispectral and reference images were acquired 

for each crab following a standardized protocol with 

fixed camera positioning and consistent lighting to 

ensure data quality. Initially, the live crab was 

positioned in the optical setup to maintain uniform 

orientation and field of view. Multispectral images 

of the crab with the intact carapace were acquired at 

four exposure times (167, 200, 250, and 500 ms) to 

account for varying tissue density and light 

transmission properties. The camera position and 

imaging geometry remained constant across all 

samples. 

After initial imaging, the crab was euthanized, and 

the carapace was precisely removed to expose 

internal tissues, particularly the ovary. The crab, 

now without the carapace, was repositioned in the 

same setup, and a second set of multispectral images 

was captured using identical parameters and fields 

of view. Concurrently, an RGB camera captured 

reference images with and without the carapace to 

aid annotators in delineating the ovary region in 

multispectral images. 

To enable spectral normalization and account for 

light source variations, a reference spectrum was 

obtained for each imaging batch using a 45° 

stainless steel mirror, chosen for its uniform 

reflectance properties, under the same illumination 

conditions as the crab samples.  

2.4. Data preprocessing 

Carapace segmentation was done using Otsu’s 

thresholding method to create an initial binary mask 

for each carapace. It is noted that the pixels near the 

carapace edge are inevitably saturated even under a 

proper exposure for the carapace inside because of 

their significant thickness decreases. In order to 

relieve the risk of those saturated pixels 

compromising the spectrometric accuracy, the 

carapace mask was reduced by 10% prior to further 

analysis. This shrinkage rate was determined based 

on data showing its effectiveness in minimizing 

edge saturation while retaining sufficient data 

coverage. Specifically, as shrinkage increased from 

0% to 30%, the mean intensity and variability of 

normalized spectral values at 713 nm decreased, 

with values dropping from a mean of 0.41 at 0% to 

0.18 at 30%. The rate of reduction stabilized beyond 

10% (mean: 0.2992, 25th percentile: 0.0943, 75th 

percentile: 0.3558), indicating that further shrinkage 

yielded diminishing returns. As shown in Figure 3, 

this 10% reduction effectively excluded saturated 

edge pixels while preserving data integrity.
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Figure 3. (a) An example image of 712 nm band with carapace region contours and (b) box plot of 

normalized pixel values inside the carapace region, under different shrinkage rates

Spectral data were then screened to remove images 

with excessive pixel saturation. Pixel-level 

saturation was assessed for each spectral band by 

calculating the maximum intensity, 𝐼𝑚𝑎𝑥, and the 

saturation threshold 𝑇 as:  

𝑇 = 0.99𝐼𝑚𝑎𝑥        (1) 

Pixels with intensity 𝐼(𝑥, 𝑦) > 𝑇 were classified 

saturated, and the fraction of saturated pixels, 𝑓𝑠𝑎𝑡, 

was computed as: 

𝑓𝑠𝑎𝑡 =  
𝑁𝑠𝑎𝑡

𝑁𝑡𝑜𝑡
         (2) 

Where 𝑁𝑠𝑎𝑡  and 𝑁𝑡𝑜𝑡 denote the number of 

saturated pixels and the total pixels within the 

carapace, respectively. Images with 𝑓𝑠𝑎𝑡 > 10% in 

any band were excluded as outliers. 

The retained spectral data were normalized band-

wise using the reference spectrum from each 

imaging batch, as described in Section 2.3, 

according to: 

 𝐶̂(𝑥, 𝑦, 𝑏) =  
𝐶(𝑥,𝑦,𝑏)

𝑅(𝑏)
    (3) 

where C(x, y, b) is the raw intensity at pixel (x, y) 

in band b, R(b) is the reference-spectra value for 

band b, and  𝐶̂(x, y, b) is the normalized interactance 

spectrum. 

After screening, the dataset was reduced to 31 

multispectral images, each with 10 spectral bands, 

totaling nearly 9 million pixels within the 

segmented carapace regions. Two classification 

strategies—pixel-wise and patch-wise—were 

employed, benchmarked using Logistic Regression, 

Random Forest, Gradient Boosting, k-Nearest 

Neighbors (k-NN), Support Vector Machine 

(SVM), and Convolutional Neural Network (CNN) 

models.  

Model hyperparameters were tuned through grid 

search combined with cross-validation within the 

training folds. For example, the number of trees and 

maximum depth in Random Forest, the learning rate 

in Gradient Boosting, and the number of neighbors 

in k-NN were systematically optimized. SVM 

hyperparameters (kernel type and regularization 

parameter C) were selected based on validation 

performance. For CNNs, hyperparameters such as 

patch size, learning rate, and batch size were 

empirically adjusted. The final reported results 

correspond to the best-performing configurations.  

The class distribution was moderately imbalanced, 

with ovary pixels comprising 43% and non-ovary 

pixels 57% of the dataset.  

For patch-wise classification, each carapace was 

divided into non-overlapping square patches of side 

length 𝑝 with 𝑝 × 𝑝 pixels across all 𝑏 spectral 

bands flattened into a single feature vector of length 

𝑝2 × b. Non-overlapping patches were used to 

reduce computational complexity while preserving 

spatial context. Patches were labeled positive (1) if 

more than half their pixels overlapped with the 

ovary mask, and negative (0) otherwise. Feature 

vectors and labels were compiled into a data matrix 

𝐗 ∈ 𝑅𝑁×(𝑝2×b), containing (𝑁) flattened patch 

samples, paired with a binary label vector 𝐲 ∈
{0,1}𝑁. 

Ovary regions were annotated as described in 

Section 2.3, using a two-step process for accurate 

and reproducible ground truth labeling (Figure 5). 

Initially, manual annotation was performed on "no-

carapace" images of crabs after carapace removal, 
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where the ovary and other internal tissues were 

clearly visible. However, as multispectral images 

extend beyond the visible spectrum, directly 

annotating the ovary region in these images poses 

challenges. To address this, an RGB reference 

image of each crab, captured with the same field of 

view, was provided to guide annotators in accurately 

delineating ovary boundaries. 

In the second step, the manually annotated ovary 

mask was spatially aligned and transferred to the 

corresponding multispectral images of the same 

crab with the carapace intact. During this process, 

annotators carefully adjusted the mask’s position 

and orientation using visible anatomical landmarks 

and reference axes to ensure precise registration 

without altering its shape. This streamlined 

workflow facilitated reliable and reproducible 

generation of ovary ground truth labels for 

subsequent model training and evaluation.  

Given the limited dataset size, model performance 

was evaluated using 10-fold cross-validation. The 

data were randomly divided into ten folds; in each 

iteration, nine folds were used for training and one 

for testing. Reported metrics represent the average 

across all folds. 

Figure 4 presents a comprehensive overview of the 

experimental and analytical pipeline implemented 

in this study, illustrating the integrated workflow 

from sample preparation to data analysis. 

 
Figure 4. Pipeline of ovary detection in mud crabs using multispectral imaging 
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Figure 5. Typical images used in ovary 

annotation and mask transfer: (a) RGB no-

carapace image; (b) RGB image with intact 

carapace; (c) multispectral no-carapace image 

with annotated ovary boundary; (d) annotated 

mask transferred to multispectral image with 

intact carapace 

3. RESULTS AND DISCUSSION  

The performance of the proposed multispectral 

imaging pipeline for non-destructive ovary 

detection in mud crabs was assessed through 

comprehensive quantitative and qualitative 

analyzes. 

To explore the spectral characteristics and 

variability of each tissue type supporting ovary 

detection, Figure 6 shows the mean normalized 

interactance spectra (±1 SD) for carapace and ovary 

regions across all measured wavelengths. The ovary 

consistently displayed lower interactance values 

than the carapace, particularly in longer wavelength 

bands (≥828 nm). This distinct spectral separation 

between tissues confirms the suitability of 

multispectral data for internal organ detection. 

Classification performance for various machine 

learning models, using pixel-wise and patch-wise 

approaches with and without Principal Component 

Analysis (PCA), is summarized in Tables 1 and 2. 

For pixel-wise classification (Table 1), the Random 

Forest classifier achieved the highest performance, 

with an accuracy of 0.7460 and an F1-score of 

0.7455, outperforming Logistic Regression, 

Gradient Boosting, SVM, and k-Nearest Neighbors 

(k-NN). PCA had minimal impact on pixel-wise 

results. 

In contrast, patch-wise classification (Table 2), 

using a 7×7 patch size selected for its balance of 

spatial context and computational efficiency, 

showed significant improvements. Without PCA, k-

NN achieved the highest accuracy and F1-score 

(0.8292), closely followed by Random Forest. With 

PCA, applied to reorient the feature space while 

retaining all components to preserve full spectral 

information and enhance classifier separability, 

Random Forest emerged as the top performer, 

achieving an accuracy of 0.8723 and an F1-score of 

0.8722—the best among all tested configurations.

 

Figure 6. Mean normalized interactance spectra (±σ) for carapace (light-blue, 10% shrunk mask) 

and ovary (light-orange) regions across all wavelengths

Table 1. Pixel-wise Classification Performance (with and without PCA) 

Model 
No PCA With PCA 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Logistic Regression 0.687 0.704 0.684 0.679 0.687 0.704 0.684 0.679 

Random Forest 0.746 0.747 0.746 0.746 0.744 0.744 0.743 0.743 

Gradient Boosting 0.709 0.711 0.708 0.707 0.720 0.722 0.719 0.718 

K-NN (n=9) 0.729 0.729 0.728 0.728 0.695 0.697 0.693 0.693 

SVM 0.684 0.706 0.681 0.673 0.684 0.706 0.681 0.6731  
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Further enhancements were explored using 

convolutional neural networks (CNNs) in a patch-

wise framework. As shown in Tables 3, without 

PCA, the CNN achieved optimal performance at a 

patch size of 15 (accuracy 0.8052, F1-score 0.8048). 

With PCA, the best performance occurred at a patch 

size of 9 (accuracy and F1-score of 0.8401), 

indicating that deep learning, combined with 

appropriate patch sizing and feature transformation, 

delivers competitive results. 

Figure 7 compares ground truth ovary masks 

(yellow) with predictions (red) from Random Forest 

and CNN models (both with PCA) for two 

representative crabs (A1 and A4). Random Forest 

predictions, leveraging the 7×7 patch size, more 

closely aligned with ground truth boundaries 

compared to CNN predictions at a 9×9 patch size, 

reflecting Random Forest’s superior quantitative 

performance. Both patch-wise approaches produced 

smoother, more cohesive predictions than pixel-

wise methods, demonstrating the practical 

effectiveness of the classification pipeline. Notably, 

the CNN models showed weaker performance than 

Random Forest. This is likely due to the limited 

dataset size, as CNNs generally require large 

amounts of data to learn complex spectral–spatial 

features effectively, whereas tree-based models 

such as Random Forest are more robust with smaller 

datasets. With a larger annotated dataset, CNN 

performance may be expected to improve. 

This study introduced multispectral imaging for 

non-destructive ovary region detection in female 

mud crabs under ‘in vivo’ conditions, using a 

custom multispectral imaging system to capture 

spectral characteristics of ovary regions through the 

intact carapace. Patch-wise classification, 

particularly with PCA and Random Forest models, 

outperformed both pixel-wise methods and CNN-

based patch-wise approaches, achieving high 

accuracy and F1-scores by leveraging spatial and 

spectral features. A dual-modality annotation 

strategy, using RGB reference images aligned with 

multispectral data, ensured accurate and 

reproducible ovary labeling. This study showed a 

novel approach by applying CNN-based patch-wise 

classification for ovary detection in mud crabs, with 

PCA enhancing feature separability without 

dimensionality reduction. 

Limitations include a small annotated dataset, which 

may limit model generalizability, necessitating 

larger datasets. The present version of the 

multispectral imaging system, optimized for 

controlled conditions, may face challenges from 

environmental variability or crab morphology in 

real-world settings. Despite these limitations, the 

findings in this study demonstrated the feasibility of 

spectral-based, non-destructive ovary detection, 

laying a foundation for automated systems in 

aquaculture and quality assessment. 

Table 2. Patch-wise Classification Performance (7×7 patch, with and without PCA) 

Model 
No PCA With PCA 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

Logistic Regression 0.709 0.723 0.708 0.703 0.697 0.715 0.695 0.689 

Random Forest 0.790 0.793 0.790 0.790 0.872 0.873 0.872 0.872 

Gradient Boosting 0.724 0.727 0.724 0.723 0.762 0.764 0.761 0.761 

K-NN (n=9) 0.829 0.829 0.829 0.829 0.851 0.852 0.851 0.851 

SVM 0.741 0.748 0.740 0.739 0.790 0.797 0.789 0.788 

Table 3. CNN Patch-wise Performance (by Patch Size, with and without PCA) 

Patch 

Size 

No PCA With PCA 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 

7 0.792 0.794 0.791 0.791 0.829 0.830 0.829 0.829 

9 0.802 0.803 0.802 0.802 0.840 0.840 0.840 0.840 

11 0.803 0.804 0.803 0.803 0.823 0.825 0.823 0.823 

13 0.792 0.793 0.792 0.792 0.816 0.817 0.816 0.816 

15 0.805 0.807 0.805 0.805 0.801 0.802 0.801 0.801 
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Figure 7. Comparison of ground truth ovary masks (yellow) and predicted ovary regions (red) for 

representative two crabs (A1 and A4) using RF (first row) and CNN (second row) models with PCA 

4. CONCLUSION 

This study demonstrated the efficacy of 

multispectral imaging for non-destructive ovary 

detection in female mud crabs (Scylla 

paramamosain) under ‘in vivo’ conditions, utilizing 

a multispectral imaging system to capture spectral 

characteristics of ovary regions through the intact 

carapace. The integration of pixel-wise and patch-

wise classification pipelines, benchmarked across 

traditional machine learning models (Logistic 

Regression, Random Forest, Gradient Boosting, k-

NN, SVM) and CNNs, revealed that patch-wise 

approaches, particularly Random Forest with PCA 

transformation (7×7 patch size), achieved the 

highest performance (accuracy: 0.8723, F1-score: 

0.8722), surpassing pixel-wise methods and CNN-

based patch-wise models (best at 9×9 patch size 

with PCA, accuracy: 0.8401). PCA, applied as a 

feature transformation to enhance separability while 

retaining all components significantly improved 

patch-wise classification outcomes.  

This study is the first to apply CNN-based patch-

wise classification for ovary detection in mud crabs 

under ‘in vivo’ conditions, highlighting the potential 

of deep learning to capture subtle spectral and 

spatial features. These findings provide a robust 

foundation for spectral-based, automated internal 

quality grading of mud crabs, with significant 

potential to revolutionize aquaculture practices. By 

enabling non-destructive assessment of critical 

attributes such as ovarian fullness, this approach 

will offer a more efficient and objective solution for 

quality control in the aquaculture industry.  

Despite these advancements, limitations include the 

small dataset, which may limit model 

generalizability, and the challenges of complex 

internal structures and environmental variability or 

crab morphology, which affect detection 

consistency in real-world settings. These factors 

hinder the scalability of the proposed method. 

Future research should aim to develop larger and 

more diverse datasets to improve model robustness, 

further optimize optical systems for practical 

deployment, and create scalable solutions for 

comprehensive quality grading in real-world 

aquaculture settings.  
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