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Article info. ABSTRACT

Received 14 Jul 2025 Ovarian fullness of female mud crabs (Scylla paramamosain) is key
Revised 18 Aug 2025 determinant of market value but is still assessed subjectively by hand.
Accepted 28 Sep 2025 Spectrometry offers an objective alternative, and our previous studies

under in vitro and semi-in vivo conditions demonstrated the potential of
spectrometric features for discrimination of crab tissues (meat, ovary,

Keywords hepatopancreas, and shell). However, it was still challenging to apply

under in vivo conditions. This study aims to detect the ovary region in live
Automatic mud crab grading, mud crabs while keeping the ‘in vivo’ condition by combining a custom
in vivo condition, multispectral-imaging system and simple ML techniques. A special optical
multispectral imaging, ovary setup and a concise multispectral camera were included in the system

region, spectrometric features — aiming to acquire the transmission image through the intact carapace
practically in the crab-farming fields. The ovary region was predicted
pixel-wise and patch-wise using conventional classifiers (Logistic
Regression, Random Forest, Gradient Boosting, k-NN, and SVM) and
Convolutional Neural Networks (CNN), enhanced by Principal Component
Analysis (PCA) for feature transformation. The patch-wise random forest
model with PCA (7 %7 patches) achieved superior performance, with an
accuracy of 0.872 and an F1-score of 0.872, outperforming other methods.
These findings mark a significant advancement in the application of
multispectral imaging for automated, non-destructive quality assessment
in live aquaculture specimens.

1. INTRODUCTION and internal criteria. For female crabs, ovarian
. fullness is the most critical internal factor

Scylla paramamosain, commonly known as the mud . . . C o
determining economic value, while meat yield is a

crgb, sa Cr}lstacean of significant economic value, key criterion for male crabs (C-AID Consultants,
widely cultivated and harvested across numerous 2016)

regions globally (Keenan et al., 1998; Shelley &
Lovatelli, 2011; Bhuiyan et al., 2021). Within the Assessing internal attributes such as ovarian fullness

supply chain—from farmers to collectors and poses a notable challenge, as external quality traits
exporters, mud crabs are graded and traded based on can be evaluated through visual inspection or
quality assessments that consider both external traits weighing, whereas current methods rely on indirect,
(e.g., body weight, size, and appendage condition) manual techniques. These include palpating the
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carapace for firmness or inspecting the crab’s
carapace under strong light, which are highly
subjective and often yield inconsistent results
among assessors (C-AID Consultants, 2016). This
has driven a growing demand for objective,
reproducible, and non-invasive approaches to
internal quality evaluation in mud crabs.

Numerous studies have advanced our understanding
of the biological, biochemical, and morphological
dynamics of the ovary, hepatopancreas, and muscle
tissues in Scylla paramamosain under varying
environmental and physiological conditions
(Aaqillah-Amr et al., 2018; Wu et al., 2019; Amin-
Safwan et al., 2019; Wu et al., 2020; Han et al.,
2024; Fang et al., 2025; Jiang et al., 2025; Yu et al.,
2025). However, these investigations predominantly
depend on invasive sampling and laboratory-based
biochemical analyses, limiting their applicability in
live settings.

The spectrometric technique is one of the promising
tools for non-destructive internal quality
assessment. There were several attempts to integrate
machine learning (ML) methods with multispectral
and hyperspectral imaging (MSI/HSI) for non-
destructive quality evaluation in various aquatic
products. In fish, shrimp, and other seafood, ML
models—ranging from partial least squares
regression to convolutional neural networks—
combined with MSI/HSI have accurately predicted
freshness, chemical composition, and adulteration
(Moosavi-Nasab et al., 2021; Kong et al., 2022; Li
et al., 2023; Shao et al., 2023; Zhang et al., 2020;
Ismail et al., 2023). For example, Wold et al. (2024)
developed a rapid, non-invasive method using near-
infrared spectroscopy and ML to quantify meat
content in live red king crab legs, achieving high
accuracy (R? = 0.83-0.90, RMSEP = 6.1-6.2%)
depending on the specific trial and validation set.
These advancements underscore the potential of
spectral imaging and ML for internal quality
assessment in live crustaceans. Despite these
progressions, robust, real-time solutions for non-
destructive ovary detection in live Scylla
paramamosain remain elusive due to the crab’s
complex internal structure, crab morphology, and
lack of annotated datasets or spectral characteristics.

Towards automatic internal quality grading of mud
crabs, our research group has been focused on a
practical technique of ML-assisted spectrometry by
strategically iterative prototyping of various
spectrometric systems for in-vitro, semi-in vivo and
in vivo conditions (Tran et al., 2024). Initial in-vitro
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studies have shown potential in differentiating
internal  components  (e.g., meat, ovary,
hepatopancreas, and shell) in mud crabs, with
principal component analysis (PCA) and machine
learning to yield encouraging classification results
(Tran et al., 2024; Vo et al., 2025). However, the in-
vitro studies required destructive sampling or were
impractical for large-scale, in vivo applications,
remaining a critical gap in scalable and efficient
internal organ detection.

This study aims to detect ovary region in live mud
crabs while keeping ‘in vivo’ condition by
combining a custom multispectral-imaging system
and simple ML techniques. The system includes a
special optical setup and a concise multispectral
camera to acquire the transmission image through
the intact carapace practically in the crab-farming
fields. The ML techniques to be examined include
patch-wise classification with Random Forest and
CNN models.

The remainder of this paper is as follows: Section 2
describes the materials and methods, including
sample preparation, the design of the custom
multispectral imaging system, data acquisition, and
preprocessing steps. Section 3 presents the results
and discussion, evaluating the feasibility of the
proposed ovary region detection framework.
Finally, section 4 concludes with a summary of key
findings and proposes directions for future research.

2. METHOD
2.1. Sample preparation

Fifty female mud crabs (Scylla paramamosain) were
sourced from commercial aquaculture ponds in Bac
Lieu province, Mekong Delta, Viet Nam during
June—July 2025. Experienced farmers selected the
crabs to ensure a high-quality, representative
sample, using visual assessment of external features
to capture a diverse range of maturity stages. After
collection, crabs were promptly transported to the
laboratory under controlled conditions to maintain
stable conditions and minimize physiological
changes. Upon arrival, each crab was individually
weighed and measured to record key physical
characteristics, including body weight, carapace
width, and carapace length (Figure 1a). The crabs
exhibited a mean carapace width of 106.6 mm
(range: 96.0-115.0 mm), a mean carapace length of
79.0 mm (range: 70.0-85.0 mm), and a mean body
weight of 229.2 g (range: 160.0-285.0).

Each crab was first imaged with the intact carapace
under ‘in vivo’ conditions. Subsequently, the crabs
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were euthanized, and their carapaces were carefully conducted under in vivo conditions. Thus, the
removed to expose internal organs, particularly the imaging methodology itself remains entirely non-
ovary (Figure 1b). This step enabled precise destructive.

identification and annotation of the ovary region,

serving as the ground truth for model development. Additionally, the ovaries were extracted and

weighed, providing quantitative data for further

It should be noted that this destructive step was analysis and validation. All sample preparation
performed solely to obtain ground-truth annotations steps, including physical measurements, ovary
of the ovary region. This procedure was necessary extraction, and imaging, followed a standardized
only during dataset preparation and annotation, workflow to ensure reproducibility and minimize
while all multispectral imaging of intact crabs was variability across the dataset.

(@) (®)
Figure 1. (a) Physical measurement of carapace and body weight; (b) Carapace removal for ovary
annotation

2.2. A custom multispectral imaging system mm X 35 mm) and a cylindrical plano-convex lens
(focal length: 23.9 mm; size: 200 mm x 31 mm).
This setup produced a collimated, line-shaped beam
(approximately 200 mm long and 10 mm wide),
selectively illuminating the target region of the crab
to minimize stray light and enhance signal clarity.
The distance between the cylindrical lenses of the
two lines was set to approximately 190 mm for
optimal alignment and light transmission.

A custom multispectral imaging system was
developed for live mud crabs, optimized to capture
internal organ characteristics, particularly the ovary,
through the carapace (Figure 2). The system
comprises three main components: (1) halogen
bulbs as the illumination source, (2) collimating
optics, and (3) an imaging unit, designed for high-
quality, non-invasive imaging.

To ensure consistent positioning and registration of
the crab during imaging, a custom sample holder
was used to maintain the crab in a fixed orientation,
enabling repeatable imaging with and without the
carapace. A shield plate with an oval cutout was
placed between the camera and sample to allow only
the carapace to be illuminated and -captured.
Additional light shields and a dark slide eliminated
ambient light, ensuring a controlled imaging
environment.

The illumination source consists of two parallel
lines of halogen bulbs delivering uniform,
collimated light through the crab sample. The first
line (L1) comprised three halogen bulbs arranged as
50 W-100 W-50 W (12VDC), while the second line
(L2) used a single 100 W (12VDC) bulb positioned
opposite L1. This arrangement illuminated the crab
from both sides, with L1 targeting the crab’s mouth
and L2 illuminating the rear, ensuring full carapace
coverage. Each line was equipped with optical
components: light from the bulbs passed through
two Fresnel lens bars (focal length: 12 mm; size: 200
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A commercial multispectral camera (MONARCH 1T
EVK UNS54000) was mounted vertically above the
sample, equipped with an f/4.7 aperture lens
(effective focal length: 4.98 mm). It provided a field
of view of 31.5° (horizontal) and 25.5° (vertical),
capturing images at 1280 x 1024 pixels. Spectral
imaging spanned ten bands centered at 713, 736,
759, 782, 805, 828, 851, 874, 897, and 920 nm. The
lens-to-sample distance was fixed at 300.0 mm for
consistent imaging geometry.

Multispectral images were acquired at four exposure
times (167, 200, 250, and 500 ms) to account for
varying tissue density and light penetration.
Reference RGB images, captured using an § MP
CMOS camera, shared identical fields of view to
facilitate downstream analysis and mask transfer.
2.3. Data acquisition

Multispectral and reference images were acquired
for each crab following a standardized protocol with
fixed camera positioning and consistent lighting to
ensure data quality. Initially, the live crab was
positioned in the optical setup to maintain uniform
orientation and field of view. Multispectral images
of the crab with the intact carapace were acquired at
four exposure times (167, 200, 250, and 500 ms) to
account for varying tissue density and light
transmission properties. The camera position and
imaging geometry remained constant across all
samples.

After initial imaging, the crab was euthanized, and
the carapace was precisely removed to expose
internal tissues, particularly the ovary. The crab,
now without the carapace, was repositioned in the
same setup, and a second set of multispectral images
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Figure 2. Multispectral imaging setup: (a) schematic of the optical setup; (b) practical implementation

was captured using identical parameters and fields
of view. Concurrently, an RGB camera captured
reference images with and without the carapace to
aid annotators in delineating the ovary region in
multispectral images.

To enable spectral normalization and account for
light source variations, a reference spectrum was
obtained for each imaging batch using a 45°
stainless steel mirror, chosen for its uniform
reflectance properties, under the same illumination
conditions as the crab samples.

2.4. Data preprocessing

Carapace segmentation was done using Otsu’s
thresholding method to create an initial binary mask
for each carapace. It is noted that the pixels near the
carapace edge are inevitably saturated even under a
proper exposure for the carapace inside because of
their significant thickness decreases. In order to
relieve the risk of those saturated pixels
compromising the spectrometric accuracy, the
carapace mask was reduced by 10% prior to further
analysis. This shrinkage rate was determined based
on data showing its effectiveness in minimizing
edge saturation while retaining sufficient data
coverage. Specifically, as shrinkage increased from
0% to 30%, the mean intensity and variability of
normalized spectral values at 713 nm decreased,
with values dropping from a mean of 0.41 at 0% to
0.18 at 30%. The rate of reduction stabilized beyond
10% (mean: 0.2992, 25th percentile: 0.0943, 75th
percentile: 0.3558), indicating that further shrinkage
yielded diminishing returns. As shown in Figure 3,
this 10% reduction effectively excluded saturated
edge pixels while preserving data integrity.
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Figure 3. (a) An example image of 712 nm band with carapace region contours and (b) box plot of
normalized pixel values inside the carapace region, under different shrinkage rates

Spectral data were then screened to remove images
with excessive pixel saturation. Pixel-level
saturation was assessed for each spectral band by
calculating the maximum intensity, I, and the
saturation threshold T as:

T = 0.991,,4, (1)

Pixels with intensity I(x,y) > T were classified
saturated, and the fraction of saturated pixels, fsq;,
was computed as:

fsat = 2

Where N, and N;,; denote the number of
saturated pixels and the total pixels within the
carapace, respectively. Images with f;,; > 10% in
any band were excluded as outliers.

Nsat
Ntot

The retained spectral data were normalized band-
wise using the reference spectrum from each
imaging batch, as described in Section 2.3,
according to:

A _ Cxyb)
C(x;y, b) - R(b) (3)
where C(X,y,b) is the raw intensity at pixel (%,y)
in band b, R(b) is the reference-spectra value for
band b, and € (x,y,b) is the normalized interactance

spectrum.

After screening, the dataset was reduced to 31
multispectral images, each with 10 spectral bands,
totaling nearly 9 million pixels within the
segmented carapace regions. Two classification
strategies—pixel-wise  and  patch-wise—were
employed, benchmarked using Logistic Regression,
Random Forest, Gradient Boosting, k-Nearest
Neighbors (k-NN), Support Vector Machine
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(SVM), and Convolutional Neural Network (CNN)
models.

Model hyperparameters were tuned through grid
search combined with cross-validation within the
training folds. For example, the number of trees and
maximum depth in Random Forest, the learning rate
in Gradient Boosting, and the number of neighbors
in k-NN were systematically optimized. SVM
hyperparameters (kernel type and regularization
parameter C) were selected based on validation
performance. For CNNs, hyperparameters such as
patch size, learning rate, and batch size were
empirically adjusted. The final reported results
correspond to the best-performing configurations.

The class distribution was moderately imbalanced,
with ovary pixels comprising 43% and non-ovary
pixels 57% of the dataset.

For patch-wise classification, each carapace was
divided into non-overlapping square patches of side
length p with p X p pixels across all b spectral
bands flattened into a single feature vector of length
p? X b. Non-overlapping patches were used to
reduce computational complexity while preserving
spatial context. Patches were labeled positive (1) if
more than half their pixels overlapped with the
ovary mask, and negative (0) otherwise. Feature
vectors and labels were compiled into a data matrix
X € RVx®*xb), containing (N) flattened patch
samples, paired with a binary label vector y €
{0,1}".

Ovary regions were annotated as described in
Section 2.3, using a two-step process for accurate
and reproducible ground truth labeling (Figure 5).
Initially, manual annotation was performed on "no-
carapace" images of crabs after carapace removal,
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where the ovary and other internal tissues were
clearly visible. However, as multispectral images
extend beyond the visible spectrum, directly
annotating the ovary region in these images poses
challenges. To address this, an RGB reference
image of each crab, captured with the same field of
view, was provided to guide annotators in accurately
delineating ovary boundaries.

In the second step, the manually annotated ovary
mask was spatially aligned and transferred to the
corresponding multispectral images of the same
crab with the carapace intact. During this process,
annotators carefully adjusted the mask’s position
and orientation using visible anatomical landmarks
and reference axes to ensure precise registration

Vol. 17, Special issue on ISDS (2025): 47-56

without altering its shape. This streamlined
workflow facilitated reliable and reproducible
generation of ovary ground truth labels for
subsequent model training and evaluation.

Given the limited dataset size, model performance
was evaluated using 10-fold cross-validation. The
data were randomly divided into ten folds; in each
iteration, nine folds were used for training and one
for testing. Reported metrics represent the average
across all folds.

Figure 4 presents a comprehensive overview of the
experimental and analytical pipeline implemented
in this study, illustrating the integrated workflow
from sample preparation to data analysis.

Sample Collection
(50 female mud crabs)

Physical Measurement }

size, weight, ovary weight)

Carapace Removal

Multispectral Imaging
(Carapace ON)

[RGB Imaging}

Multispectral Imaging
(Carapace OFF)

(for reference)

Ovary Annotation
(manual, on carapace-OFF image
assisted by RGB)

Annulation'/[’rucess / \‘\\
Reference Spectrum
(acquired per session)

Mask Alignment Carapace Segmentation
(aligned to carapace-ON image) | i (Otsu's method + 10% shrink)

Ovary Mask Generation
(per crab)

N <

Spectral Extraction
(all carapace pixels)

[ Saturation Check
(

f sat>10% = remove crab

ASpectral Normalization
Cx,y,b) = C(x,y,b) / R(b)

Pixel-wise Dataset
(label by mask overlap)

Patch-wise Dataset
(patch sizes 5,7,9,11,13,15)

1 Machine L%aming

~

Pixel-wise ML Training
(LR, RF, GBDT, kNN, SVM)
+ PCA variant

Patch-wise ML Training
(LR, RF, GBDT, kNN, SVM)
+ PCA variant

Patch-wise CNN Training
(multiple patch sizes)
+ PCA variant

T~

N

Validation/Testing
Metrics: Accuracy, Precision, etc.

Figure 4. Pipeline of ovary detection in mud crabs using multispectral imaging
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Figure S. Typical images used in ovary
annotation and mask transfer: (a) RGB no-
carapace image; (b) RGB image with intact

carapace; (¢) multispectral no-carapace image

with annotated ovary boundary; (d) annotated

mask transferred to multispectral image with
intact carapace

3. RESULTS AND DISCUSSION

The performance of the proposed multispectral
imaging pipeline for non-destructive ovary
detection in mud crabs was assessed through

comprehensive  quantitative and  qualitative
analyzes.
To explore the spectral characteristics and

variability of each tissue type supporting ovary
detection, Figure 6 shows the mean normalized
interactance spectra (=1 SD) for carapace and ovary

Vol. 17, Special issue on ISDS (2025): 47-56

regions across all measured wavelengths. The ovary
consistently displayed lower interactance values
than the carapace, particularly in longer wavelength
bands (=828 nm). This distinct spectral separation
between tissues confirms the suitability of
multispectral data for internal organ detection.

Classification performance for various machine
learning models, using pixel-wise and patch-wise
approaches with and without Principal Component
Analysis (PCA), is summarized in Tables | and 2.
For pixel-wise classification (Table 1), the Random
Forest classifier achieved the highest performance,
with an accuracy of 0.7460 and an Fl-score of
0.7455, outperforming Logistic Regression,
Gradient Boosting, SVM, and k-Nearest Neighbors
(k-NN). PCA had minimal impact on pixel-wise
results.

In contrast, patch-wise classification (Table 2),
using a 7x7 patch size selected for its balance of
spatial context and computational efficiency,
showed significant improvements. Without PCA, k-
NN achieved the highest accuracy and F1-score
(0.8292), closely followed by Random Forest. With
PCA, applied to reorient the feature space while
retaining all components to preserve full spectral
information and enhance classifier separability,
Random Forest emerged as the top performer,
achieving an accuracy of 0.8723 and an F1-score of
0.8722—the best among all tested configurations.

Mean Spectra + Std: Carapace vs Ovary

—m— Carapace Mean
Carapace *1 std
Ovary Mean
Ovary +1std

=
n

=
°

Normalized Interactance

e
n

B & 4

] &
wavelength (nm)

8 g & &

Figure 6. Mean normalized interactance spectra (+ o) for carapace (light-blue, 10% shrunk mask)
and ovary (light-orange) regions across all wavelengths

Table 1. Pixel-wise Classification Performance (with and without PCA)

Model No PCA With PCA

Accuracy Precision Recall Fi-Score Accuracy Precision  Recall Fi-Score
Logistic Regression 0.687 0.704 0.684 0.679 0.687 0.704 0.684 0.679
Random Forest 0.746 0.747 0.746 0.746 0.744 0.744 0.743 0.743
Gradient Boosting 0.709 0.711 0.708 0.707 0.720 0.722 0.719 0.718
K-NN (n=9) 0.729 0.729 0.728 0.728 0.695 0.697 0.693 0.693
SVM 0.684 0.706  0.681 0.673 0.684 0.706 0.681 0.6731
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Further enhancements were explored using
convolutional neural networks (CNNs) in a patch-
wise framework. As shown in Tables 3, without
PCA, the CNN achieved optimal performance at a
patch size of 15 (accuracy 0.8052, F1-score 0.8048).
With PCA, the best performance occurred at a patch
size of 9 (accuracy and Fl-score of 0.8401),
indicating that deep learning, combined with
appropriate patch sizing and feature transformation,
delivers competitive results.

Figure 7 compares ground truth ovary masks
(yellow) with predictions (red) from Random Forest
and CNN models (both with PCA) for two
representative crabs (Al and A4). Random Forest
predictions, leveraging the 7x7 patch size, more
closely aligned with ground truth boundaries
compared to CNN predictions at a 9x9 patch size,
reflecting Random Forest’s superior quantitative
performance. Both patch-wise approaches produced
smoother, more cohesive predictions than pixel-
wise methods, demonstrating the practical
effectiveness of the classification pipeline. Notably,
the CNN models showed weaker performance than
Random Forest. This is likely due to the limited
dataset size, as CNNs generally require large
amounts of data to learn complex spectral—spatial
features effectively, whereas tree-based models
such as Random Forest are more robust with smaller
datasets. With a larger annotated dataset, CNN
performance may be expected to improve.

Vol. 17, Special issue on ISDS (2025): 47-56

This study introduced multispectral imaging for
non-destructive ovary region detection in female
mud crabs under ‘in vivo’ conditions, using a
custom multispectral imaging system to capture
spectral characteristics of ovary regions through the
intact  carapace.  Patch-wise  classification,
particularly with PCA and Random Forest models,
outperformed both pixel-wise methods and CNN-
based patch-wise approaches, achieving high
accuracy and Fl-scores by leveraging spatial and
spectral features. A dual-modality annotation
strategy, using RGB reference images aligned with
multispectral  data, ensured accurate and
reproducible ovary labeling. This study showed a
novel approach by applying CNN-based patch-wise
classification for ovary detection in mud crabs, with
PCA enhancing feature separability without
dimensionality reduction.

Limitations include a small annotated dataset, which
may limit model generalizability, necessitating
larger datasets. The present version of the
multispectral imaging system, optimized for
controlled conditions, may face challenges from
environmental variability or crab morphology in
real-world settings. Despite these limitations, the
findings in this study demonstrated the feasibility of
spectral-based, non-destructive ovary detection,
laying a foundation for automated systems in
aquaculture and quality assessment.

Table 2. Patch-wise Classification Performance (7x7 patch, with and without PCA)

Model No PCA With PCA
Accuracy Precision Recall Fi-Score Accuracy Precision Recall Fi-Score
Logistic Regression 0.709 0.723  0.708 0.703 0.697 0.715 0.695 0.689
Random Forest 0.790 0.793  0.790 0.790 0.872 0.873 0.872 0.872
Gradient Boosting 0.724 0.727 0.724 0.723 0.762 0.764 0.761 0.761
K-NN (n=9) 0.829 0.829 0.829 0.829 0.851 0.852 0.851 0.851
SVM 0.741 0.748  0.740 0.739 0.790 0.797 0.789 0.788
Table 3. CNN Patch-wise Performance (by Patch Size, with and without PCA)
Patch No PCA With PCA
Size Accuracy Precision Recall Fi-Score Accuracy Precision Recall Fi-Score
7 0.792 0.794 0.791 0.791 0.829 0.830 0.829 0.829
9 0.802 0.803 0.802 0.802 0.840 0.840 0.840 0.840
11 0.803 0.804 0.803 0.803 0.823 0.825 0.823 0.823
13 0.792 0.793 0.792 0.792 0.816 0.817 0.816 0.816
15 0.805 0.807 0.805 0.805 0.801 0.802 0.801 0.801
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Figure 7. Comparison of ground truth ovary masks (yellow) and predicted ovary regions (red) for
representative two crabs (Al and A4) using RF (first row) and CNN (second row) models with PCA

4. CONCLUSION

This study demonstrated the efficacy of
multispectral imaging for non-destructive ovary
detection in female mud crabs (Scylla
paramamosain) under ‘in vivo’ conditions, utilizing
a multispectral imaging system to capture spectral
characteristics of ovary regions through the intact
carapace. The integration of pixel-wise and patch-
wise classification pipelines, benchmarked across
traditional machine learning models (Logistic
Regression, Random Forest, Gradient Boosting, k-
NN, SVM) and CNNs, revealed that patch-wise
approaches, particularly Random Forest with PCA
transformation (7x7 patch size), achieved the
highest performance (accuracy: 0.8723, Fl-score:
0.8722), surpassing pixel-wise methods and CNN-
based patch-wise models (best at 9x9 patch size
with PCA, accuracy: 0.8401). PCA, applied as a
feature transformation to enhance separability while
retaining all components significantly improved
patch-wise classification outcomes.

This study is the first to apply CNN-based patch-
wise classification for ovary detection in mud crabs
under ‘in vivo’ conditions, highlighting the potential
of deep learning to capture subtle spectral and
spatial features. These findings provide a robust
foundation for spectral-based, automated internal
quality grading of mud crabs, with significant
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