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Article info. ABSTRACT

Received 11 Jul 2025 This paper proposes a hybrid deep learning model for lung abnormalities
Revised 8 Aug 2025 detection using X-ray images. To improve the performance and accuracy
Accepted I Oct 2025 of the model, we use the transfer learning technique with two pre-trained

models VGG16 and DenseNet121. Moreover, to extract deeply the feature

of lung abnormal, frontal and lateral views of X-ray images have been

trained using ensemble technique. The features extracted by these two

models will be combined and passed to the classification layer. The

Chest X-ray, deep learning, experimental results on three datasets demonstrate the effectiveness of the

lung abnormality proposed model, which outperforms the individual performance of the two
base models, achieving a higher accuracy rate of 89%. Furthermore, in
comparative assessments against several alternative models and datasets
from previous research, our method demonstrates its efficiency, boasting
an impressive AUC value of 0.95. These results underscore the promise of
our approach in advancing the accuracy and effectiveness of lung
abnormality detection in chest X-ray images.

Keywords

1. INTRODUCTION consolidation, atelectasis, bronchial wall
thickening, etc., diagnostic methods are based on
deep learning models have been proposed to help
detect lung diseases early with high accuracy to
reduce the overload of doctors. In recent years, deep
learning has emerged as a powerful tool for medical
image analysis, offering promising solutions for
automated abnormality detection. These models can
automatically learn complex patterns from large
datasets, potentially overcoming the limitations of
traditional methods. By leveraging the ability of
deep learning to extract subtle features and identify
nuanced patterns, we can potentially achieve more
accurate and consistent detection of lung
abnormalities in X-ray images.

Early and accurate detection of lung abnormalities
in chest X-rays is paramount for timely diagnosis
and effective patient management. Timely
intervention can significantly improve treatment
outcomes and patient prognoses. However,
traditional methods often rely on visual assessment
by radiologists, making them susceptible to inter-
observer variability and human error. Additionally,
manual methods can be time-consuming and
subjective, impacting diagnostic efficiency and
potentially delaying essential treatment. Although
some lung abnormalities can be seen visually on X-
ray images, such as lung opacities, lung
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A novel semi-supervised learning algorithm for
classifying lung abnormalities in X-ray images
based on a holistic philosophy (loannis et al., 2019).
A multi-label DCNN classification model, using
fine-tuning pre-trained networks (e.g., AlexNet,
GooglLeNet, VGG16, and ResNet50) by removing
fully connected layers and the final classification
layer while adding a transition layer, pooling layer,
prediction layer, and activation function to detect
and segment the lung disease’s location (Xiaosong
et al., 2017). Several deep learning models, ResNet
and ReCoNet, a lightweight model with fewer
parameters than modern models but achieved a
remarkable 98% accuracy for detecting COVID-19
patient abnormalities in chest X-ray images (Sabbir
et al., 2020; Farooq & Hafeez, 2020). A generative
CheXNet is a convolutional neural network with
121 layers trained on the ChestX-rayl4 dataset
containing over 100,000 frontal chest X-ray images
with 14 disease labels, which has proposed for
detecting pneumonia from chest X-ray images
achieved higher accuracy than specialized
radiologists (Pranav et al., 2017). Various mod-els
DenseNetl21, InceptionResNetV2, ResNet152V2
and MobiNet have been employed to classify
various lung disease signs in X-ray images (Rahman
et al., 2020; Mundher et al., 2021; Vingroup, 2020).

Aiming to overcome the limitations of single-model
approaches, this paper proposes a hybrid deep
learning model that cooperates capabilities of
different models to enhance accuracy in identifying
lung abnormalities on chest X-ray images. Our
proposed hybrid model is introduced in Section 2.
Experimental results are depicted in Section 3, while
Section 4 is the conclusion.

2. MATERIALS AND METHOD

As stated in Section 1, we aim to integrate
capabilities of different models, especially VGG16
and DenseNetl21 to improve lung disease
classification accuracy. While VGG possesses
feature extraction ability, DenseNet has dense
connectivity. Combining them potentially improves
accuracy in identifying lung abnormalities on chest
X-ray images.

2.1. VGGI16

VGGL16, invented in 2014, contributed significantly
to improving the accuracy of previous models like
AlexNet, LeNet, and others (Karen & Andrew,
2014). In terms of architecture, VGG16 introduced
several enhancements, including 13 two-
dimensional convolutional layers, convolutional
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blocks, stacking multiple CNN layers and max-
pooling layers instead of interleaving just one CNN
layer and max-pooling layer, and using ReLU after
each CONV layer. VGG16 exclusively employed
small 3x3 filters to reduce the number of model
parameters, leading to better computational
efficiency.

In this paper, we keep the convolutional blocks
unchanged and modify the final classification layer,
using the convolutional blocks as a feature
extraction tool for the model. The features are then
classified with the desired output results. The
features extracted from the images are passed
through a new fully connected layer that we built,
consisting of a Flatten layer, a Dense layer with 128
outputs, and finally, a sigmoid classifier. Figure 1
provides a visualization of the VGG16 model used
in the paper.
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Figure 1. VGG16 model structure
(Source: Karen & Andrew, 2014)
2.2. DenseNet121

DenseNet is a convolutional neural network (CNN)
architecture for image recognition tasks, first
introduced in 2017 (Gao et al., 2017). This
architecture stands out in optimizing the flow of
information from previous layers to subsequent
layers. Instead of connecting only neighboring
layers, DenseNet connects each layer to all the
subsequent layers. This enhances information flow
between layers and encourages feature reuse. In this
paper, we improve and utilize the DenseNetl121
model for training and detecting lung abnormalities.
The convolutional layers of DenseNetl121 are used
to extract feature maps with a size of 7x7x1024.
Average pooling is applied to the feature map to
create a 1024-dimensional vector, and then the fully
connected layer is modified to have 512 hidden
nodes with a ReLU activation function to reduce the
number of parameters and computational
complexity in the model. The final layer uses a
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sigmoid function to compute the output probability
score in a single node. The optimization function
employs "Adam", and the loss function is "binary
cross-entropy" with a learning rate of le-5. The
number of hidden nodes in the fully connected layer
is selected after experimentation with different
values. Figure 2 illustrates the structure of Dense-
Net121 in the paper.
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Figure 2. DenseNet model structure

(Gao et al., 2017)
2.3. Proposed method

By employing the strengths of the VGG and
DenseNet architectures, we propose a novel hybrid
deep learning approach for detecting lung
abnormalities in chest X-ray images by combining
the VGG16 and DenseNet architectures, each
generating distinct features prior to the fully
connected layers (Figure 3). VGG16, with its deep
convolutional layers, captures essential low- and
mid-level features from the images, while DenseNet
enhances feature propagation and re-use through its
densely connected network structure, enabling the
model to learn more intricate and detailed
representations. By concatenating the feature maps
from both networks before passing them through the
fully connected layers, we leverage the
complementary strengths of both models, allowing
for a more robust and comprehensive feature
representation.

N

Figure 3. Proposed model structure
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The feature map after passing through the VGG16
model will be flattened to become a vector with a
size of 25088, while the DenseNet feature vector,
after passing through the 2D average pooling layer
for feature extraction, will be of size 1024. These
vectors will be concatenated after passing through
the merging layer of the two models, resulting in a
new vector of size 26112. The fully connected layer
has 128 hidden nodes with a ReLU activation
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function. Finally, a sigmoid layer is used. The
optimization function "Adam" and the loss function
"binary cross-entropy" are applied with a learning
rate of le-5. This hybrid architecture aims to
improve the accuracy and sensitivity of abnormality
detection, capturing both broad patterns and subtle
abnormalities in the lung region that may be missed
by a single model.

3. RESULTS AND DISCUSSION
3.1. Dataset

In this paper, we used the NIH, CheXpert and
VinBigData datasets. The NIH dataset includes
112,120 X-ray images with disease labels from
30,805 different patients. To generate these labels,
the authors used natural language processing to
extract classification information from relevant
medical reports. These labels are expected to
achieve an accuracy of over 90% and are suitable for
weakly supervised learning. CheXpert included X-
ray images from 65240 patients. For CheXpert
dataset (Figure 4), we employed 24000 images for
training and 4000 images for testing. Furthermore,
our focus was primarily on the Effusion disease
category, the largest number of images within the
dataset. Figure 4 illustrates the samples from this
dataset. The VinBigData dataset consists of 15,000
chest X-ray images collected and labeled in
Vietnam, then evaluated by comparing with doctors'
readings on a test dataset of 3,000 additional images.
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Figure 4. Example images from CheXpert
dataset

3.2. Results
NIH dataset
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Our proposed model has been evaluated against 2
individual models VGG16, DenseNetl2l on
different lung diseases such as atelectasis and
infiltrating. The comparison results on Atelectasis
classification are shown in Table 1.

Table 1. Models comparison on NIH dataset

Model Accuracy Loss AUC
VGG16 74.47%  0.5648  0.8277
DenseNet121 75.20%  0.5191  0.8375
Our model 76.33%  0.5047  0.8522
Table 2. AUC comparision
Xiaosong Liet Pranav
Pathology etal., al., et al., Proposed
2017 2017 2017
Atelectasis 0.716 0.722  0.8094 0.8522
Infiltration 0.609 0.695  0.7345 0.8185

The highest accuracy was achieved by combining
VGG16 and DenseNet121, with this result obtained
after just 2 epochs, whereas VGG16 required 3
epochs and DenseNetl121 required 4 epochs. This
can be attributed to the complementary strengths of
the two models: VGG16 excels in image
classification tasks, while DenseNet121 effectively
handles large datasets and reduces overfitting.
Additionally, the ensemble model outperformed
both VGG16 and DenseNet121 in terms of accuracy
and AUC score for detecting infiltration. Our
proposed model is also compared to 3 well-known
models by authors (Xiaosong et al., 2017; Li et al.,
2017; Pranav et al., 2017). Results in Table 3
indicate that our model is much better than other
works in Atelectasis as well as Infiltration
classification.

CheXpert database

As the CheXpert composes of frontal and lateral X-
ray images of patients therefore we experiment the
ability of VGG16 and DenseNet121 in classifying
Pleural effusion using just frontal or lateral X-ray
images. The Pleural effusion classification
accuracies are given in Table 3.

Table 3 indicates that DenseNetl21 manifests
efficiency a little bit higher than that of VGG14 in
both views. Therefore, we have decided to use
DenseNet121 for our ensemble model as shown in
Figure 5.
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Table 3. Pleural effusion classification accuracies

Pathology Frontal view Lateral view
VGGl6 0.8738 0.8896
DenseNet121 0.8755 0.8950

PATIENT
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FULLY CONNECTED
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DENSENET121

LATERAL

Figure 5. Ensemble model for CheXpert X-ray
images

Table 4. Ensemble model vs Single view model

No. of patients Model Accuracy
E bl 0.89

20 ol 03

E bl 0.882

530 F:jzzl ) 0.809

E bl 0.855

The number of nodes in each fully connected layer
is set as 512. Results shown in Table 4 prove that
the ensemble model archives higher performance
that single view model no matter how patients may
involve in the experiment.

We compared our model to Jeremy Irvin's model for
detecting pleural effusion. Jeremy Irvin’s model is a
modified version of DenseNetl21 architecture.
Table 5 presents a comparison of the AUC scores
between our model and Jeremy Irvin's model.
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Table 5. Proposed model and Jeremy Irvin’s
model comparison

Jeremy et al. Jeremy et al.

Pathology (2019) (U- (2019) (U- Proposed
Ignore) Zeros)

Pleural 0.928 0931  0.9531

effusion

According to Table 5, the ROC score of the
proposed model is higher than Jeremy Irvin's model.
This result could be attributed to differences in the
construction methods of the two models. There are
several key differences between the two methods:
Jeremy Irvin's method used two types of images
(frontal and lateral views) for training and testing,
whereas we trained on frontal view images only. In
(Jeremy et al., 2019), data labels were divided into
"disease" and "the rest," whereas we divided them
into two distinct labels: "Normal" and a "Disease"
label. These two labels can have significant
differences in pathological features, and there would
be no overlap between images with these labels. The
ratio of the number of training and testing images
was different. We used a 6:1 ratio for training and
testing, while (Jeremy et al., 2019) used a 7:1 ratio.

For the VinBigData dataset, we integrate it with the
CheXpert dataset for training and evaluation. The
data from this dataset indicates that a single image
may have multiple disease labels, potentially
causing overlaps during training. However, this also
increases the number of training images, which can
help improve the model's accuracy. We propose
three scenarios for evaluating our model. In all three
scenarios, the disease labels will be No Disease and
Effusion, ensuring alignment with the objectives of
the CheXpert dataset.

Scenario 1: train on the CheXpert dataset and test on
the VinBigData dataset. In this scenario, the
CheXpert dataset is used for training at a 6:1 ratio,
comprising 30,000 training images and 5,000 testing
images, and ensuring an equal number of images for
both labels, No Disease and Effusion, in each set.
For model training, the proposed ensemble model
has been applied to the NIH dataset (NIH dataset,
2020)), where the integrated layers of VGG16 and
DenseNet121 extract features independently. When
combined in the classification layer, this approach
achieves higher accuracy with fewer epochs. The
feature map from VGG16 is flattened into a 25,088-
dimensional vector, while DenseNetl21, after
passing through a 2D average pooling layer to
extract key features, produces a 1,024-dimensional
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vector. These vectors are merged after passing
through the ensemble layer of both models, resulting
in a 26,112-dimensional vector. The fully connected
layer consists of 128 hidden units with a ReLU
activation function, followed by a sigmoid layer to
compute probability scores. The model is optimized
using the "Adam" optimizer and the "binary cross-
entropy" loss function, with a learning rate of le-5.
The performance of the model is shown in Figure 5.

Figure 6 shows that the model achieves the highest
accuracy of 0.8738 after 2 epochs. After training the
model, we tested it on 100, 200, and 500 images
from the VinBigData dataset, achieving the results
shown in Table 6.

model accuracy
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Figure 6. Accuracy of scenario 1

Table 6. Testing accuracy on the VinBigData

dataset

Image number Normal Effusion
100 0.95 0.56
200 0.95 0.61
500 0.938 0.572

When comparing the accuracy of our model with the
frontal and lateral view models trained on the
CheXpert dataset, we found that it did not
demonstrate a significant improvement over the
other two models, both of which were trained using
DenseNet121 architecture. In fact, its accuracy was
lower than that of the lateral view model. This lower
accuracy may be due to our approach of training the
model using images from both views combined,
rather than separately, as was done for the lateral
view model. For this reason, in the previous section,
we did not use our proposed model for training on
the CheXpert dataset. When evaluating the model
on the VinBigData dataset, we observed that
predictions for the No Disease label were
significantly more accurate than those for the
Effusion label. This can be attributed to the fact that
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each image in the DICOM dataset may have
multiple disease labels. As these pathological
conditions often exhibit similar features on X-ray
images, distinguishing between them is challenging.
Furthermore, employing a single-output
classification approach may have further
contributed to the reduced accuracy of the test
results.

Scenario 2: Train using the VinBigData dataset and
test on the CheXpert dataset. In contrast with the
first scenario, this scenario uses the VinBigData
dataset for training while keeping the model
parameters, architecture, and labels identical to
those in the first scenario. The ratio of training to
validation images remains 6:1, with 1,680 training
images and 280 validation images. Once the model
weights are obtained, the evaluation will be
performed using images from the CheXpert dataset.
The performance of the model is shown in Figure 7.
The maximum accuracy is 0.9393 after the 16
epochs.
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Figure 7. Accuracy of scenario 2

Table 7. Testing accuracy on the CheXpert

dataset

Image number Normal Effusion
100 47% 90%
200 45.5% 86%
500 46.8% 88%

Similar to scenario one, we tested it on 100, 200, and
500 images from the CheXpert dataset, achieving
the results shown in Table 7. As shown in Table 7,
after training the model and evaluating it on the
CheXpert dataset, contrary to the first scenario, the
Effusion label produced significantly better results
than the normal label.

Scenario 3: Combine both datasets and use the
merged data for both training and testing. In this
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scenario, we will combine images from both
datasets to create a new, balanced dataset, ensuring
an equal number of images for each label from both
datasets. The training set will consist of 3,360
images, with 1,680 images from CheXpert and
1,680 from VinBigData, while the testing set will
follow the same approach with 560 images. Each
label is evenly distributed across both the training
and testing sets. After splitting the data, we will
retain 10% of the remaining Effusion-labeled
images for post-training evaluation, maintaining a
1:1 ratio with No Disease images from the CheXpert
dataset. The model parameters and architecture will
remain unchanged from the previous two scenarios.
The performance of the model is shown in Figure 8.
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Figure 8. Accuracy of scenario 3

Table 8. Testing accuracy on the two datasets

Dataset Normal Effusion
CheXpert 84.37% 73.43%
Dicom 98.43% 84.61%

Figure 8 shows that the model achieved the highest
accuracy of 0.8875 after 20 epochs. For testing, we
will use 10% of the images after splitting them into
training and testing sets. The comparison of the two
datasets is shown in Table 5. In this scenario, unlike
the previous two, there is no significant discrepancy
in the test results between the two output labels.
Additionally, the model performed better on the
VinBigData dataset compared to the CheXpert
dataset.

4. CONCLUSION

This paper proposes a method that combines two
popular deep learning models, VGG16 and
DenseNet121, for detecting lung abnormalities
through chest X-ray images. The integration of
VGG16 and DenseNet not only enhances the
network's ability to extract diverse features but also
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addresses the limitations of individual models.
VGGI16 excels in capturing basic image patterns,
while DenseNet’s dense connectivity ensures better
feature reuse and gradient flow, crucial for detecting
fine-grained details in medical images. The
experimental results show that the accuracy of the
proposed model with the transfer learning technique
is higher than that of the individual model.
Additionally, the ensemble technique increases
accuracy by combining features from frontal and
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