
CTU Journal of Innovation and Sustainable Development  Vol. 17, Special issue on ISDS (2025): 57-63 

57 

 
DOI:10.22144/ctujoisd.2025.053 

A hybrid deep learning approach for detecting lung abnormalities from chest X-ray 

images 

Viet Dung Nguyen1, Van Huan Vu2, Duc Lam Le3, Huan Vu4, and Ngoc Dung Bui5*   
1School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Viet Nam 
2Faculty of Information Technology, Hanoi University of Natural Resources and Environment, Viet Nam 
3Vinschool Times City, Viet Nam 
4College of Technology, National Economics University, Viet Nam 
5Faculty of Information Technology, University of Transport and Communications, Viet Nam 

*Corresponding author (dnbui@utc.edu.vn) 

Article info.  ABSTRACT 

Received 11 Jul 2025 

Revised 8 Aug 2025 

Accepted 1 Oct 2025 

 

 

 
 

 

This paper proposes a hybrid deep learning model for lung abnormalities 

detection using X-ray images. To improve the performance and accuracy 

of the model, we use the transfer learning technique with two pre-trained 

models VGG16 and DenseNet121. Moreover, to extract deeply the feature 

of lung abnormal, frontal and lateral views of X-ray images have been 

trained using ensemble technique. The features extracted by these two 

models will be combined and passed to the classification layer. The 

experimental results on three datasets demonstrate the effectiveness of the 

proposed model, which outperforms the individual performance of the two 

base models, achieving a higher accuracy rate of 89%. Furthermore, in 

comparative assessments against several alternative models and datasets 

from previous research, our method demonstrates its efficiency, boasting 

an impressive AUC value of 0.95. These results underscore the promise of 

our approach in advancing the accuracy and effectiveness of lung 

abnormality detection in chest X-ray images. 
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1. INTRODUCTION 

Early and accurate detection of lung abnormalities 

in chest X-rays is paramount for timely diagnosis 

and effective patient management. Timely 

intervention can significantly improve treatment 

outcomes and patient prognoses. However, 

traditional methods often rely on visual assessment 

by radiologists, making them susceptible to inter- 

observer variability and human error. Additionally, 

manual methods can be time-consuming and 

subjective, impacting diagnostic efficiency and 

potentially delaying essential treatment. Although 

some lung abnormalities can be seen visually on X-

ray images, such as lung opacities, lung 

consolidation, atelectasis, bronchial wall 

thickening, etc., diagnostic methods are based on 

deep learning models have been proposed to help 

detect lung diseases early with high accuracy to 

reduce the overload of doctors. In recent years, deep 

learning has emerged as a powerful tool for medical 

image analysis, offering promising solutions for 

automated abnormality detection. These models can 

automatically learn complex patterns from large 

datasets, potentially overcoming the limitations of 

traditional methods. By leveraging the ability of 

deep learning to extract subtle features and identify 

nuanced patterns, we can potentially achieve more 

accurate and consistent detection of lung 

abnormalities in X-ray images. 



CTU Journal of Innovation and Sustainable Development  Vol. 17, Special issue on ISDS (2025): 57-63 

58 

A novel semi-supervised learning algorithm for 

classifying lung abnormalities in X-ray images 

based on a holistic philosophy (Ioannis et al., 2019). 

A multi-label DCNN classification model, using 

fine-tuning pre-trained networks (e.g., AlexNet, 

GoogLeNet, VGG16, and ResNet50) by removing 

fully connected layers and the final classification 

layer while adding a transition layer, pooling layer, 

prediction layer, and activation function to detect 

and segment the lung disease’s location (Xiaosong 

et al., 2017). Several deep learning models, ResNet 

and ReCoNet, a lightweight model with fewer 

parameters than modern models but achieved a 

remarkable 98% accuracy for detecting COVID-19 

patient abnormalities in chest X-ray images (Sabbir 

et al., 2020; Farooq & Hafeez, 2020). A generative 

CheXNet is a convolutional neural network with 

121 layers trained on the ChestX-ray14 dataset 

containing over 100,000 frontal chest X-ray images 

with 14 disease labels, which has proposed for 

detecting pneumonia from chest X-ray images 

achieved higher accuracy than specialized 

radiologists (Pranav et al., 2017). Various mod-els 

DenseNet121, InceptionResNetV2, ResNet152V2 

and MobiNet have been employed to classify 

various lung disease signs in X-ray images (Rahman 

et al., 2020; Mundher et al., 2021; Vingroup, 2020). 

Aiming to overcome the limitations of single-model 

approaches, this paper proposes a hybrid deep 

learning model that cooperates capabilities of 

different models to enhance accuracy in identifying 

lung abnormalities on chest X-ray images. Our 

proposed hybrid model is introduced in Section 2. 

Experimental results are depicted in Section 3, while 

Section 4 is the conclusion. 

2. MATERIALS AND METHOD  

As stated in Section 1, we aim to integrate 

capabilities of different models, especially VGG16 

and DenseNet121 to improve lung disease 

classification accuracy. While VGG possesses 

feature extraction ability, DenseNet has dense 

connectivity. Combining them potentially improves 

accuracy in identifying lung abnormalities on chest 

X-ray images. 

2.1. VGG16 

VGG16, invented in 2014, contributed significantly 

to improving the accuracy of previous models like 

AlexNet, LeNet, and others (Karen & Andrew, 

2014). In terms of architecture, VGG16 introduced 

several enhancements, including 13 two-

dimensional convolutional layers, convolutional 

blocks, stacking multiple CNN layers and max-

pooling layers instead of interleaving just one CNN 

layer and max-pooling layer, and using ReLU after 

each CONV layer. VGG16 exclusively employed 

small 3x3 filters to reduce the number of model 

parameters, leading to better computational 

efficiency. 

In this paper, we keep the convolutional blocks 

unchanged and modify the final classification layer, 

using the convolutional blocks as a feature 

extraction tool for the model. The features are then 

classified with the desired output results. The 

features extracted from the images are passed 

through a new fully connected layer that we built, 

consisting of a Flatten layer, a Dense layer with 128 

outputs, and finally, a sigmoid classifier. Figure 1 

provides a visualization of the VGG16 model used 

in the paper. 

Figure 1. VGG16 model structure  

(Source: Karen & Andrew, 2014) 

2.2. DenseNet121 

DenseNet is a convolutional neural network (CNN) 

architecture for image recognition tasks, first 

introduced in 2017 (Gao et al., 2017). This 

architecture stands out in optimizing the flow of 

information from previous layers to subsequent 

layers. Instead of connecting only neighboring 

layers, DenseNet connects each layer to all the 

subsequent layers. This enhances information flow 

between layers and encourages feature reuse. In this 

paper, we improve and utilize the DenseNet121 

model for training and detecting lung abnormalities. 

The convolutional layers of DenseNet121 are used 

to extract feature maps with a size of 7x7x1024. 

Average pooling is applied to the feature map to 

create a 1024-dimensional vector, and then the fully 

connected layer is modified to have 512 hidden 

nodes with a ReLU activation function to reduce the 

number of parameters and computational 

complexity in the model. The final layer uses a 
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sigmoid function to compute the output probability 

score in a single node. The optimization function 

employs "Adam", and the loss function is "binary 

cross-entropy" with a learning rate of 1e-5. The 

number of hidden nodes in the fully connected layer 

is selected after experimentation with different 

values. Figure 2 illustrates the structure of Dense-

Net121 in the paper. 

Figure 2. DenseNet model structure  

(Gao et al., 2017) 

2.3. Proposed method 

By employing the strengths of the VGG and 

DenseNet architectures, we propose a novel hybrid 

deep learning approach for detecting lung 

abnormalities in chest X-ray images by combining 

the VGG16 and DenseNet architectures, each 

generating distinct features prior to the fully 

connected layers (Figure 3). VGG16, with its deep 

convolutional layers, captures essential low- and 

mid-level features from the images, while DenseNet 

enhances feature propagation and re-use through its 

densely connected network structure, enabling the 

model to learn more intricate and detailed 

representations. By concatenating the feature maps 

from both networks before passing them through the 

fully connected layers, we leverage the 

complementary strengths of both models, allowing 

for a more robust and comprehensive feature 

representation. 

 

Figure 3. Proposed model structure 

The feature map after passing through the VGG16 

model will be flattened to become a vector with a 

size of 25088, while the DenseNet feature vector, 

after passing through the 2D average pooling layer 

for feature extraction, will be of size 1024. These 

vectors will be concatenated after passing through 

the merging layer of the two models, resulting in a 

new vector of size 26112. The fully connected layer 

has 128 hidden nodes with a ReLU activation 

function. Finally, a sigmoid layer is used. The 

optimization function "Adam" and the loss function 

"binary cross-entropy" are applied with a learning 

rate of 1e-5. This hybrid architecture aims to 

improve the accuracy and sensitivity of abnormality 

detection, capturing both broad patterns and subtle 

abnormalities in the lung region that may be missed 

by a single model. 

3. RESULTS AND DISCUSSION  

3.1. Dataset 

In this paper, we used the NIH, CheXpert and 

VinBigData datasets. The NIH dataset includes 

112,120 X-ray images with disease labels from 

30,805 different patients. To generate these labels, 

the authors used natural language processing to 

extract classification information from relevant 

medical reports. These labels are expected to 

achieve an accuracy of over 90% and are suitable for 

weakly supervised learning. CheXpert included X-

ray images from 65240 patients. For CheXpert 

dataset (Figure 4), we employed 24000 images for 

training and 4000 images for testing. Furthermore, 

our focus was primarily on the Effusion disease 

category, the largest number of images within the 

dataset. Figure 4 illustrates the samples from this 

dataset. The VinBigData dataset consists of 15,000 

chest X-ray images collected and labeled in 

Vietnam, then evaluated by comparing with doctors' 

readings on a test dataset of 3,000 additional images. 

 

Figure 4. Example images from CheXpert 

dataset 

3.2. Results  

NIH dataset 
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Our proposed model has been evaluated against 2 

individual models VGG16, DenseNet121 on 

different lung diseases such as atelectasis and 

infiltrating. The comparison results on Atelectasis 

classification are shown in Table 1. 

Table 1. Models comparison on NIH dataset 

Model Accuracy Loss AUC 

VGG16 74.47% 0.5648 0.8277 

DenseNet121 75.20% 0.5191 0.8375 

Our model 76.33% 0.5047 0.8522 

Table 2. AUC comparision 

Pathology 

Xiaosong 

et al., 

2017 

Li et 

al., 

2017 

Pranav 

et al., 

2017 

Proposed 

Atelectasis 0.716 0.722 0.8094 0.8522 

Infiltration 0.609 0.695 0.7345 0.8185 

The highest accuracy was achieved by combining 

VGG16 and DenseNet121, with this result obtained 

after just 2 epochs, whereas VGG16 required 3 

epochs and DenseNet121 required 4 epochs. This 

can be attributed to the complementary strengths of 

the two models: VGG16 excels in image 

classification tasks, while DenseNet121 effectively 

handles large datasets and reduces overfitting. 

Additionally, the ensemble model outperformed 

both VGG16 and DenseNet121 in terms of accuracy 

and AUC score for detecting infiltration. Our 

proposed model is also compared to 3 well-known 

models by authors (Xiaosong et al., 2017; Li et al., 

2017; Pranav et al., 2017). Results in Table 3 

indicate that our model is much better than other 

works in Atelectasis as well as Infiltration 

classification. 

CheXpert database 

As the CheXpert composes of frontal and lateral X-

ray images of patients therefore we experiment the 

ability of VGG16 and DenseNet121 in classifying 

Pleural effusion using just frontal or lateral X-ray 

images. The Pleural effusion classification 

accuracies are given in Table 3.  

Table 3 indicates that DenseNet121 manifests 

efficiency a little bit higher than that of VGG14 in 

both views. Therefore, we have decided to use 

DenseNet121 for our ensemble model as shown in 

Figure 5. 

Table 3. Pleural effusion classification accuracies 

Pathology Frontal view Lateral view 

VGG16 0.8738 0.8896 

DenseNet121 0.8755 0.8950 

 

Figure 5. Ensemble model for CheXpert X-ray 

images 

Table 4. Ensemble model vs Single view model 

No. of patients Model Accuracy 

200 
Ensemble 0.89 

Frontal 0.8 

550 
Ensemble 0.882 

Frontal 0.809 

2000 
Ensemble 0.855 

Frontal 0.79 

The number of nodes in each fully connected layer 

is set as 512.  Results shown in Table 4 prove that 

the ensemble model archives higher performance 

that single view model no matter how patients may 

involve in the experiment. 

We compared our model to Jeremy Irvin's model for 

detecting pleural effusion. Jeremy Irvin’s model is a 

modified version of DenseNet121 architecture. 

Table 5 presents a comparison of the AUC scores 

between our model and Jeremy Irvin's model. 
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Table 5. Proposed model and Jeremy Irvin’s 

model comparison 

Pathology 

Jeremy et al. 

(2019) (U-

Ignore) 

Jeremy et al. 

(2019) (U-

Zeros ) 

Proposed 

Pleural 

effusion 
0.928 0.931 0.9531 

According to Table 5, the ROC score of the 

proposed model is higher than Jeremy Irvin's model. 

This result could be attributed to differences in the 

construction methods of the two models. There are 

several key differences between the two methods: 

Jeremy Irvin's method used two types of images 

(frontal and lateral views) for training and testing, 

whereas we trained on frontal view images only. In 

(Jeremy et al., 2019), data labels were divided into 

"disease" and "the rest," whereas we divided them 

into two distinct labels: "Normal" and a "Disease" 

label. These two labels can have significant 

differences in pathological features, and there would 

be no overlap between images with these labels. The 

ratio of the number of training and testing images 

was different. We used a 6:1 ratio for training and 

testing, while (Jeremy et al., 2019) used a 7:1 ratio. 

For the VinBigData dataset, we integrate it with the 

CheXpert dataset for training and evaluation. The 

data from this dataset indicates that a single image 

may have multiple disease labels, potentially 

causing overlaps during training. However, this also 

increases the number of training images, which can 

help improve the model's accuracy. We propose 

three scenarios for evaluating our model. In all three 

scenarios, the disease labels will be No Disease and 

Effusion, ensuring alignment with the objectives of 

the CheXpert dataset. 

Scenario 1: train on the CheXpert dataset and test on 

the VinBigData dataset. In this scenario, the 

CheXpert dataset is used for training at a 6:1 ratio, 

comprising 30,000 training images and 5,000 testing 

images, and ensuring an equal number of images for 

both labels, No Disease and Effusion, in each set. 

For model training, the proposed ensemble model 

has been applied to the NIH dataset (NIH dataset, 

2020)), where the integrated layers of VGG16 and 

DenseNet121 extract features independently. When 

combined in the classification layer, this approach 

achieves higher accuracy with fewer epochs. The 

feature map from VGG16 is flattened into a 25,088-

dimensional vector, while DenseNet121, after 

passing through a 2D average pooling layer to 

extract key features, produces a 1,024-dimensional 

vector. These vectors are merged after passing 

through the ensemble layer of both models, resulting 

in a 26,112-dimensional vector. The fully connected 

layer consists of 128 hidden units with a ReLU 

activation function, followed by a sigmoid layer to 

compute probability scores. The model is optimized 

using the "Adam" optimizer and the "binary cross-

entropy" loss function, with a learning rate of 1e-5. 

The performance of the model is shown in Figure 5. 

Figure 6 shows that the model achieves the highest 

accuracy of 0.8738 after 2 epochs. After training the 

model, we tested it on 100, 200, and 500 images 

from the VinBigData dataset, achieving the results 

shown in Table 6. 

 

Figure 6. Accuracy of scenario 1 

Table 6. Testing accuracy on the VinBigData 

dataset 

Image number Normal Effusion 

100 0.95 0.56 

200 0.95 0.61 

500 0.938 0.572 

When comparing the accuracy of our model with the 

frontal and lateral view models trained on the 

CheXpert dataset, we found that it did not 

demonstrate a significant improvement over the 

other two models, both of which were trained using 

DenseNet121 architecture. In fact, its accuracy was 

lower than that of the lateral view model. This lower 

accuracy may be due to our approach of training the 

model using images from both views combined, 

rather than separately, as was done for the lateral 

view model. For this reason, in the previous section, 

we did not use our proposed model for training on 

the CheXpert dataset. When evaluating the model 

on the VinBigData dataset, we observed that 

predictions for the No Disease label were 

significantly more accurate than those for the 

Effusion label. This can be attributed to the fact that 
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each image in the DICOM dataset may have 

multiple disease labels. As these pathological 

conditions often exhibit similar features on X-ray 

images, distinguishing between them is challenging. 

Furthermore, employing a single-output 

classification approach may have further 

contributed to the reduced accuracy of the test 

results. 

Scenario 2: Train using the VinBigData dataset and 

test on the CheXpert dataset. In contrast with the 

first scenario, this scenario uses the VinBigData 

dataset for training while keeping the model 

parameters, architecture, and labels identical to 

those in the first scenario. The ratio of training to 

validation images remains 6:1, with 1,680 training 

images and 280 validation images. Once the model 

weights are obtained, the evaluation will be 

performed using images from the CheXpert dataset. 

The performance of the model is shown in Figure 7. 

The maximum accuracy is 0.9393 after the 16 

epochs. 

 

Figure 7. Accuracy of scenario 2 

Table 7. Testing accuracy on the CheXpert 

dataset 

Image number Normal Effusion 

100 47% 90% 

200 45.5% 86% 

500 46.8% 88% 

Similar to scenario one, we tested it on 100, 200, and 

500 images from the CheXpert dataset, achieving 

the results shown in Table 7. As shown in Table 7, 

after training the model and evaluating it on the 

CheXpert dataset, contrary to the first scenario, the 

Effusion label produced significantly better results 

than the normal label. 

Scenario 3: Combine both datasets and use the 

merged data for both training and testing. In this 

scenario, we will combine images from both 

datasets to create a new, balanced dataset, ensuring 

an equal number of images for each label from both 

datasets. The training set will consist of 3,360 

images, with 1,680 images from CheXpert and 

1,680 from VinBigData, while the testing set will 

follow the same approach with 560 images. Each 

label is evenly distributed across both the training 

and testing sets. After splitting the data, we will 

retain 10% of the remaining Effusion-labeled 

images for post-training evaluation, maintaining a 

1:1 ratio with No Disease images from the CheXpert 

dataset. The model parameters and architecture will 

remain unchanged from the previous two scenarios. 

The performance of the model is shown in Figure 8. 

 

Figure 8. Accuracy of scenario 3 

Table 8. Testing accuracy on the two datasets 

Dataset Normal Effusion 

CheXpert 84.37% 73.43% 

Dicom 98.43% 84.61% 

Figure 8 shows that the model achieved the highest 

accuracy of 0.8875 after 20 epochs. For testing, we 

will use 10% of the images after splitting them into 

training and testing sets. The comparison of the two 

datasets is shown in Table 5. In this scenario, unlike 

the previous two, there is no significant discrepancy 

in the test results between the two output labels. 

Additionally, the model performed better on the 

VinBigData dataset compared to the CheXpert 

dataset. 

4. CONCLUSION 

This paper proposes a method that combines two 

popular deep learning models, VGG16 and 

DenseNet121, for detecting lung abnormalities 

through chest X-ray images. The integration of 

VGG16 and DenseNet not only enhances the 

network's ability to extract diverse features but also 
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addresses the limitations of individual models. 

VGG16 excels in capturing basic image patterns, 

while DenseNet’s dense connectivity ensures better 

feature reuse and gradient flow, crucial for detecting 

fine-grained details in medical images. The 

experimental results show that the accuracy of the 

proposed model with the transfer learning technique 

is higher than that of the individual model. 

Additionally, the ensemble technique increases 

accuracy by combining features from frontal and 

lateral views of X-ray images. In the future, we aim 

to further develop and improve the deep learning 

model as well as use more datasets to achieve higher 

accuracy and effectively apply it for early detection 

and diagnosis of lung pathologies.  
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