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Article info. ABSTRACT

Received 30 Jun 2025 Rotated object detection (ROD), often termed oriented object detection, is
Revised 18 Aug 2025 essential for numerous practical tasks, including remote sensing, self-
Accepted 7 Oct 2025 driving systems, urban surveillance, and text recognition in natural scenes.

Unlike conventional object detection, ROD must estimate object
orientation, making angle regression and loss function design crucial to

Keywords model performance. This paper presents a comprehensive survey of
regression loss functions used in ROD, categorized into coordinate-based,

Autonomous driving, approximated rotated loU-based, and Gaussian-based approaches. We

regression loss functions, analyze their theoretical foundations, practical trade-offs, and

rotated object detection, effectiveness in addressing core challenges including angle periodicity,

smart city applications edge ambiguity, and metric inconsistency. Representative loss functions
are benchmarked on standard datasets to evaluate their suitability for
various detection frameworks. By emphasizing application contexts such
as smart city monitoring and environmental analysis, this survey offers
practical guidance for designing robust and efficient ROD systems that
support sustainable development goals.

1. INTRODUCTION disaster response, maritime navigation, and

environmental —management. Despite recent

Rotated object detection (ROD) has emerged as a progress in ROD, several unresolved challenges

critical component of modern computer vision, with

applications spanning remote sensing, smart city rematn.

surveillance, autonomous vehicle navigation, retail As opposed to classic object detection, which uses
environment analytics. For example, in smart cities, horizontal bounding boxes (HBB) defined by
surveillance drones and traffic cameras frequently parameters (x,y, w, h) to represent the location and
capture tilted or obliquely oriented vehicles and size of an object, rotated object detection employs
infrastructure elements. Accurate detection of these oriented bounding boxes (OBB) that add an angle
objects using ROD improves traffic analysis, parameter 6 (as shown in Figure 1). This
accident detection, and infrastructure monitoring. representation provides a more precise localization
Similarly, in remote sensing, precise localization of by reducing background overlap, thereby improving
ships, buildings, or land use patterns is crucial for detection accuracy.
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Figure 1. Illustration HBB and OBB (left), along with three types of regression-based representations
of rotated bounding boxes (right)

OBBs are typically represented in two ways: (i) a
point-based scheme that specifies the quadrilateral
through the coordinates off its four vertices
(%1, V1, X2, V2, X3, V3, X4, V), or (ii) a regression-
based representation, which defines an oriented box
by (x,y,w,h,0). The regression-based method is
widely adopted and supports three distinct
definitions:

— OpenCV definition: The angle 8 denotes the
acute orientation formed by the box’s width relative
to the horizontal axis, constrained to 6 € [r/2,0]
radians.

— Long-edge definition: 6 denotes the angle
between the longer edge of the bounding box and
the horizontal axis, with 6 € [-m/2, /2] radians.

— Orientation-based definition: 6 denotes the
clockwise rotation from a reference axis to the
object’s orientation axis, covering entire circle with
value in range [—m, 7] radians, thus providing a
complete representation of object orientation.

The use of multiple definitions for rotated bounding
boxes introduces inconsistencies in loss function
design, leading to challenges such as boundary
discontinuity, edge exchangeability, and square-like
ambiguities. Different loss functions address these
issues with varying degrees of effectiveness,
directly impacting detection performance. This
article delivers a systematic overview of regression
loss functions proposed for ROD. We categorize
and analyze existing approaches, examining their
theoretical foundations, strengths, and limitations.
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Key challenges in designing effective losses are
discussed, along with promising directions for
future research. By offering a structured overview,
this survey aims to assist researchers and
practitioners in selecting suitable loss functions for
real-world applications and inspire further
advancements in the field. The key contributions of
this study can be outlined as follows:

— Identification of key challenges in designing
regression losses for rotated object detection,
including boundary discontinuity, edge ambiguity,
square-like cases, and loss—metric inconsistency.

— Systematic categorization and analysis of
existing loss functions based on mathematical
properties, with emphasis on their strengths and
limitations.

— Comprehensive evaluation of representative
losses on benchmark datasets, offering practical
guidance for real-world deployment.

The structure of this paper is as follows: Section 2
discusses the critical issues in designing regression
loss for ROD. Section 3 reviews and analyzes
existing regression loss functions in detail. Section
4 reports experimental results on standard datasets
and detection frameworks. Finally, Section 5
concludes the paper with key findings and outlines
potential avenues for future research.

For clarity, the acronyms frequently used in this
paper are summarized in Table 1.
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Table 1. List of acronyms used in this paper

Acronym Definition

ROD Rotated Object Detection

OBB Oriented Bounding Box

HBB Horizontal Bounding Box

PoA Periodicity of Angle

EoE Exchangeability of Edges

IoU Intersection over Union

CSL Circular Smooth Label

DCL Densely Coded Labels

PSC Phase-Shifting Coder

GWD Generalized Wasserstein Distance

KLD Kullback-Leibler Divergence

KFIoU Kalman Filter-based IoU

BD Bhattacharyya Distance

DOTA Dataset for Object deTection in Aerial
images

HRSC High resolution ship collections

2. CHALLENGES IN DESIGNING
ROTATED OBJECT DETECTION
LOSSES

Designing effective regression loss functions for
ROD presents several unique challenges, primarily
due to the complex geometry of oriented bounding
boxes (OBBs). These challenges significantly affect
learning stability and model accuracy in real-world
applications such as aerial surveillance and traffic
analysis.

2.1. Boundary discontinuity

Boundary discontinuity remains a major difficulty
in ROD systems, which makes the loss value
suddenly increase at the boundary caused by the
parameterization of angles and edges. This issue is
closely related to the of angle periodicity (PoA) and
edge exchangeability (EoE).

PoA indicates the cyclical nature of angle
representation, where angles like 6 and 0 + 21
denote the same orientation. In many ROD
frameworks, this periodicity causes sharp
discontinuities in loss values near angle wrap-
around points (e.g., transitioning from 179 degrees
to -180 degrees). As a result, small angular
differences can lead to a significant change in loss
value, causing instability during the model's
training.

EoE refers to the ambiguity that arises when
swapping the width and height of a rotated bounding
box results in an equivalent box with a different
angle. For instance, (i.e. (x,y,w,h,0) and
(x,y,h,w, 0 4+ 1/2)) represent the same region but
have different parameterizations. This can confuse
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the model during training, forcing it to learn
unnecessarily complex transformations, such as a
large rotation (clockwise) instead of a minor
correction (counterclockwise), thereby reducing
regression stability and accuracy.

2.2. Square-like problem

In rotated object detection, the square-like problem
arises when dealing with objects that are nearly
square. In such cases, different angle values can
represent visually similar bounding boxes. For
example, angles of 0 degrees and -89 degrees may
correspond to nearly identical squares. However,
standard regression losses often produce large loss
values for such differences, despite minimal
geometric discrepancy. This problem may hinder
the model in predicting objects with aspect ratios
close to 1.

2.3. Inconsistency between loss and metric

In conventional horizontal object detection,
Intersection over Union (IoU) metric is commonly
applied to evaluate the overlap between predicted
and ground-truth bounding boxes. However, a well-
known issue is that traditional regression losses (e.g.
l,,-norms) do not align well with the IoU metric.
When extended to rotated object detection, the
direct use of IoU loss poses extra difficulties, such
as increased computational complexity and non-
differentiable regions in the parameter space, which
hinder optimization.

The intersection of two rotated boxes forms an
irregular polygon rather than a rectangle, unlike
axis-aligned boxes. Computing this intersection
involves multiple steps: 1) determining intersection
points; 2) sorting these points in an anti-clockwise
order based on their coordinates; 3) computing the
polygon area wusing computational geometry
methods (e.g. the Shoelace formula). These
operations are computationally expensive and
include non-differentiable components, such as
conditional logic and sorting.

Moreover, the intersection operation involves
conditional logic that is not differentiable with
respect to the bounding box parameters, such as sort
operators. Although several works attempt to use
several custom operations, the computation of
rotated IoU still fails to be differentiable in certain
corner cases, for instance, when two boxes produce
more than eight intersection points due to partial
edge overlap. Therefore, it is crucial to design a
simple yet fully differentiable approximation of IoU
loss for rotated object detection.
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3. REGRESSION LOSSES IN ROTATED
OBJECT DETECTION

To overcome the aforementioned challenges, a
range of regression loss functions have been
proposed, each designed to minimize discrepancies
between predicted and ground-truth bounding boxes
while handling rotation-specific issues. These loss
functions can be broadly categorized into four main
types: l,-norm, angular encoding, approximated
IoU, and Gaussian distribution-based losses. Each
category offers distinct advantages depending on the
detection scenario and task requirements. This
section presents a detailed survey of these loess
functions,  highlighting  their = mathematical
properties, strengths, and limitations. An overview
of the taxonomy is illustrated in Figure 2.

3.1. l,-norm loss function

Regression loss functions are a core component of
modern object detection frameworks. For horizontal
bounding boxes, the model typically predicts four
parameters for location and size (xp, Vpr Wp» hp) to
match the ground truth (x;,y;, w;, h:), and the
l,-norm loss is calculated as:

Lyeg = ly-norm(Ax, Ay, Aw, Ah)

where Ax = Xp—Xe, AY=Yp—Y, Adw=
ln(wp/wt), and Ah = ln(hp/ht) (in anchor based
detectors, Ax and Ay are normalized by size of
anchor). The common [,,-norm-based loss used in
object detection are L1, L2, and Smooth L1 loss.
While L1 loss is the lack of sensitivity to small
localization errors, L2 loss is highly sensitive to
outliers. Smooth L1 (Girshick , 2015) loss combines
the benefits of L1 and L2. Mathematically, the
Smooth L1 loss is defined as:

05(3 - y)Z/ﬁ’
‘.‘l?—‘y| _0‘5*48'

ifl —y| < B
otherwise

-cSmooth L1 ('Tr y) = {

In ROD, these losses are extended to include an
angle parameter 6. Pan et al. (2020) directly applies
the L1 loss for the regression of rotation angles
|6, — 0;]. To deal with the Periodicity of Angle
(PoA) problem, other works transform the angle
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difference by trigonometric or modulo functions
46 = f(6, —6,) or f(6,) — f(6,). Ding et al.
(2018) uses modular module (Hp —Ht)/Zn to
adjust the angle offset target to fall in [0,27]for the
convenience of computation Han et al. (2021)
simply added km where k is an integer, to ensure the
angular difference remains within the range
[-m/4,3m/4]. Modulated loss (Qian et al., 2021)
introduced the modulated loss, which ensures a
continuous formulation by removing angle
periodicity and address the ambiguity between
height and width:

Ly = min(ln_rlorm (Ax, Ay, Aw, Ah, AB),
ln-norm(Axv Ay, Aw',AR',90 — AG))

where Aw’ = w, — h; and 4h' = h, — w,. Other
works transform the angle difference by
trigonometric functions. For example, Ming et al.
(2021) employs tangent transforms instead of
working directly with angles to prevent abrupt
changes near the angle warp-around boundary,
making learning more stable for the angle difference
near 0 degrees or 180 degrees. However, tan(ep -
Gt) approaches infinity near m/2 + km, making it
unstable in some corner cases. Lang et al. (2019)
computes the sine of the angle offset to ensure the
loss function is smooth, differentiable, and bounded.
This method is particularly useful in tasks where
direction of the object is not essential (e.g. remote
sensing, scene text detection, etc.) because it cannot
distinguish -7 and 7 radians. For applications such
as autonomous driving, where distinguishing
between forward and backward directions is crucial
for accurate navigation, the sine-cosine loss

computed l, — norm (sin(ep) -

sin(6,), Cos(ep) — cos(Gt)) is more suitable (Yin
etal., 2021).

To address the Exchangeability of Edges (EoE),
recent detectors adopt a long-edge definition, where
h is determined as the longer side of bounding

boxes, and 0 is defined by long side h and the
horizontal x-axis.

as
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Figure 2. Taxonomy of the regression loss functions for ROD problem

3.2. Angular encoding

Angular encoding-based methods reformulate angle
regression as a classification task by discretizing the
angular range into a fixed number of intervals. Each
interval corresponds to a class label, enabling angle
prediction through classification. For example, with
a 180 degrees angle range, and interval size w
degree, the number of classes is T = 180/w.
However, the periodic nature of angles, directly
applying standard classification loss functions may
lead to poor performance, especially near boundary
points. To address this problem, Yang et al. (2020)
introduced a circular smooth label (CSL) method to
achieve better angular representation. CSL handles
the periodic nature of angles and increases error
tolerance for adjacent angles by smoothing labels in
a circular manner. This approach -effectively
mitigates boundary discontinuities and enhances
detection accuracy for arbitrarily oriented objects.
Given the ground truth angle 6, the circle smooth
label for class x is expressed as:

CSL(z) = {g(m) —r<z<bl+r

0 otherwise

where g(x) is a window function, and r is radius.
With 6 is center, an ideal window function g(x) is
required to obey four appealing properties:
periodicity g(x) = g(x + kT),k € N, symmetry
(g6 +¢€)=g(6 —€),VeVr, maximum (g(0) =
1), monotonically non-increasing from the center
point toward both sides (g(6 +€) < g(8 +Q),v
{VVeVr). Four types of window function are
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employed, including pulse, rectangular, triangle,
and Gaussian functions. While CSL effectively
handles angular discontinuity, it introduces
computational overhead due to its expanded
prediction layer and does not resolve the square-like
problem. To tackle these issues, Yang et al. (2021)
proposed a re-weighting scheme named Angle
Distance and Aspect Ratio Sensitive Weighting
(ADARSW) to adjust the loss function based on
angular distance and aspect ratio of the object. The
ADARSW is based on the sine of angle difference,
which is  formulated as  Waparsw(A0) =

sin (a(eg - (-)p)) where a is set to 1 if the aspect

ratio of the ground truth bounding box satisfies
hg/wg > 1, and a = 2 otherwise. Here, h, and w,
are the long and short sides of ground truth bounding
boxes, respectively, and r denote the aspect ratio
threshold. The final loss is the multiplication of
ADARSW and classification loss. When the height
and width of ground truth bounding boxes are nearly
equal, the period becomes 90 degrees (a = 2),
effectively resolving the square-like problem.
Moreover, Densely Coded Labels (DCL) are
introduced for angle classification, which are a more
compact representation compared to CSL. This
encoding approach not only enhances training
efficiency but also significantly improves detection
accuracy. Yu et al. (2023) introduce a differentiable
angle coding method named Phase-Shifting Coder
(PSC), which represents angles as periodic phases to
address the boundary discontinuity problem. They
further introduced PSCD (Phase-Shifting Coder
with  Dual-frequency), which maps angular
periodicity across multiple frequency domains. This
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dual-frequency design effectively resolves both
boundary discontinuity and square-like issues in a
unified framework.

Despite their advantages, angular encoding methods
have several limitations. Transforming angle
regression into a classification problem increases
model complexity and computational cost.
Moreover, integrating these methods often requires
non-trivial modifications to existing detection
architectures, particularly in the loss design and
training pipeline. Lastly, the inconsistency between
classification-based losses and geometric evaluation
metrics (e.g., [oU) remains unresolved.

3.3. Approximated IoU loss

In general object detection, IoU is a widely used
metric to evaluate the performance of detection
models. However, [,,-norm-based regression losses
focus on minimizing differences in box parameters
(e.g., center coordinates, width, height), rather than
optimizing for spatial overlap. This misalignment
can degrade performance in certain cases. For
instance, two large boxes with minimal overlap may
yield a small [,,-norm loss but a poor IoU score,
while small boxes with high parameter similarity
may still have low spatial overlap. To address this
inconsistency, existing horizontal detectors
introduced IoU-based loss, such as IoU (Yu et al.
2016), Generalized IoU (Rezatofighi et al., 2019),
and Complete IoU (Zheng et al., 2020) losses.
Unfortunately, these formulations are not directly
applicable to oriented bounding boxes (OBBs) due
to their geometric complexity.

Zhou et al. (2019) explored the computation of
differentiable IoU for rotated boxes. Their approach
involves: (1) determining polygon intersection
points, (2) sorting them in counter-clockwise order,
and (3) calculating the area using the Shoelace
formula. However, this method is computationally
expensive and includes non-differentiable
components such as sorting. While unofficial
implementations ~ attempt  to  approximate
differentiability using gather operators, the Rotated
IoU (RIoU) remains non-differentiable in certain
cases - e.g2., when two OBBs have more than eight
intersection points or partially coincident edges.
Therefore, developing efficient and fully
differentiable approximations of RIoU loss remains
an open challenge.

Several works (Yang et al., 2019, 2021, 2022a);
approximated Rotated IoU loss by combining [,,-
norm loss and Rotated IoU:
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L(B B ) - L”VEQ'(B ’Bg)
P | Lreg (B By

By (%p) Ypr W, hip, 6)
By (xg, Vg Wg» hg, Gg) are predicted and ground truth
bounding boxes, respectively. f(-) represents the
loss function related to RIoU (e.g. log(")). Loy is
combination of Smooth L1 loss for angle and
horizontal IoU loss for (x,y, w, h) parameters:

Lw'eg
= LSmoothLl (ep: eg)

—IoU (Bp (xp' Wp, Wy, hp)' B, (xg' Ygr Wy, hg))

The approximate rotated IoU can be subdivided into
two parts: ng(Bp, Bg) / |L4,eg,(Bp, Bg)| specifies
the gradient propagation directions, whereas
|f (RIoU)| controls the magnitude of the gradient.
Although the proposed loss is fully differentiable
and can smooth the boundary loss jump, it still
requires a complex RIoU calculation process. In
addition, its gradient direction is still dominated by
the angle regression; therefore , the PoA problem is
not completely resolved.

|f (RIoU))|

where and

Chen et al. (2020) introduced the Pixels Intersection
over Union loss (PIoU) to improve OBB regression
by approximating IoU in a pixel-wise manner. PloU
loss simply counts the number of overlap pixels by
employing a differentiable kernel function that
computes the accumulated contributions of interior
overlapping pixels. However, PIoU loss involves
more complex calculations than traditional loss
functions (e.g. l,-norm loss). Its performance is
highly affected by the grid size; thus, it may not
always handle occlusions or overlapping objects
optimally.

3.4. Gaussian distribution-based loss

Recent studies propose a unified and advanced
approach to overcome boundary discontinuity and
the square-shaped ambiguities by emplying
Gaussian distribution. In this framework, the
conventional oriented bounding box representation
B(x,y,w,h,0) is reformulated as a bivariate
Gaussian distribution N (u, 2) where the mean y =
(x,y) represents the object center, and the
covariance matrix £'/2 = RSR”, with R denoting
the rotation matrix and S the diagonal eigenvalue
matrix. The specific derivations of R and S are
defined as follows:
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R_ [cosﬁ —sin@] S— [g 0}

sin@ cosO 03

An important advantage of Gaussian formulation is
that the orientation is captured via trigonometric
encoding, thereby eliminating issues caused by
angular periodicity. Furthermore, the parameters of
OBB are co-optimized, enabling interdependence
throughout the training process. For comparing two
multivariate Gaussian distributions, metrics such as
Generalize Wastersein Distance (GWD) (Yang et
al., 2021), Kullback-Leiber Divergence (KLD)
(Yang et al., 2021), Kalman Filter-based IoU
(KFIoU) (Yang et al., 2022b), and Bhattacharyya
Distance (BD) (Thai et al., 2025) are commonly
adopted. The bivariate Gaussian formulation of
bounding boxes introduces following characteristics
that effectively tackle certain challenges in
computing regression losses for ROD:

— Property 1: Two bounding boxes defined as
B(x,y,w,h,0) and B(x,y,h,w,0 —m/2)
correspond to the same Gaussian form, i.e.,
J(w,h,0) =X%(h,w,0—m/2), which eliminates
the problem of edge exchangeability (EoE).

— Property 2: The bounding boxes defined as
B(x,y,w,h,8) and B(x,y,w, h,0 — km), with k €
Z, produces equivalent Gaussian forms. This
property resolves angle periodicity (PoA) problem.

— Property 3: if width and height of the bounding
box are similar (w = h), X(w,h,8) = X(w,h,0 —
k 1 /2) where k is an integer. This property prevents
square-like problem.

Generalize Wasserstein Distance (GWD) (Yang et
al., 2021) is a valuable metric for measuring the
distance between two probability distributions,
particularly useful in comparing Gaussian
distributions due to its consideration of both the
mean and covariance. For two multivariate
Gaussian distributions X, ~ N (up,Z'p) and X; ~
N(us, Z;), the GWD can be formally expressed as:

WZZ(Xp'Xt) = |P—p - Ht|2
+Tr (3, + 3,

1/2
—2(5/%5.5%) ")

Because GWD is sensitive to large error, Yang et al.
(2021) applies a non-linear transformation g(d) =
1-1/ (T +f (d)) to normalize the distance with

range [0,1], where T > 1 is hyper-parameter, and
f(-) is a non-linear function (e.g. sqrt, In, etc.).
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GWD provides a differentiable approximation of
RIoU loss, effectively mitigating the boundary
discontinuity and square-like problems.

4. EXPERIMENTAL
4.1. Dataset

Experiments were performed on two popular
datasets for oriented object detection: DOTA (Xia et
al., 2018) and HRSC2016 (Liu et al., 2017). DOTA
dataset contains 2,806 large-scale aerial images
collected from multiple platforms and sensors,
encompassing 15 object categories. The dataset is
partitioned into 1,411 training images, 458
validation images, and the remainder images
reserved for testing. Since the ground-truth labels
for the test set are unavailable, results must be
submitted to an official evaluation server.
HRSC2016, on the other hand, is a prominent
dataset for high-resolution remote sensing with a
focus ship detection. It includes of over 1,000 high-
resolution images covering a wide variety of vessel
types under diverse and challenging conditions.
Each image is densely annotated with bounding
boxes, orientations, and precise ship locations.

4.2. Evaluation protocol

The experiment setup was implemented using the
MMRotate framework (Zhou et al., 2022). All
evaluations were carried out with RetinaNet (Lin et
al.,, 2017) and R3Det (Yang et al., 2021) both
utilizing ResNet50 (He et al., 2016) architecture as
backbone network. For the DOTA-v1.0 dataset,
input images were resized to 1024 x 1024 pixels,
whereas HRSC2016 samples were adjusted to 800 x
800. The preprocessing pipeline included
normalization along with extensive data
augmentation, such as random cropping and
flipping operations (horizontal, vertical and
diagonal) applied with a probability of 0.25.

Model training was carried out for 20 epochs on
DOTA-v1.0 dataset and 50 epochs on HRSC2016.
AdamW (Ilya Loshchilov & Frank Hutter, 2019)
was adopted as optimize, initializing with learning
rate of le-4, gradually reduced tole-8 using the
cosine annealing strategy, to ensure stable
convergence. The experiments were conducted with
a batch size of 2.

In the evaluation process, we adopted dataset-
specific metrics to assess detection performance.
For the DOTA dataset, we used APs, (Average
Precision at 50% IoU threshold) as the primary
evaluation metric. Meanwhile, for the HRSC2016
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dataset, we employed APs,: APy5, which considers
Average Precision across multiple IoU thresholds
ranging from 50% to 90%. This metrics provide a
robust assessment of the models’ ability to localize
rotated objects under various overlap conditions.

Due to computational constraints, we evaluated a
selected set of representative loss functions from
each category, with an emphasis on Gaussian-based
losses, which have shown strong performance in
addressing ROD-specific challenges. This focused
approach allows us to draw meaningful comparisons
while maintaining practical feasibility.

Gaussian Distribution

150
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50 50 4
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=50 =50 1
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4.3. Experimental results

Table 2 provides a detailed evaluation of ROD
losses on the DOTA-1.0 dataset. For RetinaNet, a
variety of loss types are used, including the [,,-norm
with Smooth L1 loss (Girshick, 2015), two Angular
Encoding methods: CSL (Yang et al., 2020) and
DCL (Yang et al., 2021), an Approximate IoU
method with IoU-Smooth L1 loss (Yang et al.,
2019), and several Gaussian-based losses such as
GWD (Yang et al., 2021), KLD (Yang et al., 2021),
KFIoU (Yang et al., 2022b), and BD Loss (Thai et
al., 2025).

Figure 3. A conceptual illustration of representing a rotated bounding box using a bivariate Gaussian
distribution (Yang et al., 2021)

Kullback-Leibler Divergence (KLD): (Yang et al.,
2021) shows that GWD loss does not obey the scale-
invariant property of IoU, and introduces a suitable
regression loss for ROD named KLD loss. When
applied to two-dimensional Gaussian distributions,
the KLD provides a measure of how one distribution
diverges from another, capturing both shifts in mean
and  differences in  covariance  structure
(conceptulized in Figure 3). Given two Gaussian
distributions, X, N(u,,Z,) and X, N(u;, Z,), the
KLD from X, to X; is computed as:

[=p|

|Z¢]

(kp = 1) 25 (1t — uz)>

Because each term of Dy, (X, || X;) is partial
parameter coupling, all parameters of bounding
boxes are jointly optimized. This ensures that the
loss function does not become overly sensitive to
under-fitting in any of the parameters, thereby
maintaining a balanced optimization process.
Similar to GWD, the final regression loss is

KLD(X,[|X,) = %(log —d +Tr(z;'s,) +

71

obtained by applying the non-linear transformation
9. Lo (X 11 %) = g (Dew (X, 11 X)),

Kalman Filter-based IoU (KFIoU) (Yang et al.,
2022b): KFIoU estimates the overlap between two
Gaussian distributions using Kalman filter to
achieve better trend-level alignment with Rotated
IoU. The overlap area is defined as aN(u,2) =
N(uy, £1)N (2, 27) where po=py + K(up — pi1),
Y=5—-K5, and K = %,(3; + )7 is the
Kalman gain. The overlap area aN(u,Z2) is not a
Gaussian-like distribution when N(u,,2;) and
N(u,, 2,) are far away. Therefore, authors use an
additional center point loss L. to allow the entire
loss to continue optimizing in non-overlapping
cases. The overlap is defined as:

V(2)
V(ED+V(E) -V(E)
|Z|1/2
CIZ 2]+ 22 — |22

KFlIoU =

where V(X) = 2*2|Y?2 (n is the number of
dimensions) denotes the volume of the rotated



CTU Journal of Innovation and Sustainable Development

bounding box. The overall regression is total of
Lo =1In((uz =) 27 (uz — 1) + 1) and Lys =

el~KFIoU _ 1 By using Kalman filter, this loss
achieves better trend-level alignment with Rotated
IoU than GWD and KLD loss, as verified by

measuring the error variance.

Bhattacharyya Distance (BD) (Thai et al., 2025)
introduces a promising alternative regression loss
function based on Bhattacharyya distance, which is
designed to measure the partial overlap between two
probability  distributions. The Bhattacharyya
Distance between two multivariate Gaussian
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1
Dy (Xp, X¢) = O‘g(”p — 1) =7y — 1)

L (m )
P\ Jil )

where X = (Zp + Zt)/Z is the average of two
covariance matrices, and « is a hyper-parameter to
adjust the impact of mean different term. The final
regression loss is Lgp = 1 — 1/(1 + \/D_B) Unlike
KLD and GWD, BD satisfies all desirable IoU loss

distributions N(p,, £,) and N(u,, X,) is calculated properties: non-negativity, symmetry, triangle
as follows: inequality, and scale-invariance.
Table 2. Result on the DOTA-1.0 test set (measured by mean AP5)
Model Loss Type Loss APc
l,-norm Smooth L1 (Girshick, 2015) 68.43
Angular Encoding CSL (Yang et al., 2020) 69.51
Angular Encoding DCL (Yang et al., 2021) 69.79
RetinaNet Approximate loU IoU-Smooth L1 (Yang et al., 2019) 69.49
(Lin et al., 2017) Gaussian-based GWD Loss (Yang et al., 2021) 70.07
Gaussian-based KLD Loss (Yang et al., 2021) 70.31
Gaussian-based KFIoU Loss (Yang et al., 2022b) 69.96
Gaussian-based BD Loss (Thai et al., 2025) 71.86
l,-norm Smooth L1 (Girshick, 2015) 69.80
R3Det Gauss%an-based GWD Loss (Yang et al., 2021) 72.82
(Yang et al., 2021) Gaussian-based KLD Loss (Yang et al., 2021) 72.12
’ Gaussian-based KFIoU Loss (Yang et al., 2022b) 72.60
Gaussian-based BD Loss (Thai et al., 2025) 73.41

The performance of RetinaNet varies with each loss
type, with the Bhattacharyya Distance Loss
achieving the highest APs, of 71.86, indicating its
effectiveness in improving model accuracy. On the
other hand, R3Det is evaluated using similar loss
settings, except Angular Encoding and Approximate
IoU-based losses. Gaussian-based loss functions
demonstrate superior performance, with the BD
Loss achieving the highest AP, score of 73.41 for
this model. This suggests that the Gaussian-based
loss functions significantly enhance detection
capabilities. Overall, the table highlights the
importance of selecting appropriate loss functions
and demonstrates the potential of Gaussian-based
methods in boosting object detection performance.

Table 3 shows the effectiveness of Gaussian-based
loss functions, particularly BD Loss, in enhancing
object detection performance on the HRSC2016
dataset. For RetinaNet, Gaussian-based losses
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outperform the [,—norm with Smooth L1 loss, with
BD Loss achieving the highest APs: APy5 score of
56.25. This indicates the superior ability of BD Loss
in capturing complex spatial relationships and
providing robust performance, better than GWD
(52.33), KLD (54.78), and KFIoU (49.15). In the
R3Det model, Gaussian-based losses are
consistently more effective, with BD Loss again
delivering the top performance at 57.86. This
further confirms BD Loss's enhanced accuracy and
robustness, surpassing GWD (56.42), KLD (57.79),
and KFIoU (55.41). BD Loss demonstrates
outstanding performance across both models,
emphasizing its effectiveness in enhancing object
detection on HRSC2016. The consistent superiority
of BD Loss among Gaussian loss types emphasizes
its capacity to better handle the intricacies of object
localization and classification.
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Table 3. Evaluation on HRSC2016 dataset. The evaluation metric is mean APg5y: APgs

Model Loss Type Loss APsy: APgg
l,-norm Smooth L1 (Girshick, 2015) 44.82

RetinaNet Gauss@an—based GWD Loss (Yang et al., 2021) 52.33
(Lin et al., 2017) Gaussian-based KLD Loss (Yang et al., 2021) 54.78
’ Gaussian-based KFIoU Loss (Yang et al., 2022b) 49.15
Gaussian-based BD Loss (Thai et al., 2025) 56.25

l,-norm Smooth L1 (Girshick, 2015) 53.68

R3Det Gauss@an—based GWD Loss (Yang et al., 2021) 56.42
(Yang et al., 2021) Gaussian-based KLD Loss (Yang et al., 2021) 57.79
’ Gaussian-based KFIoU Loss (Yang et al., 2022b) 55.41
Gaussian-based BD Loss (Thai et al., 2025) 57.86

5. CONCLUSION

In this study, a thorough review of regression loss
functions for rotated object detection was presented,
focusing on how they address key challenges such
as boundary discontinuity, the squared-like
ambiguities, and  inconsistencies  between
optimization objectives and evaluations metric.
Among the surveyed loss functions, Gaussian-based
losses were emphasized due to their notable
effectiveness in improving detection accuracy.

Comprehensive experiments on the DOTA and
HRSC2016 benchmarked were conducted to
evaluate representative loss functions across
different categories. The evaluation demonstrates
that Gaussian-based methods, with Bhattacharyya
Distance in particular, achieve higher precision and
resilience in object localization.

For future research, a promising direction is the
combination of multiple loss functions to leverage
their ~ complementary  advantages.  Hybrid
approaches that integrate angular-based losses,
Gaussian-based losses and approximated IoU losses
could further enhance robustness and accuracy in
rotated object detection. By strategically combining
these losses, hybrid regression losses can
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