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Rotated object detection (ROD), often termed oriented object detection, is 

essential for numerous practical tasks, including remote sensing, self-

driving systems, urban surveillance, and text recognition in natural scenes. 

Unlike conventional object detection, ROD must estimate object 

orientation, making angle regression and loss function design crucial to 

model performance. This paper presents a comprehensive survey of 

regression loss functions used in ROD, categorized into coordinate-based, 

approximated rotated IoU-based, and Gaussian-based approaches. We 

analyze their theoretical foundations, practical trade-offs, and 

effectiveness in addressing core challenges including angle periodicity, 

edge ambiguity, and metric inconsistency. Representative loss functions 

are benchmarked on standard datasets to evaluate their suitability for 

various detection frameworks. By emphasizing application contexts such 

as smart city monitoring and environmental analysis, this survey offers 

practical guidance for designing robust and efficient ROD systems that 

support sustainable development goals. 
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1. INTRODUCTION 

Rotated object detection (ROD) has emerged as a 

critical component of modern computer vision, with 

applications spanning remote sensing, smart city 

surveillance, autonomous vehicle navigation, retail 

environment analytics. For example, in smart cities, 

surveillance drones and traffic cameras frequently 

capture tilted or obliquely oriented vehicles and 

infrastructure elements. Accurate detection of these 

objects using ROD improves traffic analysis, 

accident detection, and infrastructure monitoring. 

Similarly, in remote sensing, precise localization of 

ships, buildings, or land use patterns is crucial for 

disaster response, maritime navigation, and 

environmental management. Despite recent 

progress in ROD, several unresolved challenges 

remain. 

As opposed to classic object detection, which uses 

horizontal bounding boxes (HBB) defined by 

parameters (𝑥, 𝑦, 𝑤, ℎ) to represent the location and 

size of an object, rotated object detection employs 

oriented bounding boxes (OBB) that add an angle 

parameter 𝜃 (as shown in Figure 1). This 

representation provides a more precise localization 

by reducing background overlap, thereby improving 

detection accuracy.    
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Figure 1. Illustration HBB and OBB (left), along with three types of regression-based representations 

of rotated bounding boxes (right) 

OBBs are typically represented in two ways: (i) a 

point-based scheme that specifies the quadrilateral 

through the coordinates off its four vertices  
(𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, 𝑥4, 𝑦4), or (ii) a regression-

based representation, which defines an oriented box 

by (𝑥, 𝑦, 𝑤, ℎ, 𝜃). The regression-based method is 

widely adopted and supports three distinct 

definitions: 

− OpenCV definition: The angle 𝜃 denotes the 

acute orientation formed by the box’s width relative 

to the horizontal axis, constrained to 𝜃 ∈ [𝜋 2⁄ , 0] 
radians. 

− Long-edge definition: 𝜃 denotes the angle 

between the longer edge of the bounding box and 

the horizontal axis, with 𝜃 ∈ [−𝜋 2⁄ , 𝜋 2⁄ ] radians. 

− Orientation-based definition: 𝜃 denotes the 

clockwise rotation from a reference axis to the 

object’s orientation axis, covering entire circle with 

value in range [−𝜋, 𝜋] radians, thus providing a 

complete representation of object orientation. 

The use of multiple definitions for rotated bounding 

boxes introduces inconsistencies in loss function 

design, leading to challenges such as boundary 

discontinuity, edge exchangeability, and square-like 

ambiguities. Different loss functions address these 

issues with varying degrees of effectiveness, 

directly impacting detection performance. This 

article delivers a systematic overview of regression 

loss functions proposed for ROD. We categorize 

and analyze existing approaches, examining their 

theoretical foundations, strengths, and limitations. 

Key challenges in designing effective losses are 

discussed, along with promising directions for 

future research. By offering a structured overview, 

this survey aims to assist researchers and 

practitioners in selecting suitable loss functions for 

real-world applications and inspire further 

advancements in the field. The key contributions of 

this study can be outlined as follows: 

− Identification of key challenges in designing 

regression losses for rotated object detection, 

including boundary discontinuity, edge ambiguity, 

square-like cases, and loss–metric inconsistency. 

− Systematic categorization and analysis of 

existing loss functions based on mathematical 

properties, with emphasis on their strengths and 

limitations. 

− Comprehensive evaluation of representative 

losses on benchmark datasets, offering practical 

guidance for real-world deployment. 

The structure of this paper is as follows: Section 2 

discusses the critical issues in designing regression 

loss for ROD. Section 3 reviews and analyzes 

existing regression loss functions in detail. Section 

4 reports experimental results on standard datasets 

and detection frameworks. Finally, Section 5 

concludes the paper with key findings and outlines 

potential avenues for future research. 

For clarity, the acronyms frequently used in this 

paper are summarized in Table 1. 
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Table 1. List of acronyms used in this paper 

Acronym Definition 

ROD Rotated Object Detection 

OBB Oriented Bounding Box 

HBB Horizontal Bounding Box 

PoA Periodicity of Angle 

EoE Exchangeability of Edges 

IoU Intersection over Union 

CSL Circular Smooth Label  

DCL Densely Coded Labels 

PSC Phase-Shifting Coder  

GWD Generalized Wasserstein Distance 

KLD Kullback-Leibler Divergence 

KFIoU Kalman Filter-based IoU  

BD Bhattacharyya Distance  

DOTA 
Dataset for Object deTection in Aerial 

images 

HRSC High resolution ship collections 

2. CHALLENGES IN DESIGNING 

ROTATED OBJECT DETECTION 

LOSSES  

Designing effective regression loss functions for 

ROD presents several unique challenges, primarily 

due to the complex geometry of oriented bounding 

boxes (OBBs). These challenges significantly affect 

learning stability and model accuracy in real-world 

applications such as aerial surveillance and traffic 

analysis. 

2.1. Boundary discontinuity  

Boundary discontinuity remains a major difficulty 

in ROD systems, which makes the loss value 

suddenly increase at the boundary caused by the 

parameterization of angles and edges. This issue is 

closely related to the of angle periodicity (PoA) and 

edge exchangeability (EoE).  

PoA indicates the cyclical nature of angle 

representation, where angles like 𝜃 and 𝜃 + 2𝜋 

denote the same orientation. In many ROD 

frameworks, this periodicity causes sharp 

discontinuities in loss values near angle wrap-

around points (e.g., transitioning from 179 degrees 

to -180 degrees). As a result, small angular 

differences can lead to a significant change in loss 

value, causing instability during the model's 

training.  

EoE refers to the ambiguity that arises when 

swapping the width and height of a rotated bounding 

box results in an equivalent box with a different 

angle. For instance, (i.e. (𝑥, 𝑦, 𝑤, ℎ, 𝜃) and 
(𝑥, 𝑦, ℎ, 𝑤, θ + π/2)) represent the same region but 

have different parameterizations. This can confuse 

the model during training, forcing it to learn 

unnecessarily complex transformations, such as a 

large rotation (clockwise) instead of a minor 

correction (counterclockwise), thereby reducing 

regression stability and accuracy. 

2.2. Square-like problem  

In rotated object detection, the square-like problem 

arises when dealing with objects that are nearly 

square. In such cases, different angle values can 

represent visually similar bounding boxes. For 

example, angles of 0 degrees and -89 degrees may 

correspond to nearly identical squares. However, 

standard regression losses often produce large loss 

values for such differences, despite minimal 

geometric discrepancy. This problem may hinder 

the model in predicting objects with aspect ratios 

close to 1. 

2.3. Inconsistency between loss and metric 

In conventional horizontal object detection, 

Intersection over Union (IoU) metric is commonly 

applied to evaluate the overlap between predicted 

and ground-truth bounding boxes. However, a well-

known issue is that traditional regression losses (e.g. 

𝑙𝑛-norms) do not align well with the IoU metric. 

When extended to rotated object detection, the 

direct use of IoU loss poses extra difficulties, such 

as increased computational complexity and non-

differentiable regions in the parameter space, which 

hinder optimization. 

The intersection of two rotated boxes forms an 

irregular polygon rather than a rectangle, unlike 

axis-aligned boxes. Computing this intersection 

involves multiple steps: 1) determining intersection 

points; 2) sorting these points in an anti-clockwise 

order based on their coordinates; 3) computing the 

polygon area using computational geometry 

methods (e.g. the Shoelace formula). These 

operations are computationally expensive and 

include non-differentiable components, such as 

conditional logic and sorting. 

Moreover, the intersection operation involves 

conditional logic that is not differentiable with 

respect to the bounding box parameters, such as sort 

operators. Although several works attempt to use 

several custom operations, the computation of 

rotated IoU still fails to be differentiable in certain 

corner cases, for instance, when two boxes produce 

more than eight intersection points due to partial 

edge overlap. Therefore, it is crucial to design a 

simple yet fully differentiable approximation of IoU 

loss for rotated object detection. 
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3. REGRESSION LOSSES IN ROTATED 

OBJECT DETECTION 

To overcome the aforementioned challenges, a 

range of regression loss functions have been 

proposed, each designed to minimize discrepancies 

between predicted and ground-truth bounding boxes 

while handling rotation-specific issues. These loss 

functions can be broadly categorized into four main 

types: 𝑙𝑛-norm, angular encoding, approximated 

IoU, and Gaussian distribution-based losses. Each 

category offers distinct advantages depending on the 

detection scenario and task requirements. This 

section presents a detailed survey of these loess 

functions, highlighting their mathematical 

properties, strengths, and limitations. An overview 

of the taxonomy is illustrated in Figure 2. 

3.1.  𝒍𝒏-norm loss function 

Regression loss functions are a core component of 

modern object detection frameworks. For horizontal 

bounding boxes, the model typically predicts four 

parameters for location and size (𝑥𝑝, 𝑦𝑝, 𝑤𝑝, ℎ𝑝) to 

match the ground truth (𝑥𝑡 , 𝑦𝑡 , 𝑤𝑡 , ℎ𝑡), and the        

𝑙𝑛-norm loss is calculated as: 

ℒ𝓇ℯℊ = 𝑙𝑛-norm(Δ𝑥, Δ𝑦, Δ𝑤, Δℎ) 

where 𝛥𝑥 = 𝑥𝑝 − 𝑥𝑡, 𝛥𝑦 = 𝑦𝑝 − 𝑦𝑡 , 𝛥𝑤 =

𝑙𝑛(𝑤𝑝 𝑤𝑡⁄ ), and 𝛥ℎ = 𝑙𝑛(ℎ𝑝 ℎ𝑡⁄ ) (in anchor based 

detectors, 𝛥𝑥 and 𝛥𝑦 are normalized by size of 

anchor). The common 𝑙𝑛-norm-based loss used in 

object detection are L1, L2, and Smooth L1 loss. 

While L1 loss is the lack of sensitivity to small 

localization errors, L2 loss is highly sensitive to 

outliers. Smooth L1 (Girshick , 2015) loss combines 

the benefits of L1 and L2. Mathematically, the 

Smooth L1 loss is defined as: 

                 

In ROD, these losses are extended to include an 

angle parameter 𝜃. Pan et al. (2020) directly applies 

the L1 loss for the regression of rotation angles 

|𝜃𝑝 − 𝜃𝑡|. To deal with the Periodicity of Angle 

(PoA) problem, other works transform the angle 

difference by trigonometric or modulo functions 

𝛥𝜃 = 𝑓(𝜃𝑝 − 𝜃𝑡) or 𝑓(𝜃𝑝) − 𝑓(𝜃𝑡).  Ding et al. 

(2018) uses modular module (𝜃𝑝 − 𝜃𝑡) 2⁄ 𝜋 to 

adjust the angle offset target to fall in [0,2𝜋]for the 

convenience of computation Han et al. (2021) 

simply added 𝑘𝜋 where 𝑘 is an integer, to ensure the 

angular difference remains within the range 
[−𝜋 4⁄ , 3 𝜋 4⁄ ]. Modulated loss (Qian et al., 2021) 

introduced the modulated loss, which ensures a 

continuous formulation by removing angle 

periodicity and address the ambiguity between 

height and width: 

𝑙𝑚𝑟 = min(𝑙𝑛-norm(Δ𝑥, Δ𝑦, Δ𝑤, Δℎ, Δθ),

𝑙𝑛-norm(Δ𝑥, Δ𝑦, Δ𝑤
′, Δℎ′, 90 −  Δθ)) 

where 𝛥𝑤′ = 𝑤𝑝 − ℎ𝑡 and 𝛥ℎ′ = ℎ𝑝 − 𝑤𝑡. Other 

works transform the angle difference by 

trigonometric functions. For example, Ming et al. 

(2021) employs tangent transforms instead of 

working directly with angles to prevent abrupt 

changes near the angle warp-around boundary, 

making learning more stable for the angle difference 

near 0 degrees or 180 degrees. However, 𝑡𝑎𝑛(𝜃𝑝 −

𝜃𝑡) approaches infinity near 𝜋 2⁄ + 𝑘𝜋, making it 

unstable in some corner cases. Lang et al. (2019) 

computes the sine of the angle offset to ensure the 

loss function is smooth, differentiable, and bounded. 

This method is particularly useful in tasks where 

direction of the object is not essential (e.g. remote 

sensing, scene text detection, etc.) because it cannot 

distinguish -𝜋 and 𝜋 radians. For applications such 

as autonomous driving, where distinguishing 

between forward and backward directions is crucial 

for accurate navigation, the sine-cosine loss 

computed as 𝑙𝑛 − norm (𝑠𝑖𝑛(θ𝑝) −

𝑠𝑖𝑛(θ𝑡), 𝑐𝑜𝑠(θ𝑝) − 𝑐𝑜𝑠(θ𝑡)) is more suitable (Yin 

et al., 2021). 

To address the Exchangeability of Edges (EoE), 

recent detectors adopt a long-edge definition, where 

ℎ is determined as the longer side of bounding 

boxes, and 𝜃 is defined by long side ℎ and the 

horizontal 𝑥-axis.  
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Figure 2. Taxonomy of the regression loss functions for ROD problem  

3.2. Angular encoding 

Angular encoding-based methods reformulate angle 

regression as a classification task by discretizing the 

angular range into a fixed number of intervals. Each 

interval corresponds to a class label, enabling angle 

prediction through classification. For example, with 

a 180 degrees angle range, and interval size 𝜔 

degree, the number of classes is 𝑇 = 180 𝜔⁄ . 

However, the periodic nature of angles, directly 

applying standard classification loss functions may 

lead to poor performance, especially near boundary 

points. To address this problem, Yang et al. (2020) 

introduced a circular smooth label (CSL) method to 

achieve better angular representation. CSL handles 

the periodic nature of angles and increases error 

tolerance for adjacent angles by smoothing labels in 

a circular manner. This approach effectively 

mitigates boundary discontinuities and enhances 

detection accuracy for arbitrarily oriented objects. 

Given the ground truth angle 𝜃, the circle smooth 

label for class 𝑥 is expressed as: 

 

where 𝑔(𝑥) is a window function, and 𝑟 is radius. 

With 𝜃 is center, an ideal window function 𝑔(𝑥) is 

required to obey four appealing properties: 

periodicity 𝑔(𝑥) = 𝑔(𝑥 + 𝑘𝑇), 𝑘 ∈ 𝑁, symmetry 

(𝑔(𝜃 + 𝜖) = 𝑔(𝜃 − 𝜖),∨ 𝜖 ∨ 𝑟, maximum (𝑔(𝜃) =
1), monotonically non-increasing from the center 

point toward both sides (𝑔(𝜃 ± 𝜖) ≤ 𝑔(𝜃 ± 𝜁),∨
𝜁 ∨∨ 𝜖 ∨ 𝑟). Four types of window function are 

employed, including pulse, rectangular, triangle, 

and Gaussian functions. While CSL effectively 

handles angular discontinuity, it introduces 

computational overhead due to its expanded 

prediction layer and does not resolve the square-like 

problem. To tackle these issues, Yang et al. (2021) 

proposed a re-weighting scheme named Angle 

Distance and Aspect Ratio Sensitive Weighting 

(ADARSW) to adjust the loss function based on 

angular distance and aspect ratio of the object. The 

ADARSW is based on the sine of angle difference, 

which is formulated as 𝑊ADARSW(Δθ) =

𝑠𝑖𝑛 (α(θ𝑔 − θ𝑝)) where 𝛼 is set to 1 if the aspect 

ratio of the ground truth bounding box satisfies 

ℎ𝑔 𝑤𝑔⁄ > 𝑟, and 𝛼 = 2 otherwise. Here, ℎ𝑔 and 𝑤𝑔 

are the long and short sides of ground truth bounding 

boxes, respectively, and 𝑟 denote the aspect ratio 

threshold. The final loss is the multiplication of 

ADARSW and classification loss. When the height 

and width of ground truth bounding boxes are nearly 

equal, the period becomes 90 degrees (𝛼 = 2), 

effectively resolving the square-like problem. 

Moreover, Densely Coded Labels (DCL) are 

introduced for angle classification, which are a more 

compact representation compared to CSL. This 

encoding approach not only enhances training 

efficiency but also significantly improves detection 

accuracy. Yu et al. (2023) introduce a differentiable 

angle coding method named Phase-Shifting Coder 

(PSC), which represents angles as periodic phases to 

address the boundary discontinuity problem. They 

further introduced PSCD (Phase-Shifting Coder 

with Dual-frequency), which maps angular 

periodicity across multiple frequency domains. This 
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dual-frequency design effectively resolves both 

boundary discontinuity and square-like issues in a 

unified framework. 

Despite their advantages, angular encoding methods 

have several limitations. Transforming angle 

regression into a classification problem increases 

model complexity and computational cost. 

Moreover, integrating these methods often requires 

non-trivial modifications to existing detection 

architectures, particularly in the loss design and 

training pipeline. Lastly, the inconsistency between 

classification-based losses and geometric evaluation 

metrics (e.g., IoU) remains unresolved. 

3.3. Approximated IoU loss 

In general object detection, IoU is a widely used 

metric to evaluate the performance of detection 

models. However, 𝑙𝑛-norm-based regression losses 

focus on minimizing differences in box parameters 

(e.g., center coordinates, width, height), rather than 

optimizing for spatial overlap. This misalignment 

can degrade performance in certain cases. For 

instance, two large boxes with minimal overlap may 

yield a small 𝑙𝑛-norm loss but a poor IoU score, 

while small boxes with high parameter similarity 

may still have low spatial overlap. To address this 

inconsistency, existing horizontal detectors 

introduced IoU-based loss, such as IoU (Yu et al. 

2016), Generalized IoU (Rezatofighi et al., 2019), 

and Complete IoU (Zheng et al., 2020) losses. 

Unfortunately, these formulations are not directly 

applicable to oriented bounding boxes (OBBs) due 

to their geometric complexity.  

Zhou et al. (2019) explored the computation of 

differentiable IoU for rotated boxes. Their approach 

involves: (1) determining polygon intersection 

points, (2) sorting them in counter-clockwise order, 

and (3) calculating the area using the Shoelace 

formula. However, this method is computationally 

expensive and includes non-differentiable 

components such as sorting. While unofficial 

implementations attempt to approximate 

differentiability using gather operators, the Rotated 

IoU (RIoU) remains non-differentiable in certain 

cases - e.g., when two OBBs have more than eight 

intersection points or partially coincident edges. 

Therefore, developing efficient and fully 

differentiable approximations of RIoU loss remains 

an open challenge. 

Several works (Yang et al., 2019, 2021, 2022a); 

approximated Rotated IoU loss by combining 𝑙𝑛-

norm loss and Rotated IoU: 

ℒ(𝐵𝑝, 𝐵𝑡) =
ℒ𝓇ℯℊ(𝐵𝑝, 𝐵𝑔)

|ℒ𝓇ℯℊ(𝐵𝑝, 𝐵𝑔)|
|𝑓(𝑅𝐼𝑜𝑈)| 

where 𝐵𝑝(𝑥𝑝 , 𝑦𝑝 , 𝑤𝑝, ℎ𝑝, 𝜃𝑝) and 

𝐵𝑔(𝑥𝑔, 𝑦𝑔 , 𝑤𝑔, ℎ𝑔, 𝜃𝑔) are predicted and ground truth 

bounding boxes, respectively. 𝑓(⋅) represents the 

loss function related to RIoU (e.g. 𝑙𝑜𝑔(⋅)). ℒ𝓇ℯℊ is 

combination of Smooth L1 loss for angle and 

horizontal IoU loss for (𝑥, 𝑦, 𝑤, ℎ) parameters: 

ℒ𝓇ℯℊ

= ℒSmoothL1(θ𝑝 , θ𝑔)

− IoU (𝐵𝑝(𝑥𝑝 , 𝑤𝑝, 𝑤𝑝, ℎ𝑝), 𝐵𝑔(𝑥𝑔, 𝑦𝑔, 𝑤𝑔, ℎ𝑔)) 

The approximate rotated IoU can be subdivided into 

two parts: ℒ𝓇ℯℊ(𝐵𝑝 , 𝐵𝑔)/|ℒ𝓇ℯℊ(𝐵𝑝, 𝐵𝑔)| specifies 

the gradient propagation directions, whereas 
|𝑓(𝑅𝐼𝑜𝑈)| controls the magnitude of the gradient. 

Although the proposed loss is fully differentiable 

and can smooth the boundary loss jump, it still 

requires a complex RIoU calculation process. In 

addition, its gradient direction is still dominated by 

the angle regression; therefore , the PoA problem is 

not completely resolved.  

Chen et al. (2020) introduced the Pixels Intersection 

over Union loss (PIoU) to improve OBB regression 

by approximating IoU in a pixel-wise manner. PIoU 

loss simply counts the number of overlap pixels by 

employing a differentiable kernel function that 

computes the accumulated contributions of interior 

overlapping pixels. However, PIoU loss involves 

more complex calculations than traditional loss 

functions (e.g. 𝑙𝑛-norm loss). Its performance is 

highly affected by the grid size; thus, it may not 

always handle occlusions or overlapping objects 

optimally. 

3.4. Gaussian distribution-based loss  

Recent studies propose a unified and advanced 

approach to overcome boundary discontinuity and 

the square-shaped ambiguities by emplying 

Gaussian distribution. In this framework, the 

conventional oriented bounding box representation 

𝐵(𝑥, 𝑦, 𝑤, ℎ, 𝜃) is reformulated as a bivariate 

Gaussian distribution 𝑁(𝜇, 𝛴) where the mean 𝜇 =
(𝑥, 𝑦) represents the object center, and the 

covariance matrix 𝛴1 2⁄ = 𝑅𝑆𝑅𝑇 , with R denoting 

the rotation matrix and S the diagonal eigenvalue 

matrix. The specific derivations of R and S are 

defined as follows:  
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An important advantage of Gaussian formulation is 

that the orientation is captured via trigonometric 

encoding, thereby eliminating issues caused by 

angular periodicity. Furthermore, the parameters of 

OBB are co-optimized, enabling interdependence 

throughout the training process. For comparing two 

multivariate Gaussian distributions, metrics such as 

Generalize Wastersein Distance (GWD) (Yang et 

al., 2021), Kullback-Leiber Divergence (KLD) 

(Yang et al., 2021), Kalman Filter-based IoU 

(KFIoU) (Yang et al., 2022b), and Bhattacharyya 

Distance (BD) (Thai et al., 2025) are commonly 

adopted. The bivariate Gaussian formulation of 

bounding boxes introduces following characteristics 

that effectively tackle certain challenges in 

computing regression losses for ROD: 

− Property 1: Two bounding boxes defined as 

𝐵(𝑥, 𝑦, 𝑤, ℎ, 𝜃) and 𝐵(𝑥, 𝑦, ℎ, 𝑤, 𝜃 − 𝜋 2⁄ ) 
correspond to the same Gaussian form, i.e., 

𝛴(𝑤, ℎ, 𝜃) = 𝛴(ℎ, 𝑤, 𝜃 − 𝜋 2⁄ ), which eliminates 

the problem of edge exchangeability (EoE). 

− Property 2: The bounding boxes defined as 

𝐵(𝑥, 𝑦, 𝑤, ℎ, 𝜃) and 𝐵(𝑥, 𝑦, 𝑤, ℎ, 𝜃 − 𝑘𝜋), with 𝑘 ∈
𝑍, produces equivalent Gaussian forms. This 

property resolves angle periodicity (PoA) problem. 

− Property 3: if width and height of the bounding 

box are similar (𝑤 ≈ ℎ), 𝛴(𝑤, ℎ, 𝜃) = 𝛴(𝑤, ℎ, 𝜃 −
𝑘 𝜋 2⁄ ) where 𝑘 is an integer. This property prevents 

square-like problem. 

Generalize Wasserstein Distance (GWD) (Yang et 

al., 2021) is a valuable metric for measuring the 

distance between two probability distributions, 

particularly useful in comparing Gaussian 

distributions due to its consideration of both the 

mean and covariance. For two multivariate 

Gaussian distributions 𝑋𝑝 ∼ 𝑁(𝜇𝑝, 𝛴𝑝) and 𝑋𝑡 ∼

𝑁(𝜇𝑡 , 𝛴𝑡), the GWD can be formally expressed as: 

𝑊2
2(𝑋𝑝, 𝑋𝑡) = |μ𝑝 − μ𝑡|

2

+ 𝑇𝑟 (Σ𝑝 + Σ𝑡

− 2(Σ𝑝
1/2
Σ𝑡Σ𝑝

1/2
)
1/2
) 

Because GWD is sensitive to large error, Yang et al. 

(2021) applies a non-linear transformation 𝑔(𝑑) =

1 − 1 (𝜏 + 𝑓(𝑑))⁄  to normalize the distance with 

range [0,1], where 𝜏 ≥ 1 is hyper-parameter, and 

𝑓(⋅) is a non-linear function (e.g. sqrt, ln, etc.). 

GWD provides a differentiable approximation of 

RIoU loss, effectively mitigating the boundary 

discontinuity and square-like problems. 

4. EXPERIMENTAL  

4.1. Dataset 

Experiments were performed on two popular 

datasets for oriented object detection: DOTA (Xia et 

al., 2018) and HRSC2016 (Liu et al., 2017). DOTA 

dataset contains 2,806 large-scale aerial images 

collected from multiple platforms and sensors, 

encompassing 15 object categories. The dataset is 

partitioned into 1,411 training images, 458 

validation images, and the remainder images 

reserved for testing. Since the ground-truth labels 

for the test set are unavailable, results must be 

submitted to an official evaluation server. 

HRSC2016, on the other hand, is a prominent 

dataset for high-resolution remote sensing with a 

focus ship detection. It includes of over 1,000 high-

resolution images covering a wide variety of vessel 

types under diverse and challenging conditions. 

Each image is densely annotated with bounding 

boxes, orientations, and precise ship locations. 

4.2. Evaluation protocol  

The experiment setup was implemented using the 

MMRotate framework (Zhou et al., 2022). All 

evaluations were carried out with RetinaNet (Lin et 

al., 2017) and R3Det (Yang et al., 2021) both 

utilizing ResNet50 (He et al., 2016) architecture as 

backbone network. For the DOTA-v1.0 dataset, 

input images were resized to 1024 × 1024 pixels, 

whereas HRSC2016 samples were adjusted to 800 × 

800. The preprocessing pipeline included 

normalization along with extensive data 

augmentation, such as random cropping and 

flipping operations (horizontal, vertical and 

diagonal) applied with a probability of 0.25.  

Model training was carried out for 20 epochs on 

DOTA-v1.0 dataset and 50 epochs on HRSC2016. 

AdamW (Ilya Loshchilov & Frank Hutter, 2019) 

was adopted as optimize, initializing with learning 

rate of 1e-4, gradually reduced to1e-8 using the 

cosine annealing strategy, to ensure stable 

convergence. The experiments were conducted with 

a batch size of 2. 

In the evaluation process, we adopted dataset-

specific metrics to assess detection performance. 

For the DOTA dataset, we used 𝐴𝑃50 (Average 

Precision at 50% IoU threshold) as the primary 

evaluation metric. Meanwhile, for the HRSC2016 
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dataset, we employed 𝐴𝑃50: 𝐴𝑃95, which considers 

Average Precision across multiple IoU thresholds 

ranging from 50% to 90%. This metrics provide a 

robust assessment of the models’ ability to localize 

rotated objects under various overlap conditions. 

Due to computational constraints, we evaluated a 

selected set of representative loss functions from 

each category, with an emphasis on Gaussian-based 

losses, which have shown strong performance in 

addressing ROD-specific challenges. This focused 

approach allows us to draw meaningful comparisons 

while maintaining practical feasibility. 

4.3. Experimental results 

Table 2 provides a detailed evaluation of ROD 

losses on the DOTA-1.0 dataset. For RetinaNet, a 

variety of loss types are used, including the 𝑙𝑛-norm 

with Smooth L1 loss (Girshick, 2015), two Angular 

Encoding methods: CSL (Yang et al., 2020) and 

DCL (Yang et al., 2021), an Approximate IoU 

method with IoU-Smooth L1 loss (Yang et al., 

2019), and several Gaussian-based losses such as 

GWD (Yang et al., 2021), KLD (Yang et al., 2021), 

KFIoU (Yang et al., 2022b), and BD Loss (Thai et 

al., 2025). 

 

Figure 3. A conceptual illustration of representing a rotated bounding box using a bivariate Gaussian 

distribution (Yang et al., 2021)

Kullback-Leibler Divergence (KLD): (Yang et al., 

2021) shows that GWD loss does not obey the scale-

invariant property of IoU, and introduces a suitable 

regression loss for ROD named KLD loss. When 

applied to two-dimensional Gaussian distributions, 

the KLD provides a measure of how one distribution 

diverges from another, capturing both shifts in mean 

and differences in covariance structure 

(conceptulized in Figure 3). Given two Gaussian 

distributions, 𝑋𝑝 𝑁(𝜇𝑝, 𝛴𝑝) and 𝑋𝑡  𝑁(𝜇𝑡 , 𝛴𝑡), the 

KLD from 𝑋𝑝 to 𝑋𝑡 is computed as: 

KLD(𝑋𝑡||𝑋𝑝) =
1

2
(log

|Σ𝑝|

|Σ𝑡|
− 𝑑 + Tr(Σ𝑝

−1Σ𝑡) +

(μ𝑝 − μ𝑡)
𝑇
Σ𝑝
−1(μ𝑝 − μ𝑡))      

Because each term of 𝐷𝐾𝐿(𝑋𝑝 || 𝑋𝑡) is partial 

parameter coupling, all parameters of bounding 

boxes are jointly optimized. This ensures that the 

loss function does not become overly sensitive to 

under-fitting in any of the parameters, thereby 

maintaining a balanced optimization process. 

Similar to GWD, the final regression loss is 

obtained by applying the non-linear transformation 

𝑔(⋅), 𝐿𝐾𝐿𝐷(𝑋𝑝 || 𝑋𝑡) = 𝑔 (𝐷𝐾𝐿(𝑋𝑝 || 𝑋𝑡)). 

Kalman Filter-based IoU (KFIoU) (Yang et al., 

2022b): KFIoU estimates the overlap between two 

Gaussian distributions using Kalman filter to 

achieve better trend-level alignment with Rotated 

IoU. The overlap area is defined as 𝛼𝑁(𝜇, 𝛴) =
𝑁(𝜇1, 𝛴1)𝑁(𝜇2, 𝛴2) where 𝜇 = 𝜇1 + 𝐾(𝜇2 − 𝜇1), 
𝛴 = 𝛴1 − 𝐾𝛴1, and 𝐾  =  Σ1(Σ1  +  Σ2)

−1 is the 

Kalman gain. The overlap area 𝛼𝑁(𝜇, 𝛴) is not a 

Gaussian-like distribution when 𝑁(𝜇1, 𝛴1) and 

𝑁(𝜇2, 𝛴2) are far away. Therefore, authors use an 

additional center point loss 𝐿𝑐 to allow the entire 

loss to continue optimizing in non-overlapping 

cases. The overlap is defined as: 

KFIoU =
𝒱(Σ)

𝒱(Σ1) + 𝒱(Σ2) − 𝒱(Σ)

=
|Σ|1/2

|Σ1|
1/2| + |Σ2|

1/2 − |Σ|1/2
 

where 𝒱(Σ) = 2𝑛|Σ|1/2 (𝑛 is the number of 

dimensions) denotes the volume of the rotated 
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bounding box. The overall regression is total of 

ℒ𝒸 = ln((μ2 − μ1)
𝑇Σ1

−1(μ2 − μ1) + 1) and ℒ𝑘𝑓 =

𝑒1−𝐾𝐹𝐼𝑜𝑈 − 1. By using Kalman filter, this loss 

achieves better trend-level alignment with Rotated 

IoU than GWD and KLD loss, as verified by 

measuring the error variance.  

Bhattacharyya Distance (BD) (Thai et al., 2025) 

introduces a promising alternative regression loss 

function based on Bhattacharyya distance, which is 

designed to measure the partial overlap between two 

probability distributions. The Bhattacharyya 

Distance between two multivariate Gaussian 

distributions 𝑁(𝜇𝑝, 𝛴𝑝) and 𝑁(𝜇𝑡 , 𝛴𝑡) is calculated 

as follows: 

𝐷𝐵(𝑋𝑝, 𝑋𝑡) = α
1

8
(μ𝑝 − μ𝑡)

𝑇
Σ−1(μ𝑝 − μ𝑡)

+
1

2
ln

(

 
|Σ|

√|Σ𝑝| ⋅ |Σ𝑡|)

  

where 𝛴 = (𝛴𝑝 + 𝛴𝑡) 2⁄  is the average of two 

covariance matrices, and 𝛼 is a hyper-parameter to 

adjust the impact of mean different term. The final 

regression loss is ℒℬ𝒟 = 1 − 1/(1 + √𝐷𝐵). Unlike 

KLD and GWD, BD satisfies all desirable IoU loss 

properties: non-negativity, symmetry, triangle 

inequality, and scale-invariance. 

Table 2. Result on the DOTA-1.0 test set (measured by mean 𝑨𝑷𝟓𝟎) 

Model    Loss Type    Loss 𝑨𝑷𝟓𝟎 

RetinaNet  

(Lin et al., 2017) 

   𝑙𝑛-norm     Smooth L1 (Girshick, 2015) 68.43 

   Angular Encoding    CSL (Yang et al., 2020) 69.51 

   Angular Encoding    DCL (Yang et al., 2021) 69.79 

   Approximate IoU    IoU-Smooth L1 (Yang et al., 2019) 69.49 

   Gaussian-based    GWD Loss (Yang et al., 2021) 70.07 

   Gaussian-based    KLD Loss (Yang et al., 2021) 70.31 

   Gaussian-based    KFIoU Loss (Yang et al., 2022b) 69.96 

   Gaussian-based    BD Loss (Thai et al., 2025) 71.86 

R3Det 

(Yang et al., 2021) 

   𝑙𝑛-norm    Smooth L1 (Girshick, 2015) 69.80 

   Gaussian-based    GWD Loss (Yang et al., 2021) 72.82 

   Gaussian-based    KLD Loss (Yang et al., 2021) 72.12 

   Gaussian-based    KFIoU Loss (Yang et al., 2022b) 72.60 

   Gaussian-based    BD Loss (Thai et al., 2025) 73.41 
 

The performance of RetinaNet varies with each loss 

type, with the Bhattacharyya Distance Loss 

achieving the highest 𝐴𝑃50 of 71.86, indicating its 

effectiveness in improving model accuracy. On the 

other hand, R3Det is evaluated using similar loss 

settings, except Angular Encoding and Approximate 

IoU-based losses. Gaussian-based loss functions 

demonstrate superior performance, with the BD 

Loss achieving the highest 𝐴𝑃50 score of 73.41 for 

this model. This suggests that the Gaussian-based 

loss functions significantly enhance detection 

capabilities. Overall, the table highlights the 

importance of selecting appropriate loss functions 

and demonstrates the potential of Gaussian-based 

methods in boosting object detection performance. 

Table 3 shows the effectiveness of Gaussian-based 

loss functions, particularly BD Loss, in enhancing 

object detection performance on the HRSC2016 

dataset. For RetinaNet, Gaussian-based losses 

outperform the 𝑙𝑛–norm with Smooth L1 loss, with 

BD Loss achieving the highest 𝐴𝑃50: 𝐴𝑃95 score of 

56.25. This indicates the superior ability of BD Loss 

in capturing complex spatial relationships and 

providing robust performance, better than GWD 

(52.33), KLD (54.78), and KFIoU (49.15). In the 

R3Det model, Gaussian-based losses are 

consistently more effective, with BD Loss again 

delivering the top performance at 57.86. This 

further confirms BD Loss's enhanced accuracy and 

robustness, surpassing GWD (56.42), KLD (57.79), 

and KFIoU (55.41). BD Loss demonstrates 

outstanding performance across both models, 

emphasizing its effectiveness in enhancing object 

detection on HRSC2016. The consistent superiority 

of BD Loss among Gaussian loss types emphasizes 

its capacity to better handle the intricacies of object 

localization and classification. 
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Table 3. Evaluation on HRSC2016 dataset. The evaluation metric is mean 𝑨𝑷𝟓𝟎: 𝑨𝑷𝟗𝟓 

Model    Loss Type    Loss 𝑨𝑷𝟓𝟎: 𝑨𝑷𝟗𝟓 

RetinaNet  

(Lin et al., 2017) 

   𝑙𝑛-norm    Smooth L1 (Girshick, 2015) 44.82 

   Gaussian-based    GWD Loss (Yang et al., 2021) 52.33 

   Gaussian-based    KLD Loss (Yang et al., 2021) 54.78 

   Gaussian-based    KFIoU Loss (Yang et al., 2022b) 49.15 

   Gaussian-based    BD Loss (Thai et al., 2025) 56.25 

R3Det 

(Yang et al., 2021) 

   𝑙𝑛-norm    Smooth L1 (Girshick, 2015) 53.68 

   Gaussian-based    GWD Loss (Yang et al., 2021) 56.42 

   Gaussian-based    KLD Loss (Yang et al., 2021) 57.79 

   Gaussian-based    KFIoU Loss (Yang et al., 2022b) 55.41 

   Gaussian-based    BD Loss (Thai et al., 2025) 57.86 
 

5. CONCLUSION 

In this study, a thorough review of regression loss 

functions for rotated object detection was presented, 

focusing on how they address key challenges such 

as boundary discontinuity, the squared-like 

ambiguities, and inconsistencies between 

optimization objectives and evaluations metric. 

Among the surveyed loss functions, Gaussian-based 

losses were emphasized due to their notable 

effectiveness in improving detection accuracy. 

Comprehensive experiments on the DOTA and 

HRSC2016 benchmarked were conducted to 

evaluate representative loss functions across 

different categories. The evaluation demonstrates 

that Gaussian-based methods, with Bhattacharyya 

Distance in particular, achieve higher precision and 

resilience in object localization. 

For future research, a promising direction is the 

combination of multiple loss functions to leverage 

their complementary advantages. Hybrid 

approaches that integrate angular-based losses, 

Gaussian-based losses and approximated IoU losses 

could further enhance robustness and accuracy in 

rotated object detection. By strategically combining 

these losses, hybrid regression losses can 

simultaneously address their individual weaknesses. 

For instance, a weighted loss could balance the 

stability of angular regression, the probabilistic 

robustness of Gaussian, and the metric alignment of 

approximation IoU-based losses. Alternatively, an 

adaptive mechanism could dynamically adjust the 

contribution of each component depending on 

object characteristics. Such hybridization has the 

potential to deliver improved convergence stability, 

robustness against boundary discontinuities, and 

superior accuracy across diverse datasets. 

Furthermore, we intend to expand the experimental 

scope by incorporating additional datasets, 

exploring varied detection architectures, and testing 

a wider range of regression loss functions. These 

efforts will allow for a more complete assessment of 

robustness and generalization, while offering deeper 

insights into the interaction between loss 

formulation, data properties, and model design. 

Additionally, achieving better computational 

efficiency without sacrificing precision continues to 

be an important objective for practical deployment. 

It is anticipated that this study will provide a useful 

basic for future research on regression loss design in 

rotated object detection. 

REFERENCES  

Chen, Z., Chen, K., Lin, W., See, J., Yu, H., Ke, Y., & 

Yang, C. (2020, August). Piou loss: Towards 

accurate oriented object detection in complex 

environments. In the European Conference on 

Computer Vision (pp. 195-211). Cham: Springer 

International Publishing. 

Ding, J., Xue, N., Long, Y., Xia, G. S., & Lu, Q. (2018). 

Learning RoI transformer for detecting oriented objects 

in aerial images. arXiv preprint arXiv:1812.00155. 

Girshick, R. (2015). Fast R-CNN. In Proceedings of the 

IEEE International Conference on Computer Vision 

(pp. 1440-1448). 

Han, J., Ding, J., Li, J., & Xia, G. S. (2021). Align deep 

features for oriented object detection. IEEE 

Transactions on Geoscience and Remote Sensing, 

60, 1-11. 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep 

residual learning for image recognition. In 

Proceedings of the IEEE Conference on Computer 

Vision And Pattern Recognition (pp. 770-778). 

Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & 

Beijbom, O. (2019). Pointpillars: Fast encoders for 

object detection from point clouds. In Proceedings of 



CTU Journal of Innovation and Sustainable Development  Vol. 17, Special issue on ISDS (2025): 64-74 

74 

the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (pp. 12697-12705). 

Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. 

(2017). Focal loss for dense object detection. In 

Proceedings of the IEEE International Conference 

on Computer Vision (pp. 2980-2988). 

Liu, Z., Yuan, L., Weng, L., & Yang, Y. (2017, 

February). A high resolution optical satellite image 

dataset for ship recognition and some new baselines. 

In International Conference on Pattern Recognition 

Applications and Methods (Vol. 2, pp. 324-331). 

SciTePress. 

Loshchilov, I., & Hutter, F. (2017). Decoupled weight 

decay regularization. arXiv preprint arXiv:1711.05101. 

Ming, Q., Zhou, Z., Miao, L., Zhang, H., & Li, L. (2021, 

May). Dynamic anchor learning for arbitrary-

oriented object detection. In Proceedings of the AAAI 

Conference on Artificial Intelligence (Vol. 35, No. 3, 

pp. 2355-2363). 

Pan, X., Ren, Y., Sheng, K., Dong, W., Yuan, H., Guo, 

X., … & Xu, C. (2020). Dynamic refinement 

network for oriented and densely packed object 

detection. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition (pp. 11207-11216). 

Qian, W., Yang, X., Peng, S., Yan, J., & Guo, Y. (2021, 

May). Learning modulated loss for rotated object 

detection. In Proceedings of the AAAI Conference on 

Artificial Intelligence (Vol. 35, No. 3, pp. 2458-2466). 

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, 

I., & Savarese, S. (2019). Generalized intersection 

over union: A metric and a loss for bounding box 

regression. In Proceedings of the IEEE/CVF 

conference on Computer Vision and Pattern 

Recognition (pp. 658-666). 

Thai, C., Trang, M. X., Ninh, H., Ly, H. H., & Le, A. S. 

(2025). Enhancing rotated object detection via 

anisotropic Gaussian bounding box and Bhattacharyya 

distance. Neurocomputing, 623, 129432. 

Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, 

J., … & Zhang, L. (2018). DOTA: A large-scale 

dataset for object detection in aerial images. In 

Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition (pp. 3974-3983). 

Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, 

Z., … & Fu, K. (2019). Scrdet: Towards more robust 

detection for small, cluttered and rotated objects. In 

Proceedings of the IEEE/CVF International 

Conference on Computer Vision (pp. 8232-8241). 

Yang, X., & Yan, J. (2020, August). Arbitrary-oriented 

object detection with circular smooth label. In 

European Conference on Computer Vision (pp. 677-

694). Cham: Springer International Publishing. 

Yang, X., Hou, L., Zhou, Y., Wang, W., & Yan, J. 

(2021). Dense label encoding for boundary 

discontinuity free rotation detection. In Proceedings 

of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition (pp. 15819-15829). 

Yang, X., Yan, J., Feng, Z., & He, T. (2021, May). 

R3det: Refined single-stage detector with feature 

refinement for rotating object. In Proceedings of the 

AAAI Conference on Artificial Intelligence (Vol. 35, 

No. 4, pp. 3163-3171). 

Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., & 

Tian, Q. (2021, July). Rethinking rotated object 

detection with Gaussian Wasserstein distance loss. In 

International Conference on Machine Learning (pp. 

11830-11841). PMLR. 

Yang, X., Yang, X., Yang, J., Ming, Q., Wang, W., Tian, 

Q., & Yan, J. (2021). Learning high-precision 

bounding box for rotated object detection via 

Kullback-Leibler divergence. Advances in Neural 

Information Processing Systems, 34, 18381-18394. 

Yang, X., Yan, J., Liao, W., Yang, X., Tang, J., & He, T. 

(2022). Scrdet++: Detecting small, cluttered and 

rotated objects via instance-level feature denoising 

and rotation loss smoothing. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 45(2), 

2384-2399. 

Yang, X., Zhou, Y., Zhang, G., Yang, J., Wang, W., 

Yan, J., … & Tian, Q. (2022). The KFIoU loss for 

rotated object detection. arXiv preprint 

arXiv:2201.12558. 

Yin, T., Zhou, X., & Krahenbuhl, P. (2021). Center-based 

3d object detection and tracking. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (pp. 11784-11793). 

Yu, J., Jiang, Y., Wang, Z., Cao, Z., & Huang, T. (2016, 

October). Unitbox: An advanced object detection 

network. In Proceedings of the 24th ACM International 

Conference on Multimedia (pp. 516-520). 

Yu, Y., & Da, F. (2023). Phase-shifting coder: Predicting 

accurate orientation in oriented object detection. In 

Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (pp. 

13354-13363). 

Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. 

(2020, April). Distance-IoU loss: Faster and better 

learning for bounding box regression. In 

Proceedings of the AAAI Conference on Artificial 

Intelligence (Vol. 34, No. 07, pp. 12993-13000). 

Zhou, D., Fang, J., Song, X., Guan, C., Yin, J., Dai, Y., 

& Yang, R. (2019, September). IoU loss for 2d/3d 

object detection. In the 2019 International 

Conference on 3D Vision (3DV) (pp. 85-94). IEEE. 

Zhou, Y., Yang, X., Zhang, G., Wang, J., Liu, Y., Hou, 

L., … & Chen, K. (2022, October). Mmrotate: A 

rotated object detection benchmark using PyTorch. 

In Proceedings of the 30th ACM International 

Conference on Multimedia (pp. 7331-7334). 

 


