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Ensemble clustering leverages multiple methods to identify diverse 

patterns and, instead of depending on a singular approach, generates a 

more dependable and accurate clustering solution. This methodology 

mitigates bias and noise in intricate, high-dimensional data, allowing the 

grouping of biological and genomic big data. Component-based ensemble 

clustering divides data into subsets, applies several algorithms, and then 

aggregates the outcomes to increase performance. This method analyzes 

each data subset independently, facilitating the recognition of various 

patterns while minimizing noise and bias. This paper proposes two novel 

clustering methods that integrate multiple algorithms, including 

Agglomerative Hierarchical Clustering (AHC), K-Means Clustering, 

Hierarchical Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN), Ordering Points to Identify the Clustering Structure 

(OPTICS), Improved Density-Based Spatial Clustering of Applications 

with Noise (IDBSCAN), and Density-Based Spatial Clustering of 

Applications with Noise Plus Plus (DBSCAN++). The second method, 

termed Ensemble Clustering with Each Subset (ECES), employs both 

‘with-replacement’ and ‘without-replacement’ techniques to increase 

variety, minimize redundancy, and improve generalization. The key 

distinction resides in the ensemble step of the second strategy, which 

divides datasets into equal subsets to ensure fairness and comparability. 

This ensures fairness, comparability, and controlled diversity within the 

ensemble, reducing bias, redundancy, and overlap. 
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1. INTRODUCTION 

Clustering or data segmentation in unsupervised 

learning in machine learning and data mining 

research is the process of grouping the data 

instances into clusters, so that instances within a 

cluster have high similarity in comparison to one 

another but are very dissimilar to instances in other 

clusters. Similarities and dissimilarities of instances 

are based on the attribute values described in the 

instances. Cluster analysis is the process of 

partitioning a set of data instances into subsets. Each 

subset is a cluster, such that instances in a cluster are 

similar to one another, yet dissimilar to instances in 

other clusters. The set of clusters resulting from a 

cluster analysis can be referred to as a clustering. It 

can lead to the discovery of previously unknown 

groups within the data. Different clustering methods 

may generate different clustering of the same 
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dataset. Cluster analysis has been widely used in 

many applications such as business intelligence, 

Web search, biology, security, anthropology, 

pattern recognition, and image processing. 

Clustering is sometimes called automatic 

classification. It is also called data segmentation in 

some applications because clustering partitions 

large data sets into groups according to their 

similarity (Farid et al., 2019).  

Clustering is a form of learning by observation. Data 

clustering has recently become a highly active 

research topic because assigning class labels to 

numerous instances can be a very costly process. 

The goal of clustering is to determine the intrinsic 

grouping of a set of unlabeled data. It is the process 

of grouping the instances into clusters (or classes). 

Dissimilarities are assessed based on the attribute 

values describing the instances. Also, a cluster 

usually should consist of a group of instances that 

are similar to one another and are dissimilar to 

instances in other clusters. There are many typical 

requirements of clustering in machine learning, e.g., 

clustering big data, constraint-based clustering, 

dealing with noisy data, etc. Clustering many data 

instances is a very costly process. Most of the 

existing clustering algorithms work well on small 

data sets containing fewer than several hundred data 

instances with few attributes; however, a large data 

set may contain millions of data instances with 

numerous attributes (Farid et al., 2019).  

Component-Based Ensemble Clustering is an 

extension of ensemble clustering, where instead of 

only combining whole partitions from multiple 

clustering solutions, it exploits the substructures 

(components) hidden inside those clusters (Zheng et 

al., 2025). Component-Based Ensemble Clustering 

fills the gap by providing a more stable, robust, and 

fine-grained clustering approach that can handle 

noisy, high-dimensional, and heterogeneous real-

world data in significant areas of healthcare, social 

networks, bioinformatics, and business intelligence, 

where traditional clustering and even standard 

ensemble clustering often fail (Ren et al., 2025; 

Yang et al., 2025). 

In this paper, we have presented two novel 

component-based ensemble clustering methods 

named Independent Heterogeneous Ensemble 

Clustering (IHEC) and Ensemble Clustering with 

Each Subset (ECES-with and without replacement). 

The main contributions of this paper are 

summarized as follows: 

− We have proposed two algorithms named, 

respectively, IHEC and ECES-with and without 

replacement techniques employing Agglomerative 

Hierarchical Clustering (AHC), K-Means 

Clustering, Hierarchical Density-Based Spatial 

Clustering of Applications with Noise 

(HDBSCAN), Ordering Points To Identify the 

Clustering Structure (OPTICS), Improved Density-

Based Spatial Clustering of Applications with Noise 

(IDBSCAN), Density-Based Spatial Clustering of 

Applications with Noise Plus Plus (DBSCAN++)) 

clustering algorithms on 10 benchmark datasets. 

− The proposed clustering methods aim to 

compare the performance of different clustering 

algorithms in different scenarios and perform 

disjoint and non-disjoint subsets to reduce the 

redundancy, multicollinearity, overfitting, and curse 

of dimensionality. 

− We have evaluated the performance of 

Agglomerative Hierarchical Clustering (AHC), K-

Means Clustering, Hierarchical Density-Based 

Spatial Clustering of Applications with Noise 

(HDBSCAN), Ordering Points To Identify the 

Clustering Structure (OPTICS), Improved Density-

Based Spatial Clustering of Applications with Noise 

(IDBSCAN), Density-Based Spatial Clustering of 

Applications with Noise Plus Plus (DBSCAN++)) 

clustering algorithms through the two proposed 

approaches using two techniques (i.e., disjoint and 

non-disjoint subsets) and exploring the patterns and 

behaviors of the employed clustering algorithm in 

different dimensions. 

The rest of the paper is structured as follows: 

Section 2 discusses the literature review. Section 3 

discusses ensemble clustering and proposes 

clustering algorithms. Then, experimental analysis 

and dataset description are shown and discussed in 

the Section 4. Conclusion and future works are 

presented in Section 5. 

2. LITERATURE REVIEW  

Hong et al. (2019) proposed a Gaussian mixture 

model that captures feature-specific influences on 

mixture components, enabling a new component-

level feature saliency measure. Using Markov Chain 

Monte Carlo for estimation, their method 

outperforms traditional feature saliency approaches 

in clustering accuracy and parameter estimation on 

synthetic data. To address the challenge of choosing 

the best clustering algorithm for gene expression 

data, Vukicevic et al. (2016) developed an advanced 

meta-learning framework. It enhances earlier 
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models by enlarging the pool of algorithms, 

broadening the dataset descriptors (meta-features), 

and applying cutting-edge techniques for feature 

selection and model tuning (Tian & Zhang, 2025). 

This method is tested extensively—across 504 

algorithms and 30 datasets—and proved highly 

effective in predicting which algorithms would 

perform best for specific data scenarios (Liu et al., 

2021). 

Li (2010) introduced two new methods— Multi 

Optimisation Consensus Clustering (MOCC) and 

K-Ants Consensus Clustering (KACC)—to boost 

ensemble clustering performance that leverages 

heuristic optimization strategies (Simulated 

Annealing and Ant Colony Optimisation) for better 

consensus clustering. These approaches showed 

superior accuracy compared to existing techniques, 

with results and in-depth evaluations presented in 

his research. Chen et al. (2025) presented 

contrastive ensemble clustering (CEC), a novel 

ensemble clustering approach that leverages latent 

representation learning and contrastive 

regularisation to extract meaningful patterns from 

noisy data. By combining a consensus model with a 

locality-preserving contrastive component, CEC 

delivers superior clustering performance and 

pioneers the use of contrastive learning in ensemble 

clustering (Zhou et al., 2025). Zhang et al. (2025) 

introduced Structured Bipartite Graph Learning 

(SBGL), which enhances ensemble clustering by 

constructing bipartite graphs from sample-cluster 

similarity matrices of base clustering. These graphs 

are projected into sample-latent-cluster graphs 

(Zhan et al., 2025), which are then combined into a 

unified bipartite graph with a clear cluster structure. 

The final clustering is extracted from this graph. 

SBGL accommodates varying numbers of clusters 

across base clustering, contributing to improved 

overall performance. 

Xu et al. (2025) proposed Sparse Dual-Weighting 

Ensemble Clustering (SDWEC), which improves 

clustering by weighting base clusterings and their 

clusters while enforcing sparsity to select 

informative components. It directly learns cluster 

indicators, reduces information loss, and uses an 

efficient convergent linear-time optimization 

algorithm. Mahmud et al. (2025) proposed an 

ensemble clustering method for large-scale data 

using the RSPCA framework, which partitions data 

into random, distribution-preserving blocks. A 

subset of these blocks is clustered individually, and 

the results are aggregated to approximate the full 

data clustering. The process supports incremental 

updates for greater robustness. The I-niceDP 

algorithm estimates the number of clusters, while 

the k-means refines the centroids. Spectral and 

correlation clustering are consensus functions that 

handle complex cluster patterns (Shang, 2025; Wei, 

2025). 

In our literature review, we did a rigorous 

exploration, and no direct research work was found 

on our research, Component-Based Ensemble 

Clustering. We cannot provide a direct comparison 

with other state-of-the-art approaches for the 

reasons mentioned above. 

3. ENSEMBLE CLUSTERING 

Ensemble clustering is an approach that combines 

multiple clustering algorithms to create a robust and 

effective clustering solution, usually producing 

superior results compared to individual methods (Li, 

2025; Yu, 2025). The primary objective of ensemble 

clustering is to consolidate the outcomes of various 

clustering methods into a single and more accurate 

clustering result. Let 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑁 denotes an 

unlabeled dataset consisting of N instances. The task 

of clustering is to partition 𝑋 into 𝑘 clusters 

𝐶1, 𝐶2, … , 𝐶𝑘, satisfying the conditions: 

𝐶𝑖 ≠  ∅, 𝑓𝑜𝑟 𝑖 =  1,2, … , 𝑘.  𝑤ℎ𝑒𝑟𝑒 ⋃ Ci

k

i=1

= X; 

Ci ⋂ Cj = ∅, 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖 ≠ 𝑗,     𝑖, 𝑗 =  1,2, … , 𝑘.  (1) 

Given multiple clustering results obtained from 

different clustering algorithms or different 

parameter settings, an ensemble clustering approach 

aims to integrate these results into a single 

consensus clustering that achieves higher accuracy 

and robustness. Formally, suppose we have a set of 

M clustering algorithms. 

𝒜 = 𝐴1, 𝐴2, … , 𝐴𝑀 applied to dataset 𝑋. Each 

algorithm 𝐴𝑚 produces a partition. The ensemble 

clustering problem can be mathematically 

represented as a function ℱ that maps the set of 

partitions into a final consensus partition ∏∗. 

3.1. Component-Based Ensemble 

Component-based ensemble clustering enhances 

unsupervised learning on complex, high-

dimensional data by pre-processing and grouping 

relevant instances, clustering each group 

independently, and merging results via ensemble 

methods. This modular strategy improves accuracy, 

scalability, and robustness. Consider an unlabeled 

data set, where a set of features characterizes each 

instance. Ensemble clustering based on components 
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divides the data into separate or overlapping subsets 

(components) to leverage structural differences and 

mitigate the impact of dimensionality and noise. 

Formally, let it be partitioned into distinct 

components: 

 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑆, 𝑤ℎ𝑒𝑟𝑒 

⋃ 𝑋𝑠

𝑆

𝑠=1

= X  and  𝑋𝑖 ∩ 𝑋𝑗 = ∅, ∀𝑖 ≠ 𝑗.  (2) 

In set theory, two components (or sets) are said to 

be non-disjoint if they share at least one common 

element. Formally, for two components A and B, 

this condition is expressed as 

𝐴 ∩  𝐵 ≠ ∅. (3) 

In general, a partition of a set requires the 

components (subsets) to be mutually disjoint. 

However, when the components are non-disjoint, 

the partition condition is relaxed, allowing overlaps 

among components. 

Formally, let a set 𝑋 be covered by a family of 

components 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑘} such that 

⋃ 𝐶𝑖 = 𝑋

𝑘

𝑖=1

.   ( 4) 

If there exist indices 𝑖 ≠ 𝑗 such that 

 𝐶𝑖 ∩ 𝐶𝑗 ≠ ∅, (5) 

then the family 𝒞 constitutes a cover of 𝑋 by non-

disjoint components. 

Each component is clustered independently 

clustered, using clustering algorithms. Denote by 

the clustering outcome the i-th clustering algorithm 

applied to the component, given as: 

 

𝐶(𝑞)(𝑋𝑠) = 𝐶(𝑞)𝑠, 1, 𝐶(𝑞)𝑠, 2, . . . , 𝐶
𝑠,𝐾𝑠

(𝑞)
(𝑞)

, (6) 

Where represents the number of clusters produced 

by the i-th clustering algorithm applied to the 

component. The ensemble clustering problem aims 

to integrate these individual clustering outcomes 

into a single consensus clustering, represented as: 

𝐶∗ = 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝐶(𝑞)(𝑋𝑠).𝑞=1,…,𝑄,𝑠=1,…,𝑠 ). (7) 

The consensus clustering maximises a clustering 

validity measure, such as cluster compactness or 

separation, subject to a constraint on minimising 

disagreement between component clusters (Hu & 

Rezaeipanah, 2025). Formally, the consensus 

clustering objective can be expressed as follows. 

𝐶∗ = arg max
𝐶

∑ ∑ 𝑆𝑖𝑚 (𝐶, 𝐶(𝑞)(𝑋𝑠)) ,

𝑄

𝑞=1

𝑆

𝑠=1

 (8) 

Where 𝑆𝑖𝑚(𝑖, 𝑗) denotes a measure of similarity 

between the outcomes of the cluster. 

3.2. Proposed Clustering Methods 

We have taken a dataset as input, D. The dataset has 

a set of features 𝑋𝑖, where N is the number of 

attributes of a dataset. We employed six existing 

clustering algorithms: (1) Agglomerative 

Hierarchical Clustering (AHC), (2) K-Means 

Clustering, (3) Hierarchical Density-Based Spatial 

Clustering of Applications with Noise 

(HDBSCAN), (4) Ordering Points To Identify the 

Clustering Structure (OPTICS), (5) Improved 

Density- Based Spatial Clustering of Applications 

with Noise (IDBSCAN), (6) Density-Based Spatial 

Clustering of Applications with Noise Plus Plus 

(DBSCAN++)) on 10 datasets. 

In the first concept, named Independent 

Heterogeneous Ensemble Clustering (IHEC), we 

directly applied six existing clustering algorithms: 

(1) Agglomerative Hierarchical Clustering (AHC), 

(2) K-Means Clustering, (3) Hierarchical Density-

Based Spatial Clustering of Applications with Noise 

(HDBSCAN), (4) Ordering Points To Identify the 

Clustering Structure (OPTICS), (5) Improved 

Density-Based Spatial Clustering of Applications 

with Noise (IDBSCAN), (6) Density-Based Spatial 

Clustering of Applications with Noise Plus Plus 

(DBSCAN++)) on 10 datasets and analysis the 

performances of the each clustering algorithms. The 

IHEC is a baseline concept in ensemble cluster 

analysis, and it does not involve any part of the 

concept of component-based ensemble clustering. 
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Figure 1. Independent Heterogeneous Ensemble Clustering (IHEC) 

In the second concept, named Ensemble Clustering 

with Each Subset (ECES), we divided the dataset 

into an equal number of subsets (m, k) as per the 

employed six clustering algorithms, according to the 

technique of with and without replacement. Then, 

we have identified the best-performing algorithm 

for individual datasets according to the performance 

measure metrics in the clustering problem called 

cluster compactness. We have counted the 

percentage of the best-performing algorithms and 

explored the patterns based on the best-performing 

algorithm for each dataset, based on the minimum 

compactness score of the cluster. We have selected 

the majority percentage of the best-performing 

algorithm with different techniques (i.e., 

independent, with and without replacement) and 

recognised the patterns that indicate which 

algorithm with a specific technique performs well in 

which dataset type. 

Implementation of the proposed clustering 

algorithms 1 and 2, named, respectively, 

Independent Hetero- geneous Ensemble Clustering 

(IHEC) and Ensemble Clustering with Each Subset 

(ECES), can be accessed from the GitHub page 

(https://github.com/marufgreat/Component-

BasedEnsembleClustering.git). 

Algorithm 1: Independent Heterogeneous Ensemble Clustering (IHEC) 

Require: Dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} 

Ensure: Best clustering result 𝐶∗ based on minimum cluster compactness (comp.) 

1: Initialize clustering algorithms 𝒜 = {AHC, KMeans, OPTICS, HDBSCAN, IDBSCAN, DBSCAN++} 
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2: Initialize an empty list of clusterings  𝒞 ← [ ] 

3: Initialize an empty list of compactness scores 𝒮  ←  [ ] 

4: for each algorithm 𝐴_𝑖 ∈  𝒜 do 

5: Apply 𝐴𝑖 to the full dataset 𝑋 to obtain clustering Ci 

6: Compute compactness score 𝑠𝑖 ← ComputeCompactness(𝑋, 𝐶𝑖) 

7: Append 𝐶𝑖 to 𝐶 

8: Append 𝑠𝑖 to 𝒮 

9: end for 

10: 𝐶∗ ← 𝒞[arg min(𝒮)]                           ▷ Select clustering with minimum compactness 

11: return 𝐶∗ 

12: function COMPUTEDCOMPACTNESS(𝐷, 𝐶) 

13: 𝑘 ← number of unique clusters in C, excluding noise (-1 if present)  

14: TotalCompactness ← 0, ValidClusters ← 0 

15: for each cluster label c ∈ 𝐶 do 

16:      if |𝐶𝑐 | > 1 and 𝑐 ≠ −1 then 

17:  P ← all pairs 𝑥𝑖 , 𝑥𝑗 ∈ 𝐶𝑐 

18:  DistSum ← ∑ ||𝑥𝑖 − 𝑥𝑗||𝑥𝑖,𝑥𝑗∈𝑃   

19:  PairCount ← (|𝐶𝑐|

2
) 

20:  Compactnessc ←  
𝐷𝑖𝑠𝑡𝑆𝑢𝑚

𝑃𝑎𝑖𝑟𝐶𝑜𝑢𝑛𝑡
  

21:  TotalCompactness ← TotalCompactness + Compactnessc 

22:  ValidClusters ← ValidClusters + 1  

23:     end if 

24: end for 

25: if ValidClusters = 0 then 

26:  return ∞                     ▷ All clusters are noise or singletons 

27: end if 

28: return 
𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠

𝑉𝑎𝑙𝑖𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠
  

29: end function 
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Figure 2.  Ensemble Clustering with Each Subset (ECES) 

Algorithm 2: Ensemble Clustering with Each Subset (ECES) 

1: Input: Dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

2: Output: Final clustering labels 𝐿𝑓𝑖𝑛𝑎𝑙  with minimum cluster compactness(comp.) 

3: Divide 𝑋 into m disjoint (without replacement) subsets 𝑋1, 𝑋2, . . . , 𝑋𝑚                ▷ One per algorithm  

4: Divide 𝑋 into k non-disjoint (with replacement) subsets 𝑋1, 𝑋2, . . . , 𝑋𝑘                 ▷ One per algorithm  

5: Define clustering algorithms 𝒜 = {AHC, K-Means, OPTICS, HDBSCAN, IDBSCAN, DBSCAN++} 

6: for each subset 𝑋𝑖 in {𝑋1, … , 𝑋𝑚} do 

7: for each algorithm 𝐴𝑗 in 𝒜 do 

8:  Run 𝐴𝑗 on 𝑋𝑖 to obtain clustering 𝐶𝑖𝑗 

9:         Compute compactness 𝐶𝑃𝑖𝑗 = Compactness(𝐶𝑖𝑗)   

10: end for 
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11: Select 𝐶𝑖
𝑏𝑒𝑠𝑡 arg𝑚𝑖𝑛𝑗 𝐶𝑃𝑖𝑗 

12: Assign 𝐿𝑖 = Labels (𝐶𝑖
𝑏𝑒𝑠𝑡) 

13: end for 

14: for each subset 𝑋𝑙 in {𝑋1 … , 𝑋𝑘} do 

15: for each algorithm 𝐴𝑧 in 𝒜 do 

16:  Run 𝐴𝑧 on 𝑋𝑙 to obtain clustering Clz 

17:  Compute compactness 𝐶𝑃𝑙𝑧  = Compactness (𝐶𝑙𝑧)  

18: end for 

19: Select 𝐶𝑙
𝑏𝑒𝑠𝑡 = arg minz 𝐶𝑃𝑙𝑧 

20: Assign 𝐿𝑙 = Labels (𝐶𝑙
𝑏𝑒𝑠𝑡) 

21: end for 

22: Concatenate all labels 𝐿𝑙 to form 𝐿𝑓inal 

23: return 𝐿𝑓𝑖𝑛𝑎𝑙  

24: function COMPACTNESS(𝐶) 

25: Let 𝐶 = {𝐶1 … , 𝐶𝑘} be the set of clusters  

26: 𝑡𝑜𝑡𝑎𝑙 ←  0;  𝑐𝑜𝑢𝑛𝑡 ←  0 

27: for each cluster 𝐶𝑙 in 𝐶 do 

28:  if |𝐶𝑙 |> 1 then 

29:   Compute average intra-cluster distance: 

d(𝐶𝑙) =
1

|𝐶𝑙|(|𝐶𝐿| − 1)
∑ ||𝑥 − 𝑦||

𝑥,𝑦∈𝐶𝑙 ,𝑥≠𝑦

 

30:   total ← total + d(𝐶𝑙) 

31:   count ← count + 1 

32:  end if 

33: end for 

34: if count = 0 then 

35:  return ∞ d        ▷All clusters are noise or singletons 

36: else 

37:  return 𝑡𝑜𝑡𝑎𝑙/𝑐𝑜𝑢𝑛𝑡 

38: end if 

39: end function 

4. EXPERIMENTAL ANALYSIS 

We have used 10 benchmark datasets in this 

experiment, and the dataset details are shown in 

Table 1. 

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} be a set of 𝑁 data instances 

in Rm, and let this set be partitioned into k 

clusters {𝐶1, 𝐶2, . . . , 𝐶𝑘}. Each cluster 𝐶𝑙 contains 𝑛𝑙 

instances such that ∑ 𝑛𝑙
𝑘
𝑙=1 = 𝑁. 
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The compactness of the clustering, denoted as CP, 

is defined as the average pairwise intra-cluster 

distance, and is given by: 

𝐶𝑃 =
1

𝑁
∑ 𝑛𝑙 (

1

𝑛𝑙(𝑛𝑙−1)/2
∑ 𝑑(𝑥𝑖 , 𝑥𝑗)𝑥𝑖,𝑥𝑗∈𝐶𝑙,𝑖<𝑗 )𝑘

𝑙=1 (9) 

where 𝑑(𝑥𝑖 , 𝑥𝑗) is the distance between instances xi 

and xj within the same cluster Cl . Typically, the 

Euclidean distance is used: 

𝑑(𝑥𝑖 , 𝑥𝑗) = ||𝑥𝑖 − 𝑥𝑗||
2

= √∑ (𝑥𝑖𝑟 − 𝑥𝑗𝑟)
2𝑚

𝑟=1 (10) 

A lower value of CP indicates that instances within 

the same cluster are more tightly packed (i.e., more 

similar), suggesting a better clustering result in 

terms of compactness. Thus, minimizing CP is often 

desirable when evaluating or optimizing clustering 

algorithms. 

1. Cluster Compactness = 0 (zero) 

 – This implies that all instances in every 

cluster are identical or coincide at the same 

point: 𝑑(𝑥𝑖 , 𝑥𝑗) = 0 for all 𝑥𝑖 ,𝑥𝑗 ∈ 𝐶𝑙 . – 

This represents a perfect compactness 

scenario, where intra-cluster distances are 

minimized.  

2. Cluster Compactness = ∞ (infinity) 

  – This indicates that one or more clusters 

 contain either: • Singleton clusters (i.e., 𝑛𝑙 

 = 1, making the denominator zero and the 

 term undefined), or • Instances that are 

 extremely far apart (i.e., 𝑑(𝑥𝑖 , 𝑥𝑗) → ∞).  

– Practically, such a value reflects poorly 

 formed clusters or anomalies in the 

 clustering process, such as noise or 

 misconfigured parameters. 

Table 1. Dataset Description 

No. Datasets No.of Features Feature Types Instances No.of classes (labels) 

1. Breast cancer 9 Nominal 286 2 

2. Wine 13 Numerical 178 3 

3. Diabetes 8 Numerical 768 2 

4. Glass 9 Numerical 214 7 

5. Seeds 7 Numerical 210 3 

6. Magic 10 Numerical 19020 2 

7. Vote 16 Nominal 435 2 

8. Fertility 8 Numerical 100 2 

9. Tic-Tac-Toe 9 Nominal 958 2 

10. Lymphography 18 Numerical 148 4 

4.1. Experimental setup 

We take Google Colab 5, a platform hosted in the 

cloud for coding using Python 3.x (version 3.13.5). 

We consider TensorFlow 6 (version 2.19), an open-

source library for running machine learning 

algorithms. We also consider Scikit Learn (version 

1.7.0) 7 for applying traditional clustering 

algorithms (i.e., Agglomerative Hierarchical 

Clustering (AHC), K-Means Clustering, 

HDBSCAN, OPTICS, IDBSCAN, DBSCAN++, 

etc.). We take the NumPy and Pandas frameworks, 

that utilize straightforward techniques for handling 

and manipulating scientific data. We use the 

Matplotlib framework for plotting, subplots, and 

constructing images. 

4.2. Result and discussion  

Tables 2, 3, and 4 show the comparison results of 

cluster compactness (CCp) of proposed approaches, 

respectively, Independent Heterogeneous Ensemble 

Clustering (IHEC), Ensemble Clustering with Each 

Subset (ECES-Without Replacement), and 

Ensemble Clustering with Each Subset (ECES-With 

Replacement). FIGURE 3, 4, and 5 illustrate the 

comparison of experiment cluster compactness 

(CCp) result and behaviour of the proposed 

approaches, respectively, IHEC, ECES-without 

replacement, and ECES-with replacement, with the 

x-axis denoting the value of CCp that we take from 

our experiment and the y-axis denoting each 

benchmark dataset that we employ in our 

experiment. In Table 2 and Figure 3, the OPTICS 

clustering algorithm performs outstandingly in our 

novel IHEC technique. Its remarkable performance 

is observed through all the datasets taken in our 

experiment, except the magic dataset. It shows 

about 90% of the total experimental datasets. 

In Table 3 and Figure 5, the OPTICS clustering 

algorithm also shows outstanding performance in 

our novel technique of ECES without replacement. 
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Its impressive performance is observed across all 

the datasets in our experiment, except the Tic-Tac-

Toe dataset. It also shows that across 90% of the 

total experimental datasets, the same as another 

novel technique of IHEC that was previously 

discussed. 

In Table 4 and Figure 4, we observed from the 

experiment that a single clustering algorithm does 

not show outstanding performance for all the 

datasets, as previously mentioned, novel techniques 

of IHEC and ECES-without replacement. The 

OPTICS clustering algorithm performs well with 

our novel technique of ECES-with replacement in 

the following datasets (i.e., Magic, Vote, Fertility, 

and Tic-Tac-Toe) compared to the other clustering 

algorithms (i.e., AHC, K-Means, HDBSCAN, 

IDBSCAN, DBSCAN++). It shows about 40% of 

the total experimental datasets. 

We get the best results from the Agglomerative Hi- 

Hierarchical Clustering (AHC) clustering algorithm 

to employ our novel ECES-with-replacement 

technique. The AHC clustering algorithm performs 

well in the following datasets (i.e., Breast cancer, 

Wine, Diabetes, Glass, and Seeds) compared to the 

other clustering algorithms (i.e., K-Means, OPTICS, 

HDBSCAN, IDB-SCAN, DBSCAN++). It shows 

approx. 50% of the total experimental datasets. 

Eventually, in 10% cases, the lymphography dataset 

with the K-Means clustering algorithm performs 

well compared to the other clustering algorithms in 

the technique of ECES-with replacement. 

We found a significant pattern in our experiments. 

The OPTICS clustering algorithm performs poorly 

only for the high-dimensional dataset (i.e., magic 

(19,020, 10)) in our IHEC technique compared to 

our other experimental datasets. Here, the magic 

dataset has the highest number of samples (19,020) 

compared to all our experimental datasets. The 

DBSCAN++ clustering algorithm performs very 

well, especially in this case, compared to other 

clustering algorithms. The OPTICS clustering 

algorithm with ECES-with replacement technique 

performs well for the high-dimensional datasets 

(i.e., magic (19,020, 10), tic-tac-toe (958, 9)) 

compared to our other experimental datasets. 

The magic and tic-tac-toe datasets hold the highest 

number of instances or samples, respectively, 

19,020 and 958, compared to other total 

experimented datasets in our experiment. On the 

contrary, the K- Means and AHC clustering 

algorithms perform well on both a high number of 

features and a few instances or samples compared to 

the number of features ratio of the datasets, 

respectively lymphography (148, 18), and Wine 

(178, 13), Diabetes (768, 8) as well as compared to 

other experimented datasets in our experiment.

Table 2. Comparison of Cluster Compactness of IHEC algorithm 

Datasets AHC   K-Means  HDBSCAN OPTICS IDBSCAN DBSCAN++ 

Breast cancer 3.6712 3.6426 2.4079 1.6306 2.6048 4.2072 

Wine 3.9059 3.5629 2.8102 2.0622 2.9904 4.9521 

Diabetes 3.3885 3.3872 2.2250 1.4020 2.1137 2.3605 

Glass 2.8834 3.3914 1.5025 0.9479 1.4596 3.2385 

Seeds 1.7208 1.8536 1.8461 0.8929 1.2800 1.8821 

Magic 1.2322 1.2376 0.8142 0.4005 0.6372 0.3087 

Vote 4.7213 4.5993 1.3653 0.6176 2.9975 5.3450 

Fertility 3.6759 3.7167 2.4659 2.0340 3.0673 4.3522 

Tic-Tac-Toe 3.8482 3.8294 4.1109 2.4818 2.4818 3.8827 

lymphography 5.3664 5.2568 3.0397 2.5452 5.0683 5.4693 
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Table 3. Comparison of Cluster Compactness of ECES - without replacement 

Datasets AHC   K-Means  HDBSCAN OPTICS IDBSCAN DBSCAN++ 

Breast cancer 3.4596 3.4028 2.6645 1.6813 3.2547 4.2072 

Wine 3.5234 3.4092 2.7963 2.7606 3.9257 4.9521 

Diabetes 3.2507 3.0315 3.0027 1.6179 2.8323 3.7592 

Glass 2.4390 2.3263 2.2847 0.9691 2.0835 3.2385 

Seeds 1.8873 1.8397 1.8500 1.4957 1.6471 1.8822 

Magic inf. inf. inf. 3.2880 inf. inf. 

Vote 4.1106 4.0247 2.0820 0.8304 3.2582 5.3450 

Fertility 3.6788 3.6084 2.5539 2.0940 3.8206 4.3522 

Tic-Tac-Toe 3.9042 3.8632 4.1720 4.0155 4.0155 4.1697 

lymphography 4.8448 4.9193 3.3583 2.5452 5.2418 5.4693 

Table 4. Comparison of Cluster Compactness of ECES - with replacement 

Datasets AHC   K-Means  HDBSCAN OPTICS IDBSCAN DBSCAN++ 

Breast cancer 0.3981 3.6131 2.4079 2.3963 0.4657 inf. 

Wine 0.9261 3.4990 3.5475 2.8221 inf. inf. 

Diabetes 0.7529 3.5023 2.3165 1.7558 inf. inf. 

Glass 0.3978 3.7015 inf. 0.8400 inf. inf. 

Seeds 0.9301 1.9338 2.3019 1.3891 inf. inf. 

Magic 3.7773 3.6867 3.6230 2.9219 inf. inf. 

Vote 0.0000 4.1355 3.5012 1.8972 inf. inf. 

Fertility 0.0000 3.1890 inf. 2.7153 inf. inf. 

Tic-Tac-Toe 0.0000 3.8143 3.0983 2.9225 inf. inf. 

lymphography 0.0000 2.6956 inf. 5.7306 inf. inf. 

Figure 3. Independent Heterogeneous Ensemble Clustering (IHEC) 

Figure 4. Ensemble Clustering with Each Subset (ECES-with replacement)
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Figure 5. Ensemble Clustering with Each Subset (ECES-without replacement) 

5. CONCLUSION AND FUTURE WORK 

This paper presents two clustering techniques 

amalgamated with six clustering algorithms: AHC, 

K-Means, HDBSCAN, OPTICS, IDBSCAN, and 

DBSCAN++. We have introduced the with-

replacement and without- replacement techniques in 

the second approach, Ensemble Clustering with 

Each Subset (ECES), to explore the diversity of the 

datasets and ensure the diversity, redundancy, and 

generalisation capability of the proposed clustering 

techniques. The key difference between the first and 

second approaches is the equal number of subsets 

employing clustering algorithms called ensemble 

clustering. We do the ensemble clustering through 

the second approach to ensure fairness and 

comparability, reduce bias, control ensemble 

diversity, reduce redundancy and overlap, improve 

generalisation assessment, simplify evaluation, and 

fusion. In the first approach, we directly employed 

each clustering algorithm on the datasets without 

using any ensemble technique to explore the 

patterns and behavior of each clustering algorithm, 

like AHC, K-Means, HDBSCAN, OPTICS, 

IDBSCAN, and DBSCAN++. In the future, we will 

apply subspace search methods (i.e., bottom- up 

approaches like CLIQUE, top-down approaches, 

and metaheuristic-based approaches) with 

component clustering. The subspace search method 

broadly refers to optimization or learning 

approaches that, rather than exploring the entire 

(often high-dimensional) solution space, confine the 

search to a lower-dimensional subspace that is 

easier to handle, more structured, and more likely to 

yield promising solutions. Subspace search methods 

focus on identifying clusters within feature subsets, 

as clusters might not be apparent in the whole high-

dimensional space due to the curse of 

dimensionality. 
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