CTU Journal of Innovation and Sustainable Development

Vol. 17, Special issue on ISDS (2025): 106-116

CTU Journal of Innovation

and Sustainable Development ‘
ISSN 2588-1418 | e-ISSN 2815-6412 - e

DOI:10.22144/ctujoisd.2025.058

Enhancing text-to-SQL capabilities of small language models via schema context
enrichment and self-correction

Le Gia Kiet, Le Quoc Khanh, Nguyen Minh Nhut, and Nguyen Dinh Thuan®
Faculty of Information Systems, University of Information Technology, Vietnam National University Ho Chi

Minh City, Viet Nam

*Corresponding author (thuannd@uit.edu.vn)

Article info.

ABSTRACT

Received 8 Jul 2025
Revised 15 Aug 2025
Accepted 5 Oct 2025

Keywords

Database schema context
enrichment, graph clustering,
natural language processing,
open-source models, small
language models (SLMs),
text-to-SQL

Translating natural language into SQL is essential for intuitive database
access, yet open-source small language models (SLMs) still lag behind
larger systems when faced with complex schemas and tight context
windows. This paper introduces a two-phase workflow designed to
enhance the Text-to-SQL capabilities of SLMs. Phase 1 (offline) transforms
the database schema into a graph, partitions it with Louvain community
detection, and enriches each component in a cluster with metadata,
relationships, and sample rows. Phase 2 (at runtime) selects the relevant
tables, generates SQL queries, and iteratively refines the SQL through an
execution-driven feedback loop until the query executes successfully.
Evaluated on the Spider test set, our pipeline raises Qwen-2.5-Coder-14B
to 86.2% Execution Accuracy (EX), surpassing its zero-shot baseline and
outperforming all contemporary SLM + ICL approaches and narrowing
the gap to GPT-4-based systems all while running on consumer-grade
hardware. Ablation studies confirm that both schema enrichment and self-
correction contribute significantly to the improvement. The study
concludes that this workflow provides a practical methodology for
deploying resource-efficient open-source SLMs in Text-to-SQL
applications, effectively mitigating common challenges. An open-source
implementation is released to support further research.

1. INTRODUCTION

The rapid advancement of Large Language Models
(LLMs) has significantly transformed natural
language processing, demonstrating impressive
capabilities across various tasks. In the realm of
database interaction, these models have greatly
enhanced Text-to-SQL systems, which translate
natural language questions into executable SQL
queries (Gao et al., 2023; Pourreza & Rafiei, 2023;
Li et al., 2025; Wang et al., 2025). State-of-the-art
proprietary models like GPT-40 demonstrate this
potential by achieving high accuracy on complex
benchmarks (Hong et al., 2025). However, the

substantial computational resources required by
these large models often limit their accessibility and
practicality for widespread deployment. This has
spurred growing interest in Small Language Models
(SLMs), which offer a more resource-efficient
alternative, balancing performance with lower costs
and deployment flexibility, making them attractive
candidates for specific applications like Text-to-
SQL interfaces.

Despite the promise of SLMs, applying open-source
variants to complex, real-world Text-to-SQL tasks
remains challenging. Practical database schemas
often dwarf the complexity found in benchmarks

106

CTU Journal of Innovation and Sustainable Development

like Spider, leading to significant performance
degradation, particularly for smaller models.
Furthermore, open-source SLMs generally lag
behind proprietary counterparts like GPT-40 in
handling intricate queries and large schemas (Chen
et al., 2024), often due to their scale and inherent
limitations.

1.1. Core challenges

Although open-source small language models
(SLMs) have made notable strides, their deployment
in practical Text-to-SQL systems is still hampered
by four interlocking challenges that jointly constrain
schema understanding, context retention, and query
correctness.

T

S Exceeds _\\
LLMm ?‘ context wmdcw/;
NN AH 2
Generate L ===
Description [c]
e —— R
— “lagd
(@ Response <
"""""" Timeout Y
column | |column ;_/)
I —
e | [Full Database e =
Schema
’Tnsmps‘ with Enl ~ - g Hallucination 5
N
Description L
Sample rows s _’\\ﬁ //‘

Figure 1. Challenges in vanilla database schema
context enrichment

Understanding Complex Schemas: Grasping the
semantics of large, real-world database schemas,
SLMs struggle to comprehend relationships in
large/ambiguous schemas, leading to mapping
errors and severely degrading SQL quality.

Context-Window Limitations: Finite context
windows restrict the amount of information that can
be processed. Including complete details for
expansive schemas is often infeasible, a problem
exacerbated for SLMs which may have smaller
windows and weaker long-input comprehension,
forcing a trade-off between context sufficiency and
overload.

— Accuracy and Hallucination: Generating
incorrect or non-executable SQL is a common issue.
SLMs may hallucinate tables/columns or create
flawed logic, particularly for complex operations
like multi-table joins or nested queries, impacting
the reliability of the output.

— Performance Gap and Self-Correction Needs: A
noticeable performance gap exists compared to
leading proprietary models, with SLMs tending to
produce more errors. This necessitates robust self-
correction mechanisms that leverage execution

107

Vol. 17, Special issue on ISDS (2025): 106-116

feedback, as basic error messages often prove
insufficient for these models.

Figure 1 illustrates how these general obstacles
manifest concretely in the schema-description
enrichment step, where the system extracts metadata
from a database and uses an LLM to generate
enhanced descriptions.

1.2. Novel two-phase workflow approach

To overcome the foregoing obstacles, we introduce
a two-phase workflow that lifts the Text-to-SQL
performance of open-source SLMs without
exceeding consumer-grade resources.

1.2.1. Database schema context enrichment

Instead of truncating schemas, we model the
database as a graph (tables as nodes, foreign keys as
edges) and apply Louvain community detection
(Banda & Motik, 2020) to cluster tables into
semantically coherent groups. This reduces
complexity by processing related tables together.
Each cluster's context is enriched with metadata,
relationships, and sample data, enabling the SLM to
infer semantics and reduce hallucinations.

1.2.2. SQL generation and self-correction

For large databases, relevant schema are first
selected based on the natural language query. The
SLM then generates an initial SQL query using the
enriched context. Critically, a rule-based validation
step is applied to ensure the generated SQL is
syntactically correct. Then, an execution-based self-
correction loop iteratively refines the query: it's
executed against the database, and any error
messages are fed back to the SLM for revision until
the query runs successfully or a retry limit is met,
grounding generation in real-world validity.

This two-stage design addresses key bottlenecks
such as schema understanding, context limits, and
generation correctness providing a scalable
framework for deploying open-source SLMs in
realistic Text-to-SQL scenarios.

1.3. Key contributions

Our main contributions center on enhancing Text-
to-SQL capabilities for open-source Small
Language Models (SLMs). (1) We introduce a novel
two-phase workflow specifically tailored to address
the challenges SLMs face with schema complexity,
context limitations, and query accuracy. (2) This
workflow includes a schema enrichment strategy
that employs graph modeling and Louvain
clustering to create semantically coherent table

CTU Journal of Innovation and Sustainable Development

groups, enabling more efficient and context-aware
prompting. Furthermore (3) we present a multi-step
query generation framework incorporating rule-
based validation and, crucially, an execution-driven
self-correction loop that utilizes real database
feedback to iteratively refine SQL accuracy. To
promote transparency, reproducibility, and broader
adoption, (4) we also provide an open-source
implementation compatible with diverse SLM
backends.

1.4. Related work

Text-to-SQL research evolved from early systems to
Pre-trained Language Models like BERT and T5
(Wong et al., 2024), which improved translation but
often required significant fine-tuning or struggled
with complex schemas (Qi et al., 2022; Li et al.,
2023). Subsequently, Large Language Models
(LLMs) like GPT, Gemini, and Claude advanced the
field using In-Context Learning (ICL) or Fine-
Tuning (FT) (Hong et al., 2025). Alongside these
advancements, attention has increasingly turned to
open-source Small Language Models (SLMs) (e.g.,
Llama, Phi, Qwen (Hui et al., 2024)). While offering
transparency and efficiency benefits, these SLMs
face pronounced challenges with large schemas and
complex queries compared to proprietary LLMs,
often due to inherent scale limitations affecting
context handling and comprehension (Li et al.,
2024; Mohammadjafari et al., 2025).

A key challenge remains schema understanding and
linking, where language models, particularly open-
source SLMs, can falter with large or ambiguous
schemas (Gao & Luo, 2025). Addressing this often
involves techniques like schema filtering, graph-
based representations (GNNSs, clustering) (Cai et al.,
2021) for efficient structuring, context enrichment,
bidirectional linking (Cao et al., 2024), schema
reduction, and wusing Retrieval-Augmented
Generation (RAG) to dynamically provide relevant
schema context. Such methods are especially
pertinent for SLMs operating under tighter
constraints. Our graph-based clustering aligns with
these efforts, aiming to manage schema complexity
within the typical context capabilities of SLMs.

Ensuring SQL accuracy is another critical hurdle, as
language models may generate incorrect SQL or
hallucinate elements. This demands robust
solutions, especially when working with SLMs.
Relevant approaches include query decomposition
(e.g., DIN-SQL; Pourreza & Rafiei, 2023, and DTS-
SQL which specifically targets SLMs; Pourreza &
Rafiei, 2024), intermediate representations

108

Vol. 17, Special issue on ISDS (2025): 106-116

(NatSQL; Gan et al., 2021), Chain-of-Thought
prompting (Tai et al., 2023), and self-correction
mechanisms. Techniques leveraging execution-
based feedback (MAC-SQL; Wang et al., 2025) or
critic models (SQLCritic; J. Chen et al., 2025) are
particularly valuable for refining potentially
inaccurate outputs from these SLMs, inspiring our
own execution-driven correction loop.

Standard evaluation uses benchmarks like Spider
(Yu et al, 2019) with metrics like Execution
Accuracy (EX) and Exact Matching (EM). The
recognized performance gap for open-source SLMs
on such complex tasks provides strong motivation
for our two-phase workflow, which combines
graph-based schema enrichment and execution-
driven self-correction specifically to enhance their
Text-to-SQL performance.

2. MATERIALS AND METHOD

This section outlines our proposed two-phase
methodology aimed at improving the accuracy of
smaller open-source LLMs (less than 14B
parameters) on complex Text-to-SQL tasks. The
workflow begins with Phase I: Database Schema
Context Enrichment, an offline process that
converts intricate database schemas into more
manageable and semantically richer representations
tailored to LLM context limits, utilizing graph-
based clustering (as depicted in Figure 2). Next,
Phase II: SQL Generation and Self-Correction takes
place at query time, utilizing the enriched schema
context to translate natural language questions into
SQL queries and incorporating an execution-based
self-correction loop to enhance accuracy (illustrated
in Figure 3). This structured approach methodically
tackles challenges such as schema complexity,
context window limitations, and query inaccuracies
inherent in smaller models.

2.1. Materials
2.1.1. Models

To evaluate our schema enrichment and SQL
generation pipeline, we compare two open-source
models with distinct design emphases:

Qwen2.5-Coder:14B (Hui et al., 2024) - A code-
specialized variant of Qwen2.5 model and further
refined for programming tasks. Its strengths in
syntax, schema comprehension, and code reasoning
make it a good candidate for SQL generation.

Phi-4:14B - A generalist model focused on
reasoning, diverse training data underpins strong
logical across domains.

CTU Journal of Innovation and Sustainable Development

Vol. 17, Special issue on ISDS (2025): 106-116

PHASE 1 - Databasce Schema Context Enrichment

Louvain .
Commumity
partitioning

°7| Get Sample Rows |

Schema Detal Promat

Tahlun
Addrasses (Addrass 1o
VARCH,

naz

ThTECER KT, Line L

£11an1s (11ENT_LL INTECER [PA], address_io)
INTEGER. Erail...)
Sample data:
<lient_ID, Acdress ID, Evail
\ 1, john.hegeail.con
e

i
crass_LU -+ Addressas ASdvess Lo

Each

6 executes separately,

Schama detaila

Tahins

column | okmn

iy

Fslatiansnpe

Sampla o Foretgn key:

Lni @D
P
Extract Generate
DB Schema Database Description
/x \ (o) H
las

Climmts . fabiires_T7 + Arlressms dildrees,

SCREMS SIMQIRCSN0N Fromat

Bricl Descriplion

4701000 [FK]. Frocuct hame
DECTMAL . ..
TFR]. ASaress_IL INTEGER,

W Snis Dats
" oEo

Seharna detalls
Databage St Dats

Dep

Generate
Takles & Columns
Description

™

Figure 2. Overview of the proposed Database Schema Context Enrichment methodology

Both models are deployed in quantized format
Q4 K M GGUF format to enable -efficient
inference on consumer-grade hardware while
maintaining high performance. For the experiments,
we use a machine equipped with an RTX 4060 Ti
GPU with 16GB of VRAM, representing typical
hardware constraints faced by end-users. This
comparison reveals whether a code-focused
architecture or a broadly trained generalist better
leverages enriched schema context for accurate SQL
synthesis.

2.1.2. Datasets

We evaluate on the Spider dataset (Yu et al., 2019),
a large-scale, cross-domain Text-to-SQL
benchmark comprising /0,181 questions and 5,693
SQL queries over 200 databases in 138 domains. Its
complex queries (e.g., multi-table joins, nested
subqueries) make it a standard testbed; we report
results on the official development and test splits.

2.2. Method
2.2.1. Database schema context enrichment

Database Schema Graph Representation - The
relational database schema is formally modeled as
an undirected graph

109

G = (V,E)

where the set of vertices V represents the tables
within the database, and the set of edges
E represents the foreign key relationships between
tables.

These edges are extracted from the relations field
within column metadata, with duplicates removed
for computational efficiency. The resulting graph
structure effectively captures the inherent
connectivity of the database schema.

E = {(wv)|uw,v € V A 3 ForeignKey(u,v) }

Louvain-based community detection - To
effectively manage complex database schemas, we
apply the Louvain community detection algorithm
(Banda & Motik, 2020) to the schema graph. This
algorithm partitions the graph by maximizing the
modularity metric Q:

2|

ij

1
T 2m

kik;
9 am

Q 8(ci, 1)

where A;; represents the edge between nodes i and
j, k; is the sum of edges connected to node i, ¢; is

CTU Journal of Innovation and Sustainable Development

the community of node i, and § is the Kronecker
delta function. As an optimization, for schemas
where |V| < 5, we simply define a single cluster
containing all tables. For larger schemas, we
construct an appropriate graph representation and
apply the community detection algorithm with a
parameter resolution 2.5 to control community
granularity.

The algorithm yields a partition P = {C;, C, ..., Cy}
of tables into disjoint clusters. These clusters are
then sorted by size in descending order, with tables
within each cluster alphabetically ordered by their
identifiers for consistent presentation.

Overview database schema context generation -
Before the cluster-level enrichment phase, the
system first compresses the entire schema G into a
simple prompt representation to save tokens,
yielding

Pgimple = SIMPLE(G)

From this compact prompt Pgmpe, the SLM is
instructed to generate a global description of the
database, formalised by the function

Sglobal(G) = {Ddb: Tdesc}

More concretely,

= Dy, = aconcise description of the whole database

" Thesc = {(T], D%}]‘_O”) |T] EG } (table description)

The resulting set Egopa(G) acts as a high-level
“mental map” that underpins the subsequent cluster-
specific context enrichment performed for every
cluster C;.

Cluster-specific context generation - For each
identified cluster C;, we generate comprehensive
contextual information to provide the LLM with
sufficient understanding of the related tables. The
enrichment process can be formalized as a function
&, that generates structured context for each cluster:

E(C) = {Dap, Tmetas COlinfo: Rfk' Saata}

where:
" Dyp

* Teea ={(T; D) | 7, € i}

= Database description

110

Vol. 17, Special issue on ISDS (2025): 106-116

* Colingo =

{(coljk, typejk, key]-k,Dmljk) | coly, €T}, Tj € C; }

[Rfk
{(T,, coly, Ty, coly) | T, Ty € C;, (T, Tpy) € E}

" Sdata = {(Tj'{rl' ""rm}) | T] € Cl}

The enriched representation includes database/table
descriptions, detailed column metadata (names,
types, keys), inter-table relationships (within and
across clusters), and sample data rows to clarify
semantics.

The implementation follows a workflow pattern
with error handling and retry mechanisms. For each
cluster, the process attempts up to three retries if the
initial generation fails. After generation, the
descriptions are mapped back to the original
schema, updating only fields that were previously
empty or contained placeholder values.

7, =min{j € {1,23}:Ej,) * 0},

E; (C), t; exists,

Efinai(C) = { @

,otherwise,

This approach preserves existing high-quality
metadata while enriching incomplete elements. The
enrichment process overcomes limitations of purely
structural clustering by providing localized context
that integrates structural details, semantic
descriptions, and concrete data examples. The
workflow tracks metrics including success rates and
processing times to measure effectiveness.

2.2.2. SQL generation and self-correction

This phase executes at query time, taking a user's
natural language question (NLQ) and the enriched
schema representations from Phase I. The workflow
implements a multi-step process with selective table
filtering, SQL generation, validation, execution, and
error correction. The detailed process is shown in
Figure 3.

Relevant table selection - When a database
contains many tables, we first narrow down to only
those likely needed to answer the user’s query.
Formally, we define:

§: QX {Ty, Ty, Ty} — (T, Ty, T 3

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

Where Q is the natural language question and {Trj} Soum (0, {T}) = SLM(P.etrioval),

is the subset of tables deemed relevant.
where the prompt Prerieyal CONtains:

Concretely:
= The user’s query Q,
S(Q,(TL,) = {{Tz}Ll <, = A list of all table names T; alongside their
' - Saum(@Q AT}iz) n> 71 brief descriptions,

= An instruction to “return the full set of all
tables that might be relevant to answering Q.”

With threshold 7 (e.g. T = 3). when n > 7, we

call:
—— PHASE II - SQL Generation and Self-Correction
PHASE 1
. LDambals_e btl:lemn mmmm e mmmmmmm e e m e m e m e e e e m e e e e m e m mm e e m e m e m e e e mmm e m o m o m o m -
' ‘ontext Enrichment | § 1 - 1
1 @ 1
! a Extract um_tables > able Selectol) wanrow |
1 [Database DB Schema > threshold Generate SQ ‘ 1
1 ' —3p SunFlow i
1 Full Database : ! et Yes — Enable @ Vi]
! Schema L neine Y '
1
1 with Enhanced ™ 2 Table Selector }_ 4[Generate SQL]i :
e '
. Description L Schema details \
! v conss[Be PrOFESSOR o Fped]]
1 s 1
. o | Tables =) counse_[oee] g || somenr | [oese] ot foen |
e mmmmmm——— L o B ——— M 3 - e 1
1 % @ ([oeeaiven: | Des = orass D] [cop s !
Group-Based Table 4 = ot | | cotumn a Y Filter £ g
Accass Control ! 3 — » 2 supLovEE [Dae] | Relevant Tables =) | 2 | Relationships ‘ s%el_ngl:::y !
E— : 3 8 FROFESSOR 4y Sample rows]
£ Relationships STUDENT [Dese |
Authortzed 1 5 DEPARTMENT |4 - '
Schema for X 1 _ Database Description 1
' Relationships cLass g
4 { Sample rows v Dislect b
4 ' f
Group | (Group'| | Group ! 'Y A 4
Extracted
: | * (B = |
Question Generate Corrected o - 1
F SQL Query) - Invalid SQL il
] Query 1
d “How many professors " List of tables Extract |
! areIn the accounting dept?” | o List of tables t'arlllre“s .
: @ : Extracted Tables saL :
1 Valid SQL 1
i o Execute «-— Guery @]
|| veiid oL Query | jm— _]
' ! '
1 " " l
i 2 —[SQL Debugger J— _[SQL Query Validation]_)
BACKEND FRONTEND : 1

Figure 3. Comprehensive framework - Schema Context Enrichment (Phase I, Figure.2) and SQL
Generation & Self-Correction (Phase IT) with table access control, LLM-based table selection, rule-
based validation, and execution-driven correction

= S¢ - Schema Context
(Restricted to Selected Tables)
= (- the user’s normalised English question
= dialect - the target SQL query syntax (e.g.
PostgreSQL or MySQL)

SQL generation and validity checking - Once the Serialisation
relevant table set has been determined, the system
proceeds to generate and validate the first SQL
statement using the prepared context. The workflow

comprises four main stages:

a. Query generation b

. SOL extraction and syntactic check

A prompt Pyeneration 18 Submitted to the SLM to
obtain the initial SQL query:
SQLinitial = SLM(Pgeneration),
Pgeneration = {I' SC' Q' dialeCt}'
where

= | - An instruction that forces the model to
output only a single SQOL statement.

111

From the SLM’s response, all non-SQL content
(explanations, formatting, etc.) is stripped,
leaving a clean SQL string. A lightweight
parser is then invoked to ensure that the
statement is syntactically valid.
c. Table-set validation

The set of tables referenced by the query
excluding intermediate CTEs 1is denoted
Tables(SQL). It is compared against the

CTU Journal of Innovation and Sustainable Development

permitted set T identified in Relevant Table
Selection step.

V(SOL,T)
_ { True , if Tables(SQL) < T,
| False, otherwise

Automatic context expansion (if necessary)

If V(SQL, T) = True but the query references
tables that were not included in the original
context, the system automatically enlarges the
relevant-table set, refreshes S, and re-invokes
the generation phase with the updated prompt.
This guarantees that the final query is both
syntactically correct and contextually coherent.

Combining both syntactic validation and table-set
consistency checking allows the system to exert
strict quality control over the generated query,
thereby minimizing errors caused by incorrect table
references or by requests that exceed the context
provided to the SLM.

Execution and self-correction loop - After passing
static validation, the candidate SQL statement is
executed against the database. If no error occurs
(error = @), execution terminates, and the result
is returned. Otherwise, the system enters the self-
correction loop described in Algorithm 1. In each
iteration, the prompt Pyeperation Supplies the model
with the database schema, the original user query Q,
the most recent SQL attempt, the error message, and
the SQL dialect. By leveraging direct execution
feedback, this loop effectively resolves such as
syntax errors, schema mismatches, and semantic
issues until either a valid query is produced or reach
limit retry is reached.

Algorithm 1:
SQLcurrent«—SQLinitial

SQL Self-Correction Loop

1

2 retry « 0

3 while retry < max_retries do

4 (result, error) « Execute(SQLyrrenty DB)
5 if error = @ then

6 return SQL yrent o Sucess
7 end if

8 P < Prompt(Sg, Q, SQLcyrrent, €770T, dialect)

9 SQLcurrent < LLM(Pcorr)

10
11
12

retry < retry +1
end while

return None o Failure

112

Vol. 17, Special issue on ISDS (2025): 106-116

3. RESULTS AND DISCUSSION

This section details the empirical results of our
proposed two-phase workflow. We aim to assess its
effectiveness in enhancing the Text-to-SQL
capabilities of open-source SLMs and compare the
performance of these models with different
specializations (general-purpose vs. code-focused)
when augmented by our framework.

3.1. Results

To isolate the effect of the proposed workflow, we
benchmark it against a minimal baseline pipeline
that invokes the language model with a single zero-
shot prompt. Whenever the authors of a model
provide an official prompt as is the case for
Owen?2.5-coder-14B, we adopt it unchanged,;
otherwise we fall back to the generic “SQL —
Natural Language Translation” template from
OpenAl (OpenAl, 2025). Because this baseline
neither filters nor enriches the schema and performs
no execution-guided repair, it serves as a rigorous
reference point.

Model quality is assessed on the Spider Dev and
Test splits with the two canonical Text-to-SQL
metrics:

Execution accuracy (EX) - reports the fraction of
generated queries that, when executed, return the
same result set as the ground truth; any runtime error
counts as a failure, so EX reflects functional
correctness.

Exact match (EM) is stricter after normalizing
trivial differences in case and whitespace, it records
the percentage of predictions whose SQL string is
identical to the reference, thus capturing syntactic
fidelity.

The resulting EX and EM scores for both models
under the full two-phase workflow are summarized
in Table 1.

CTU Journal of Innovation and Sustainable Development

Vol. 17, Special issue on ISDS (2025): 106-116

Table 1. Workflow Performance on Spider dataset. Baseline results are illustrative estimates (no
enrichment and correction). The T indicate improvement over baseline

Spider Dev Spider Test
Method | Models = (%)p M = (%)p M)
s = = Qwen2.5-coder 81.8 58.8 83.7 57.9
B 2™ phiq 75.1 27.1 77.0 29.2
« & Qwen2.5-coder 83.11 62.31 86.2 1 62.2 1
5 52 pyis 76.6 1 3021 77.9 1 31.71

Table 1. illustrates the impact of the proposed two-
phase workflow on two open-source SLMs. For
QOwen2.5-coder, execution accuracy (EX) climbs
from 81.8% to 83.1% on Spider-Dev set and from
83.7% to 86.2% on Spider-Test, while exact-match
accuracy (EM) increases from 58.8% to 62.3% and
from 57.9% to 62.2%, respectively. The more
generalist Phi-4 model follows the same trend,

albeit from a lower baseline, rising from 75.1% to
76.6% EX on Dev and from 77.0% to 77.9% on
Test, with EM improving by roughly three
percentage points on both splits. In every case the
jump in EX outpaces that in EM, confirming that the
execution-guided self-correction of Phase II
successfully amends syntactic flaws that previously
prevented query execution even when the final SQL
string diverges from the reference.

Table 2. The comparison of Text-to-SQL performance of our proposed workflow on the Spider dataset

with reference methods

Spider Dev Spider Test
Method EX (%) EM (%) EX(%) EM (%)
(A) Rule-based + Pre-trained Models
RYANSQL (Choi et al., 2021) - 58.2 - 66.6
SADGA (Cai et al., 2021) 71.6 - 66.7 29.2
RESDSQL + NATSQL (H. Li et al., 2023) 84.1 80.5 79.9 72.0
(B) LLM + In-context Learning
DIN-SQL (Pourreza & Rafiei, 2023) - - 85.3 60.0
DAIL-SQL (D. Gao et al., 2023) 86.6 - 84.4 744
MAC-SQL (Wang et al., 2025) 86.8 - 82.8 -
(C) SLM + ICL / Fine-tune
MSc-SQL (Gorti et al., 2025) - - 84.7 -
DTS-SQL (Pourreza & Rafiei, 2024) 85.5 79.1 84.4 60.0
CodeS (H. Li et al., 2024) 85.4 - - -
Proposed workflow 83.1 62.3 86.2 62.2

A broader comparison in Table 2. positions the
workflow among three established families of
methods. Against rule-based systems coupled with
pre-trained language models, whose best result is
79.9% EX on Spider-Test (RESDSQL + NatSQL),
the workflow achieves 86.2%, thereby exceeding
every member of that family while relying solely on
open-source weights. When set beside GPT-4
systems using in-context learning, it attains a higher
Test EX than all published variants—for example,
surpassing DIN-SQL at 85.3% and MAC-SQL at
82.8%. Within the SLM category, the strongest prior

113

result is DTS-SQL at 84.7%; the workflow therefore
establishes a new state-of-the-art for models of
comparable size, demonstrating that -carefully
engineered prompting plus execution feedback can
close, and in this instance invert, the gap to larger
proprietary LLMs without costly fine-tuning. The
workflow does not yet match the leading EM figures
of RESDSQL + NatSQL method (80.5% Dev,
72.0% Test) or DAIL-SQL (74.4% Test), indicating
that further work on SQL string canonicalization
would be needed to eliminate residual lexical
mismatches.

CTU Journal of Innovation and Sustainable Development

Vol. 17, Special issue on ISDS (2025): 106-116

Table 3. Ablation study: Impact of workflow components on EX accuracy (%) of Qwen2.5-Coder:14B

model. (SPIDER Test)

Method Configuration Easy Med Hard Extra All
Full Workflow (Phase I + 1) 93.6 89.3 80.5 76.3 86.2
w/o Enrichment (Phase 1) 93.2 88.6 76.0 69.6 83.8
w/o Self-Correction (Phase II) 91.5 84.3 67.2 45.8 77.0
Baseline (No workflow) 93.4 87.2 78.6 69.7 83.8

Table 4. Ablation study: Impact of workflow components on EX accuracy (%) of Phi:14B model.

(SPIDER Dev)
Method Configuration Easy Med Hard Extra All
Full Workflow (Phase [+ 1) 87.5 83.4 65.5 53.9 76.6
w/o Enrichment (Phase 1) 89.5 83.0 63.8 47.0 75.5
w/o Self-Correction (Phase 1) 88.3 81.4 60.3 50.6 74.6
Baseline (No workflow) 90.7 82.1 58.0 50.9 75.1

The ablation in Table 3. confirms that both phases
are indispensable for Qwen2.5-coder. Removing
schema enrichment leaves overall EX at 83.8% and,
more tellingly, drops the Hard subset from 80.5% to
76% and the Extra subset to 69.6%. Eliminating
self-correction is even more damaging: overall EX
falls to 77.0%, with Extra queries subset collapsing
to 45.8 %. The same pattern appears for Phi-4 in
Table 4. The full workflow reaches 76.6% EX,
whereas discarding enrichment reduces it to 75.5%
and discarding self-correction to 74.6%. Again the
steepest degradation is concentrated in the Extra
tier, where scores drop from 53.9% to 47.0%
without enrichment and to 50.6% without self-
correction. These observations reinforce the
complementary roles of the two phases: enrichment
supplies concise, relevant schema context that
becomes critical as relational complexity grows, and
execution feedback repairs generation errors that
SLMs alone cannot consistently avoid.

Taken together, the experiments validate the
effectiveness of the two-phase strategy. Across both
SLMs the workflow consistently yields higher
execution accuracy most notably a 2.5 percentage
point gain on Spider Test for Qwen2.5-coder and
delivers the highest published Test EX (86.2%)
among systems that eschew closed-source models
and extensive fine-tuning. The improvements are
most pronounced on the hardest queries, indicating
that schema pruning and post-generation self-repair
are complementary and jointly indispensable for
bringing open-source models to production-grade
Text-to-SQL performance.

This section presents the empirical evaluation of our
proposed two-phase workflow, designed to enhance
the Text-to-SQL capabilities of open-source Small
Language Models (SLMs). We analyze the

114

performance improvements achieved by integrating
the schema enrichment phase and self-correction
mechanisms, utilizing the challenging Spider
benchmark.

3.2. Discussion

The results highlight that schema enrichment and
execution-driven self-correction are complementary
components for improving Text-to-SQL accuracy
with open-source small language models. Compared
to prior rule-based and LLM-based approaches, the
proposed workflow consistently closes the gap with
larger proprietary models while maintaining
resource efficiency. Notably, the workflow achieves
higher execution accuracy than GPT-4-based in-
context learning methods on the Spider benchmark,
underscoring the potential of carefully engineered
prompting combined with lightweight feedback
mechanisms.

The ablation analysis further emphasizes that both
phases are indispensable. Schema enrichment
provides structured and contextually relevant
schema knowledge, which becomes increasingly
important as query complexity grows, while the
self-correction loop effectively mitigates syntactic
and semantic errors that would otherwise prevent
successful execution. These findings suggest that a
hybrid strategy combining structural schema
management with dynamic error repair offers a
robust pathway for deploying SLMs in production-
grade environments.

Limitations: This study's limitations include
evaluation primarily on the Spider benchmark,
potentially not covering all real-world database
complexities. Performance may vary with different
SLMs beyond the two tested. The enrichment
phase's effectiveness depends on initial metadata

CTU Journal of Innovation and Sustainable Development

quality and clustering suitability. The self-
correction loop has limits in resolving highly
complex errors, and computational overhead might
be relevant in certain contexts. The evaluation
focused on accuracy metrics, omitting latency or
deeper query quality analysis.

4. CONCLUSION

This research directly confronts the difficulties in
leveraging open-source Small Language Models for
practical Text-to-SQL applications, particularly
their struggles with complex schemas and context
limitations. We introduced and validated a novel
two-phase workflow integrating offline, graph-
based schema enrichment via Louvain clustering
with runtime, execution-driven self-correction.
Empirical results on the challenging Spider
benchmark demonstrate that this approach markedly

REFERENCES

Banda, F., & Motik, B. (2020). Community-based RDF
graph partitioning. SSWS 2020. Scalable Semantic
Web Knowledge Base Systems, 2757, 33—48.
https://ora.ox.ac.uk/objects/uuid:8835ec45-cf2e-
4706-8dac-808f007caa60

Cai, R., Yuan, J., Xu, B., & Hao, Z. (2021). SADGA:
Structure-Aware Dual Graph Aggregation Network
for Text-to-SQL. In M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. S. Liang, & J. W. Vaughan (Eds.),
Advances in Neural Information Processing Systems
(Vol. 34, pp. 7664-7676). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/202
1/1ile/3f1656d9668dffcf8119e3ectf873558-Paper.pdf

Cao, Z., Zheng, Y., Fan, Z., Zhang, X., Chen, W., & Bai,
X. (2024). RSL-SQL: Robust Schema Linking in
Text-to-SQL Generation (No. arXiv:2411.00073).
arXiv. https://doi.org/10.48550/arXiv.2411.00073

Chen, J., Gan, L., Zhao, Z., Wang, Z., Wang, D., &
Zhuang, C. (2025). SQLCritic: Correcting Text-to-
SOL Generation via Clause-wise Critic (No.
arXiv:2503.07996). arXiv.
https://doi.org/10.48550/arXiv.2503.07996

Chen, X., Wang, T., Qiu, T., Qin, J., & Yang, M. (2024).
Open-SQL Framework: Enhancing Text-to-SQL on
Open-source Large Language Models (No.
arXiv:2405.06674). arXiv.
https://doi.org/10.48550/arXiv.2405.06674

Choi, D., Shin, M. C., Kim, E., & Shin, D. R. (2021).
RYANSQL: Recursively Applying Sketch-based
Slot Fillings for Complex Text-to-SQL in Cross-
Domain Databases. Computational Linguistics,
47(2), 309-332.
https://doi.org/10.1162/coli_a_ 00403

Gan, Y., Chen, X., Xie, J., Purver, M., Woodward, J. R.,
Drake, J., & Zhang, Q. (2021). Natural SQL: Making
SQL Easier to Infer from Natural Language

Vol. 17, Special issue on ISDS (2025): 106-116

improves execution accuracy for diverse SLMs like
Qwen2.5-coder and Phi-4. Our work provides not
just a conceptual framework but a practical,
validated methodology, paving the way for wider
deployment of resource-efficient, open-source
models in sophisticated natural language database
interfaces. Future efforts could focus on extending
this methodology to broader database types and
further enhancing the robustness and efficiency of
the self-correction loop for highly complex queries.

ACKNOWLEDGMENT

This research was supported by The Vietnam
National University Ho Chi Minh City - University
of Information Technology's Scientific Research
Support Fund.

Specifications. In M.-F. Moens, X. Huang, L.
Specia, & S. W. Yih (Eds.), Findings of the
Association for Computational Linguistics: EMNLP
2021 (pp. 2030-2042). Association for
Computational Linguistics.
https://doi.org/10.18653/v1/2021 findings-emnlp.174
Gao, D., Wang, H., Li, Y., Sun, X,, Qian, Y., Ding, B.,
& Zhou, J. (2024). Text-to-SQL empowered by large
language models: A benchmark evaluation. Proc.
VLDB Endow., 17(5), 1132—1145.
https://doi.org/10.14778/3641204.3641221

Gao, Y., & Luo, Z. (2025). Automatic database
description generation for Text-to-SQL (No.
arXiv:2502.20657). arXiv.
https://doi.org/10.48550/arXiv.2502.20657

Gorti, S. K., Gofman, 1., Liu, Z., Wu, J., Vouitsis, N.,
Yu, G., Cresswell, J. C., & Hosseinzadeh, R. (2025).
MSc-SQL: Multi-Sample Critiquing Small Language
Models For Text-To-SQL Translation. In L.
Chiruzzo, A. Ritter, & L. Wang (Eds.), Proceedings
of the 2025 Conference of the Nations of the
Americas Chapter of the Association for
Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers) (pp. 2145—
2160). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2025.naacl-long.107

Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J.,
Huang, F., & Huang, X. (2025). Next-Generation
Database Interfaces: A Survey of LLM-based Text-
to-SOL (No. arXiv:2406.08426). arXiv.
https://doi.org/10.48550/arXiv.2406.08426

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., Dang, K., Fan, Y.,
Zhang, Y., Yang, A., Men, R., Huang, F., Zheng, B.,
Miao, Y., Quan, S., ... Lin, J. (2024). Qwen2.5-

CTU Journal of Innovation and Sustainable Development

Coder Technical Report (No. arXiv:2409.12186).
arXiv. https://doi.org/10.48550/arXiv.2409.12186

Li, B., Zhang, Y., Bubeck, S., Pathuri, J., & Menache, I.
(2024). Small Language Models for Application
Interactions: A Case Study.
https://doi.org/10.48550/ARXIV.2405.20347

Li, C., Shao, Y., Li, Y., & Liu, Z. (2025). SEA-SQL:
Semantic-Enhanced Text-to-SQL with Adaptive
Refinement (No. arXiv:2408.04919). arXiv.
https://doi.org/10.48550/arXiv.2408.04919

Li, H., Zhang, J., Li, C., & Chen, H. (2023). Resdsql:
Decoupling schema linking and skeleton parsing for
text-to-sql. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(11), 13067-13075.
https://ojs.aaai.org/index.php/AAAl/article/view/26535

Li, H., Zhang, J., Liu, H., Fan, J., Zhang, X., Zhu, J.,
Wei, R., Pan, H., Li, C., & Chen, H. (2024). CodeS:
Towards Building Open-source Language Models
for Text-to-SQL. Proceedings of the ACM on
Management of Data, 2(3), 1-28.
https://doi.org/10.1145/3654930

Mohammadjafari, A., Maida, A. S., & Gottumukkala, R.
(2025). From Natural Language to SOL: Review of
LLM-based Text-to-SQL Systems (No.
arXiv:2410.01066). arXiv.
https://doi.org/10.48550/arXiv.2410.01066

Nan, L., Zhao, Y., Zou, W., Ri, N., Tae, J., Zhang, E.,
Cohan, A., & Radev, D. (2023). Enhancing Text-to-
SQL Capabilities of Large Language Models: A Study
on Prompt Design Strategies. In H. Bouamor, J. Pino,
& K. Bali (Eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023 (pp. 14935—
14956). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2023.findings-emnlp.996

OpenAl. (2025, June 13). SOL translation with GPT
models. OpenAl Platform Documentation.
https://platform.openai.com/docs/examples/default-
sql-translate

Pourreza, M., & Rafiei, D. (2023). DIN-SQL:
Decomposed In-Context Learning of Text-to-SQL
with Self-Correction (No. arXiv:2304.11015). arXiv.
https://doi.org/10.48550/arXiv.2304.11015

Pourreza, M., & Rafiei, D. (2024). DTS-SQL.:
Decomposed Text-to-SQL with Small Large

116

Vol. 17, Special issue on ISDS (2025): 106-116

Language Models. In Y. Al-Onaizan, M. Bansal, &
Y.-N. Chen (Eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024 (pp. 8212—
8220). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2024.findings-emnlp.481

Qi, J.,, Tang, J., He, Z., Wan, X., Cheng, Y., Zhou, C.,
Wang, X., Zhang, Q., & Lin, Z. (2022). RASAT:
Integrating Relational Structures into Pretrained
Seq2Seq Model for Text-to-SQL. In Y. Goldberg, Z.
Kozareva, & Y. Zhang (Eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (pp. 3215-3229). Association
for Computational Linguistics.
https://doi.org/10.18653/v1/2022.emnlp-main.211

Tai, C.-Y., Chen, Z., Zhang, T., Deng, X., & Sun, H.
(2023). Exploring Chain of Thought Style Prompting
for Text-to-SQL. In H. Bouamor, J. Pino, & K. Bali
(Eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing
(pp- 5376-5393). Association for Computational
Linguistics. https://doi.org/10.18653/v1/2023.emnlp-
main.327

Wang, B., Ren, C., Yang, J., Liang, X., Bai, J., Chai, L.,
Yan, Z., Zhang, Q.-W., Yin, D., Sun, X., & Li, Z.
(2025). MAC-SQL: A Multi-Agent Collaborative
Framework for Text-to-SQL (No.
arXiv:2312.11242). arXiv.
https://doi.org/10.48550/arXiv.2312.11242

Wong, A., Pham, L., Lee, Y., Chan, S., Sadaya, R.,
Khmelevsky, Y., Clement, M., Cheng, F. W. Y.,
Mabhony, J., & Ferri, M. (2024). Translating Natural
Language Queries to SQL Using the T5 Model. 2024
IEEE International Systems Conference (SysCon), 1-7.
https://ieeexplore.ieee.org/abstract/document/10553509/

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,
Li, Z.,Ma, J., Li, I, Yao, Q., Roman, S., Zhang, Z.,
& Radev, D. (2018). Spider: A Large-Scale Human-
Labeled Dataset for Complex and Cross-Domain
Semantic Parsing and Text-to-SQL Task. In E.
Riloff, D. Chiang, J. Hockenmaier, & J. Tsujii
(Eds.), Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing
(pp. 3911-3921). Association for Computational
Linguistics. https://doi.org/10.18653/v1/D18-1425

