
CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

106

DOI:10.22144/ctujoisd.2025.058

Enhancing text-to-SQL capabilities of small language models via schema context

enrichment and self-correction

Le Gia Kiet, Le Quoc Khanh, Nguyen Minh Nhut, and Nguyen Dinh Thuan*

Faculty of Information Systems, University of Information Technology, Vietnam National University Ho Chi

Minh City, Viet Nam

*Corresponding author (thuannd@uit.edu.vn)

Article info. ABSTRACT

Received 8 Jul 2025

Revised 15 Aug 2025

Accepted 5 Oct 2025

Translating natural language into SQL is essential for intuitive database

access, yet open-source small language models (SLMs) still lag behind

larger systems when faced with complex schemas and tight context

windows. This paper introduces a two-phase workflow designed to

enhance the Text-to-SQL capabilities of SLMs. Phase 1 (offline) transforms

the database schema into a graph, partitions it with Louvain community

detection, and enriches each component in a cluster with metadata,

relationships, and sample rows. Phase 2 (at runtime) selects the relevant

tables, generates SQL queries, and iteratively refines the SQL through an

execution-driven feedback loop until the query executes successfully.

Evaluated on the Spider test set, our pipeline raises Qwen-2.5-Coder-14B

to 86.2% Execution Accuracy (EX), surpassing its zero-shot baseline and

outperforming all contemporary SLM + ICL approaches and narrowing

the gap to GPT-4-based systems all while running on consumer-grade

hardware. Ablation studies confirm that both schema enrichment and self-

correction contribute significantly to the improvement. The study

concludes that this workflow provides a practical methodology for

deploying resource-efficient open-source SLMs in Text-to-SQL

applications, effectively mitigating common challenges. An open-source

implementation is released to support further research.

Keywords

Database schema context

enrichment, graph clustering,

natural language processing,

open-source models, small

language models (SLMs),

text-to-SQL

1. INTRODUCTION

The rapid advancement of Large Language Models

(LLMs) has significantly transformed natural

language processing, demonstrating impressive

capabilities across various tasks. In the realm of

database interaction, these models have greatly

enhanced Text-to-SQL systems, which translate

natural language questions into executable SQL

queries (Gao et al., 2023; Pourreza & Rafiei, 2023;

Li et al., 2025; Wang et al., 2025). State-of-the-art

proprietary models like GPT-4o demonstrate this

potential by achieving high accuracy on complex

benchmarks (Hong et al., 2025). However, the

substantial computational resources required by

these large models often limit their accessibility and

practicality for widespread deployment. This has

spurred growing interest in Small Language Models

(SLMs), which offer a more resource-efficient

alternative, balancing performance with lower costs

and deployment flexibility, making them attractive

candidates for specific applications like Text-to-

SQL interfaces.

Despite the promise of SLMs, applying open-source

variants to complex, real-world Text-to-SQL tasks

remains challenging. Practical database schemas

often dwarf the complexity found in benchmarks

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

107

like Spider, leading to significant performance

degradation, particularly for smaller models.

Furthermore, open-source SLMs generally lag

behind proprietary counterparts like GPT-4o in

handling intricate queries and large schemas (Chen

et al., 2024), often due to their scale and inherent

limitations.

1.1. Core challenges

Although open-source small language models

(SLMs) have made notable strides, their deployment

in practical Text-to-SQL systems is still hampered

by four interlocking challenges that jointly constrain

schema understanding, context retention, and query

correctness.

Figure 1. Challenges in vanilla database schema

context enrichment

− Understanding Complex Schemas: Grasping the

semantics of large, real-world database schemas,

SLMs struggle to comprehend relationships in

large/ambiguous schemas, leading to mapping

errors and severely degrading SQL quality.

− Context-Window Limitations: Finite context

windows restrict the amount of information that can

be processed. Including complete details for

expansive schemas is often infeasible, a problem

exacerbated for SLMs which may have smaller

windows and weaker long-input comprehension,

forcing a trade-off between context sufficiency and

overload.

− Accuracy and Hallucination: Generating

incorrect or non-executable SQL is a common issue.

SLMs may hallucinate tables/columns or create

flawed logic, particularly for complex operations

like multi-table joins or nested queries, impacting

the reliability of the output.

− Performance Gap and Self-Correction Needs: A

noticeable performance gap exists compared to

leading proprietary models, with SLMs tending to

produce more errors. This necessitates robust self-

correction mechanisms that leverage execution

feedback, as basic error messages often prove

insufficient for these models.

Figure 1 illustrates how these general obstacles

manifest concretely in the schema-description

enrichment step, where the system extracts metadata

from a database and uses an LLM to generate

enhanced descriptions.

1.2. Novel two-phase workflow approach

To overcome the foregoing obstacles, we introduce

a two-phase workflow that lifts the Text-to-SQL

performance of open-source SLMs without

exceeding consumer-grade resources.

1.2.1. Database schema context enrichment

Instead of truncating schemas, we model the

database as a graph (tables as nodes, foreign keys as

edges) and apply Louvain community detection

(Banda & Motik, 2020) to cluster tables into

semantically coherent groups. This reduces

complexity by processing related tables together.

Each cluster's context is enriched with metadata,

relationships, and sample data, enabling the SLM to

infer semantics and reduce hallucinations.

1.2.2. SQL generation and self-correction

For large databases, relevant schema are first

selected based on the natural language query. The

SLM then generates an initial SQL query using the

enriched context. Critically, a rule-based validation

step is applied to ensure the generated SQL is

syntactically correct. Then, an execution-based self-

correction loop iteratively refines the query: it's

executed against the database, and any error

messages are fed back to the SLM for revision until

the query runs successfully or a retry limit is met,

grounding generation in real-world validity.

This two-stage design addresses key bottlenecks

such as schema understanding, context limits, and

generation correctness providing a scalable

framework for deploying open-source SLMs in

realistic Text-to-SQL scenarios.

1.3. Key contributions

Our main contributions center on enhancing Text-

to-SQL capabilities for open-source Small

Language Models (SLMs). (1) We introduce a novel

two-phase workflow specifically tailored to address

the challenges SLMs face with schema complexity,

context limitations, and query accuracy. (2) This

workflow includes a schema enrichment strategy

that employs graph modeling and Louvain

clustering to create semantically coherent table

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

108

groups, enabling more efficient and context-aware

prompting. Furthermore (3) we present a multi-step

query generation framework incorporating rule-

based validation and, crucially, an execution-driven

self-correction loop that utilizes real database

feedback to iteratively refine SQL accuracy. To

promote transparency, reproducibility, and broader

adoption, (4) we also provide an open-source

implementation compatible with diverse SLM

backends.

1.4. Related work

Text-to-SQL research evolved from early systems to

Pre-trained Language Models like BERT and T5

(Wong et al., 2024), which improved translation but

often required significant fine-tuning or struggled

with complex schemas (Qi et al., 2022; Li et al.,

2023). Subsequently, Large Language Models

(LLMs) like GPT, Gemini, and Claude advanced the

field using In-Context Learning (ICL) or Fine-

Tuning (FT) (Hong et al., 2025). Alongside these

advancements, attention has increasingly turned to

open-source Small Language Models (SLMs) (e.g.,

Llama, Phi, Qwen (Hui et al., 2024)). While offering

transparency and efficiency benefits, these SLMs

face pronounced challenges with large schemas and

complex queries compared to proprietary LLMs,

often due to inherent scale limitations affecting

context handling and comprehension (Li et al.,

2024; Mohammadjafari et al., 2025).

A key challenge remains schema understanding and

linking, where language models, particularly open-

source SLMs, can falter with large or ambiguous

schemas (Gao & Luo, 2025). Addressing this often

involves techniques like schema filtering, graph-

based representations (GNNs, clustering) (Cai et al.,

2021) for efficient structuring, context enrichment,

bidirectional linking (Cao et al., 2024), schema

reduction, and using Retrieval-Augmented

Generation (RAG) to dynamically provide relevant

schema context. Such methods are especially

pertinent for SLMs operating under tighter

constraints. Our graph-based clustering aligns with

these efforts, aiming to manage schema complexity

within the typical context capabilities of SLMs.

Ensuring SQL accuracy is another critical hurdle, as

language models may generate incorrect SQL or

hallucinate elements. This demands robust

solutions, especially when working with SLMs.

Relevant approaches include query decomposition

(e.g., DIN-SQL; Pourreza & Rafiei, 2023, and DTS-

SQL which specifically targets SLMs; Pourreza &

Rafiei, 2024), intermediate representations

(NatSQL; Gan et al., 2021), Chain-of-Thought

prompting (Tai et al., 2023), and self-correction

mechanisms. Techniques leveraging execution-

based feedback (MAC-SQL; Wang et al., 2025) or

critic models (SQLCritic; J. Chen et al., 2025) are

particularly valuable for refining potentially

inaccurate outputs from these SLMs, inspiring our

own execution-driven correction loop.

Standard evaluation uses benchmarks like Spider

(Yu et al., 2019) with metrics like Execution

Accuracy (EX) and Exact Matching (EM). The

recognized performance gap for open-source SLMs

on such complex tasks provides strong motivation

for our two-phase workflow, which combines

graph-based schema enrichment and execution-

driven self-correction specifically to enhance their

Text-to-SQL performance.

2. MATERIALS AND METHOD

This section outlines our proposed two-phase

methodology aimed at improving the accuracy of

smaller open-source LLMs (less than 14B

parameters) on complex Text-to-SQL tasks. The

workflow begins with Phase I: Database Schema

Context Enrichment, an offline process that

converts intricate database schemas into more

manageable and semantically richer representations

tailored to LLM context limits, utilizing graph-

based clustering (as depicted in Figure 2). Next,

Phase II: SQL Generation and Self-Correction takes

place at query time, utilizing the enriched schema

context to translate natural language questions into

SQL queries and incorporating an execution-based

self-correction loop to enhance accuracy (illustrated

in Figure 3). This structured approach methodically

tackles challenges such as schema complexity,

context window limitations, and query inaccuracies

inherent in smaller models.

2.1. Materials

2.1.1. Models

To evaluate our schema enrichment and SQL

generation pipeline, we compare two open-source

models with distinct design emphases:

Qwen2.5-Coder:14B (Hui et al., 2024) - A code-

specialized variant of Qwen2.5 model and further

refined for programming tasks. Its strengths in

syntax, schema comprehension, and code reasoning

make it a good candidate for SQL generation.

Phi-4:14B - A generalist model focused on

reasoning, diverse training data underpins strong

logical across domains.

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

109

Figure 2. Overview of the proposed Database Schema Context Enrichment methodology

Both models are deployed in quantized format

Q4_K_M GGUF format to enable efficient

inference on consumer-grade hardware while

maintaining high performance. For the experiments,

we use a machine equipped with an RTX 4060 Ti

GPU with 16GB of VRAM, representing typical

hardware constraints faced by end-users. This

comparison reveals whether a code-focused

architecture or a broadly trained generalist better

leverages enriched schema context for accurate SQL

synthesis.

2.1.2. Datasets

We evaluate on the Spider dataset (Yu et al., 2019),

a large-scale, cross-domain Text-to-SQL

benchmark comprising 10,181 questions and 5,693

SQL queries over 200 databases in 138 domains. Its

complex queries (e.g., multi-table joins, nested

subqueries) make it a standard testbed; we report

results on the official development and test splits.

2.2. Method

2.2.1. Database schema context enrichment

Database Schema Graph Representation - The

relational database schema is formally modeled as

an undirected graph

𝐺 = (𝑉, 𝐸)

where the set of vertices 𝑉 represents the tables

within the database, and the set of edges
𝐸 represents the foreign key relationships between

tables.

These edges are extracted from the relations field

within column metadata, with duplicates removed

for computational efficiency. The resulting graph

structure effectively captures the inherent

connectivity of the database schema.

𝐸 = { (𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉 ∧ ∃ 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐾𝑒𝑦(𝑢, 𝑣) }

Louvain-based community detection - To

effectively manage complex database schemas, we

apply the Louvain community detection algorithm

(Banda & Motik, 2020) to the schema graph. This

algorithm partitions the graph by maximizing the

modularity metric 𝑄:

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] δ(𝑐𝑖 , 𝑐𝑗)

𝑖,𝑗

where 𝐴𝑖𝑗 represents the edge between nodes 𝑖 and

𝑗, 𝑘𝑖 is the sum of edges connected to node 𝑖, 𝑐𝑖 is

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

110

the community of node 𝑖, and 𝛿 is the Kronecker

delta function. As an optimization, for schemas

where |𝑉| < 5, we simply define a single cluster

containing all tables. For larger schemas, we

construct an appropriate graph representation and

apply the community detection algorithm with a

parameter 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 2.5 to control community

granularity.

The algorithm yields a partition 𝒫 = {𝐶1, 𝐶2, … , 𝐶𝑘}

of tables into disjoint clusters. These clusters are

then sorted by size in descending order, with tables

within each cluster alphabetically ordered by their

identifiers for consistent presentation.

Overview database schema context generation -

Before the cluster-level enrichment phase, the

system first compresses the entire schema 𝐺 into a

simple prompt representation to save tokens,

yielding

𝑃simple = 𝑆𝐼𝑀𝑃𝐿𝐸(𝐺)

From this compact prompt 𝑃simple, the SLM is

instructed to generate a global description of the

database, formalised by the function

ℰglobal(𝐺) = { 𝐷db , 𝑇desc  }

More concretely,

▪ 𝐷db = a concise description of the whole database

▪ 𝑇desc = { (𝑇𝑗 , 𝐷𝑇𝑗

short) | 𝑇𝑗 ∈ 𝐺 } (table description)

The resulting set ℰglobal(𝐺) acts as a high-level

“mental map” that underpins the subsequent cluster-

specific context enrichment performed for every

cluster 𝐶𝑖.

Cluster-specific context generation - For each

identified cluster 𝐶𝑖, we generate comprehensive

contextual information to provide the LLM with

sufficient understanding of the related tables. The

enrichment process can be formalized as a function

ℰ, that generates structured context for each cluster:

ℰ(𝐶𝑖) = {𝐷𝑑𝑏 , 𝑇𝑚𝑒𝑡𝑎 , 𝐶𝑜𝑙𝑖𝑛𝑓𝑜 , 𝑅𝑓𝑘, 𝑆𝑑𝑎𝑡𝑎}

where:
▪ 𝐷𝑑𝑏 = Database description

▪ 𝑇𝑚𝑒𝑡𝑎 = {(𝑇𝑗 , 𝐷𝑇𝑗
) | 𝑇𝑗 ∈ 𝐶𝑖 }

▪ 𝐶𝑜𝑙𝑖𝑛𝑓𝑜 =

 {(𝑐𝑜𝑙𝑗𝑘 , 𝑡𝑦𝑝𝑒𝑗𝑘 , 𝑘𝑒𝑦𝑗𝑘 , 𝐷𝑐𝑜𝑙𝑗𝑘
) | 𝑐𝑜𝑙𝑗𝑘 ∈ 𝑇𝑗 , 𝑇𝑗 ∈ 𝐶𝑖 }

▪ 𝑅𝑓𝑘 =

 {(𝑇𝑎 , 𝑐𝑜𝑙𝑎 , 𝑇𝑏 , 𝑐𝑜𝑙𝑏) | 𝑇𝑎, 𝑇𝑏 ∈ 𝐶𝑖 , (𝑇𝑎 , 𝑇𝑏) ∈ 𝐸}

▪ 𝑆𝑑𝑎𝑡𝑎 = {(𝑇𝑗 , {𝑟1, … , 𝑟𝑚}) | 𝑇𝑗 ∈ 𝐶𝑖}

The enriched representation includes database/table

descriptions, detailed column metadata (names,

types, keys), inter-table relationships (within and

across clusters), and sample data rows to clarify

semantics.

The implementation follows a workflow pattern

with error handling and retry mechanisms. For each

cluster, the process attempts up to three retries if the

initial generation fails. After generation, the

descriptions are mapped back to the original

schema, updating only fields that were previously

empty or contained placeholder values.

𝜏𝑖 = min{ 𝑗 ∈ {1,2,3}: 𝐸𝑗(𝐶𝑖) ≠ ∅ },

𝐸𝑓𝑖𝑛𝑎𝑙(𝐶𝑖) = {
𝐸𝜏𝑖

(𝐶𝑖) , 𝜏𝑖 𝑒𝑥𝑖𝑠𝑡𝑠,

 ∅ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

This approach preserves existing high-quality

metadata while enriching incomplete elements. The

enrichment process overcomes limitations of purely

structural clustering by providing localized context

that integrates structural details, semantic

descriptions, and concrete data examples. The

workflow tracks metrics including success rates and

processing times to measure effectiveness.

2.2.2. SQL generation and self-correction

This phase executes at query time, taking a user's

natural language question (NLQ) and the enriched

schema representations from Phase I. The workflow

implements a multi-step process with selective table

filtering, SQL generation, validation, execution, and

error correction. The detailed process is shown in

Figure 3.

Relevant table selection - When a database

contains many tables, we first narrow down to only

those likely needed to answer the user’s query.

Formally, we define:

𝒮: 𝑄 × {𝑇1, 𝑇2, … , 𝑇𝑛} ⟶ {𝑇𝑟1
, 𝑇𝑟2

, … , 𝑇𝑟𝑚
} ,

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

111

Where 𝑄 is the natural language question and {𝑇𝑟𝑗
}

is the subset of tables deemed relevant.

Concretely:

𝒮(𝑄, {𝑇𝑖}𝑖=1
𝑛) = {

{𝑇𝑖}𝑖=1
𝑛 , 𝑛 ≤ 𝜏,

𝒮𝑆𝐿𝑀(𝑄 , {𝑇𝑖}𝑖=1
𝑛) , 𝑛 > 𝜏,

With threshold 𝜏 (e.g. 𝜏 = 3). when 𝑛 > 𝜏, we

call:

𝒮𝑆𝐿𝑀(𝑄, {𝑇𝑖}) = SLM(𝑃retrieval),

 where the prompt 𝑃retrieval contains:

▪ The user’s query 𝑄,

▪ A list of all table names 𝑇𝑖 alongside their

brief descriptions,

▪ An instruction to “return the full set of all

tables that might be relevant to answering 𝑄.”

Figure 3. Comprehensive framework - Schema Context Enrichment (Phase I, Figure.2) and SQL

Generation & Self-Correction (Phase II) with table access control, LLM-based table selection, rule-

based validation, and execution-driven correction

SQL generation and validity checking - Once the

relevant table set has been determined, the system

proceeds to generate and validate the first SQL

statement using the prepared context. The workflow

comprises four main stages:

a. Query generation

A prompt 𝑃generation is submitted to the SLM to

obtain the initial SQL query:

𝑆𝑄𝐿initial = SLM(𝑃generation),

𝑃generation = { 𝐼, 𝑆𝐶 , 𝑄, 𝑑𝑖𝑎𝑙𝑒𝑐𝑡},

where

▪ 𝐼 - An instruction that forces the model to

output only a single SQL statement.

▪ 𝑆𝐶 - Schema Context Serialisation

(Restricted to Selected Tables)

▪ 𝑄 - the user’s normalised English question

▪ 𝑑𝑖𝑎𝑙𝑒𝑐𝑡 - the target SQL query syntax (e.g.

PostgreSQL or MySQL)

b. SQL extraction and syntactic check

From the SLM’s response, all non-SQL content

(explanations, formatting, etc.) is stripped,

leaving a clean SQL string. A lightweight

parser is then invoked to ensure that the

statement is syntactically valid.

c. Table-set validation

The set of tables referenced by the query

excluding intermediate CTEs is denoted

Tables(𝑆𝑄𝐿). It is compared against the

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

112

permitted set 𝑇 identified in Relevant Table

Selection step.

𝑉(𝑆𝑄𝐿, 𝑇)

= {
 𝑇𝑟𝑢𝑒 , 𝑖𝑓 Tables(𝑆𝑄𝐿) ⊆ 𝑇,

 𝐹𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

d. Automatic context expansion (if necessary)

If 𝑉(𝑆𝑄𝐿, 𝑇) = True but the query references

tables that were not included in the original

context, the system automatically enlarges the

relevant-table set, refreshes 𝑆𝐶 , and re-invokes

the generation phase with the updated prompt.

This guarantees that the final query is both

syntactically correct and contextually coherent.

Combining both syntactic validation and table-set

consistency checking allows the system to exert

strict quality control over the generated query,

thereby minimizing errors caused by incorrect table

references or by requests that exceed the context

provided to the SLM.

Execution and self-correction loop - After passing

static validation, the candidate SQL statement is

executed against the database. If no error occurs
(𝑒𝑟𝑟𝑜𝑟 = ∅), execution terminates, and the result

is returned. Otherwise, the system enters the self‐

correction loop described in Algorithm 1. In each

iteration, the prompt 𝑃generation supplies the model

with the database schema, the original user query 𝑄,

the most recent SQL attempt, the error message, and

the SQL dialect. By leveraging direct execution

feedback, this loop effectively resolves such as

syntax errors, schema mismatches, and semantic

issues until either a valid query is produced or reach

limit retry is reached.

Algorithm 1: SQL Self-Correction Loop

1 𝑆𝑄𝐿current←𝑆𝑄𝐿initial

2 𝑟𝑒𝑡𝑟𝑦 ← 0

3 while 𝑟𝑒𝑡𝑟𝑦 < 𝑚𝑎𝑥_𝑟𝑒𝑡𝑟𝑖𝑒𝑠 do

4 (𝑟𝑒𝑠𝑢𝑙𝑡,  𝑒𝑟𝑟𝑜𝑟) ← Execute(𝑆𝑄𝐿current,  𝐷𝐵)

5 if 𝑒𝑟𝑟𝑜𝑟 = ∅ then

6 return 𝑆𝑄𝐿current ⊳ 𝑆𝑢𝑐𝑒𝑠𝑠

7 end if

8 𝑃corr ← Prompt(𝑆𝐶 , 𝑄, 𝑆𝑄𝐿current, 𝑒𝑟𝑟𝑜𝑟, 𝑑𝑖𝑎𝑙𝑒𝑐𝑡)

9 𝑆𝑄𝐿current ← LLM(𝑃corr)

10 𝑟𝑒𝑡𝑟𝑦 ← 𝑟𝑒𝑡𝑟𝑦 + 1

11 end while

12 return None ⊳ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

3. RESULTS AND DISCUSSION

This section details the empirical results of our

proposed two-phase workflow. We aim to assess its

effectiveness in enhancing the Text-to-SQL

capabilities of open-source SLMs and compare the

performance of these models with different

specializations (general-purpose vs. code-focused)

when augmented by our framework.

3.1. Results

To isolate the effect of the proposed workflow, we

benchmark it against a minimal baseline pipeline

that invokes the language model with a single zero-

shot prompt. Whenever the authors of a model

provide an official prompt as is the case for

Qwen2.5-coder-14B, we adopt it unchanged;

otherwise we fall back to the generic “SQL –

Natural Language Translation” template from

OpenAI (OpenAI, 2025). Because this baseline

neither filters nor enriches the schema and performs

no execution-guided repair, it serves as a rigorous

reference point.

Model quality is assessed on the Spider Dev and

Test splits with the two canonical Text-to-SQL

metrics:

Execution accuracy (EX) - reports the fraction of

generated queries that, when executed, return the

same result set as the ground truth; any runtime error

counts as a failure, so EX reflects functional

correctness.

Exact match (EM) is stricter after normalizing

trivial differences in case and whitespace, it records

the percentage of predictions whose SQL string is

identical to the reference, thus capturing syntactic

fidelity.

The resulting EX and EM scores for both models

under the full two-phase workflow are summarized

in Table 1.

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

113

Table 1. Workflow Performance on Spider dataset. Baseline results are illustrative estimates (no

enrichment and correction). The ↑ indicate improvement over baseline

Method | Models
Spider Dev Spider Test

EX (%) EM (%) EX (%) EM (%)

B
a

se
l

in e Qwen2.5-coder 81.8 58.8 83.7 57.9

Phi4 75.1 27.1 77.0 29.2

W o
r

k
fl

o w
 Qwen2.5-coder 83.1 ↑ 62.3 ↑ 86.2 ↑ 62.2 ↑

Phi4 76.6 ↑ 30.2 ↑ 77.9 ↑ 31.7 ↑

Table 1. illustrates the impact of the proposed two-

phase workflow on two open-source SLMs. For

Qwen2.5-coder, execution accuracy (EX) climbs

from 81.8% to 83.1% on Spider-Dev set and from

83.7% to 86.2% on Spider-Test, while exact-match

accuracy (EM) increases from 58.8% to 62.3% and

from 57.9% to 62.2%, respectively. The more

generalist Phi-4 model follows the same trend,

albeit from a lower baseline, rising from 75.1% to

76.6% EX on Dev and from 77.0% to 77.9% on

Test, with EM improving by roughly three

percentage points on both splits. In every case the

jump in EX outpaces that in EM, confirming that the

execution-guided self-correction of Phase II

successfully amends syntactic flaws that previously

prevented query execution even when the final SQL

string diverges from the reference.

Table 2. The comparison of Text-to-SQL performance of our proposed workflow on the Spider dataset

with reference methods

Method
Spider Dev Spider Test

EX (%) EM (%) EX (%) EM (%)

(A) Rule-based + Pre-trained Models

RYANSQL (Choi et al., 2021) - 58.2 - 66.6

SADGA (Cai et al., 2021) 71.6 - 66.7 29.2

RESDSQL + NATSQL (H. Li et al., 2023) 84.1 80.5 79.9 72.0

(B) LLM + In-context Learning

DIN-SQL (Pourreza & Rafiei, 2023) - - 85.3 60.0

DAIL-SQL (D. Gao et al., 2023) 86.6 - 84.4 74.4

MAC-SQL (Wang et al., 2025) 86.8 - 82.8 -

(C) SLM + ICL / Fine-tune

MSc-SQL (Gorti et al., 2025) - - 84.7 -

DTS-SQL (Pourreza & Rafiei, 2024) 85.5 79.1 84.4 60.0

CodeS (H. Li et al., 2024) 85.4 - - -

Proposed workflow 83.1 62.3 86.2 62.2

A broader comparison in Table 2. positions the

workflow among three established families of

methods. Against rule-based systems coupled with

pre-trained language models, whose best result is

79.9% EX on Spider-Test (RESDSQL + NatSQL),

the workflow achieves 86.2%, thereby exceeding

every member of that family while relying solely on

open-source weights. When set beside GPT-4

systems using in-context learning, it attains a higher

Test EX than all published variants—for example,

surpassing DIN-SQL at 85.3% and MAC-SQL at

82.8%. Within the SLM category, the strongest prior

result is DTS-SQL at 84.7%; the workflow therefore

establishes a new state-of-the-art for models of

comparable size, demonstrating that carefully

engineered prompting plus execution feedback can

close, and in this instance invert, the gap to larger

proprietary LLMs without costly fine-tuning. The

workflow does not yet match the leading EM figures

of RESDSQL + NatSQL method (80.5% Dev,

72.0% Test) or DAIL-SQL (74.4% Test), indicating

that further work on SQL string canonicalization

would be needed to eliminate residual lexical

mismatches.

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

114

Table 3. Ablation study: Impact of workflow components on EX accuracy (%) of Qwen2.5-Coder:14B

model. (SPIDER Test)

Method Configuration Easy Med Hard Extra All

Full Workflow (Phase I + II) 93.6 89.3 80.5 76.3 86.2

w/o Enrichment (Phase I) 93.2 88.6 76.0 69.6 83.8

w/o Self-Correction (Phase II) 91.5 84.3 67.2 45.8 77.0

Baseline (No workflow) 93.4 87.2 78.6 69.7 83.8

Table 4. Ablation study: Impact of workflow components on EX accuracy (%) of Phi:14B model.

(SPIDER Dev)

Method Configuration Easy Med Hard Extra All

Full Workflow (Phase I + II) 87.5 83.4 65.5 53.9 76.6

w/o Enrichment (Phase I) 89.5 83.0 63.8 47.0 75.5

w/o Self-Correction (Phase II) 88.3 81.4 60.3 50.6 74.6

Baseline (No workflow) 90.7 82.1 58.0 50.9 75.1

The ablation in Table 3. confirms that both phases

are indispensable for Qwen2.5-coder. Removing

schema enrichment leaves overall EX at 83.8% and,

more tellingly, drops the Hard subset from 80.5% to

76% and the Extra subset to 69.6%. Eliminating

self-correction is even more damaging: overall EX

falls to 77.0%, with Extra queries subset collapsing

to 45.8 %. The same pattern appears for Phi-4 in

Table 4. The full workflow reaches 76.6% EX,

whereas discarding enrichment reduces it to 75.5%

and discarding self-correction to 74.6%. Again the

steepest degradation is concentrated in the Extra

tier, where scores drop from 53.9% to 47.0%

without enrichment and to 50.6% without self-

correction. These observations reinforce the

complementary roles of the two phases: enrichment

supplies concise, relevant schema context that

becomes critical as relational complexity grows, and

execution feedback repairs generation errors that

SLMs alone cannot consistently avoid.

Taken together, the experiments validate the

effectiveness of the two-phase strategy. Across both

SLMs the workflow consistently yields higher

execution accuracy most notably a 2.5 percentage

point gain on Spider Test for Qwen2.5-coder and

delivers the highest published Test EX (86.2%)

among systems that eschew closed-source models

and extensive fine-tuning. The improvements are

most pronounced on the hardest queries, indicating

that schema pruning and post-generation self-repair

are complementary and jointly indispensable for

bringing open-source models to production-grade

Text-to-SQL performance.

This section presents the empirical evaluation of our

proposed two-phase workflow, designed to enhance

the Text-to-SQL capabilities of open-source Small

Language Models (SLMs). We analyze the

performance improvements achieved by integrating

the schema enrichment phase and self-correction

mechanisms, utilizing the challenging Spider

benchmark.

3.2. Discussion

The results highlight that schema enrichment and

execution-driven self-correction are complementary

components for improving Text-to-SQL accuracy

with open-source small language models. Compared

to prior rule-based and LLM-based approaches, the

proposed workflow consistently closes the gap with

larger proprietary models while maintaining

resource efficiency. Notably, the workflow achieves

higher execution accuracy than GPT-4–based in-

context learning methods on the Spider benchmark,

underscoring the potential of carefully engineered

prompting combined with lightweight feedback

mechanisms.

The ablation analysis further emphasizes that both

phases are indispensable. Schema enrichment

provides structured and contextually relevant

schema knowledge, which becomes increasingly

important as query complexity grows, while the

self-correction loop effectively mitigates syntactic

and semantic errors that would otherwise prevent

successful execution. These findings suggest that a

hybrid strategy combining structural schema

management with dynamic error repair offers a

robust pathway for deploying SLMs in production-

grade environments.

Limitations: This study's limitations include

evaluation primarily on the Spider benchmark,

potentially not covering all real-world database

complexities. Performance may vary with different

SLMs beyond the two tested. The enrichment

phase's effectiveness depends on initial metadata

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

115

quality and clustering suitability. The self-

correction loop has limits in resolving highly

complex errors, and computational overhead might

be relevant in certain contexts. The evaluation

focused on accuracy metrics, omitting latency or

deeper query quality analysis.

4. CONCLUSION

This research directly confronts the difficulties in

leveraging open-source Small Language Models for

practical Text-to-SQL applications, particularly

their struggles with complex schemas and context

limitations. We introduced and validated a novel

two-phase workflow integrating offline, graph-

based schema enrichment via Louvain clustering

with runtime, execution-driven self-correction.

Empirical results on the challenging Spider

benchmark demonstrate that this approach markedly

improves execution accuracy for diverse SLMs like

Qwen2.5-coder and Phi-4. Our work provides not

just a conceptual framework but a practical,

validated methodology, paving the way for wider

deployment of resource-efficient, open-source

models in sophisticated natural language database

interfaces. Future efforts could focus on extending

this methodology to broader database types and

further enhancing the robustness and efficiency of

the self-correction loop for highly complex queries.

ACKNOWLEDGMENT

This research was supported by The Vietnam

National University Ho Chi Minh City - University

of Information Technology's Scientific Research

Support Fund.

REFERENCES

Banda, F., & Motik, B. (2020). Community-based RDF

graph partitioning. SSWS 2020: Scalable Semantic

Web Knowledge Base Systems, 2757, 33–48.

https://ora.ox.ac.uk/objects/uuid:8835ec45-cf2e-

4706-8dac-808f007caa60

Cai, R., Yuan, J., Xu, B., & Hao, Z. (2021). SADGA:

Structure-Aware Dual Graph Aggregation Network

for Text-to-SQL. In M. Ranzato, A. Beygelzimer, Y.

Dauphin, P. S. Liang, & J. W. Vaughan (Eds.),

Advances in Neural Information Processing Systems

(Vol. 34, pp. 7664–7676). Curran Associates, Inc.

https://proceedings.neurips.cc/paper_files/paper/202

1/file/3f1656d9668dffcf8119e3ecff873558-Paper.pdf

Cao, Z., Zheng, Y., Fan, Z., Zhang, X., Chen, W., & Bai,

X. (2024). RSL-SQL: Robust Schema Linking in

Text-to-SQL Generation (No. arXiv:2411.00073).

arXiv. https://doi.org/10.48550/arXiv.2411.00073

Chen, J., Gan, L., Zhao, Z., Wang, Z., Wang, D., &

Zhuang, C. (2025). SQLCritic: Correcting Text-to-

SQL Generation via Clause-wise Critic (No.

arXiv:2503.07996). arXiv.

https://doi.org/10.48550/arXiv.2503.07996

Chen, X., Wang, T., Qiu, T., Qin, J., & Yang, M. (2024).

Open-SQL Framework: Enhancing Text-to-SQL on

Open-source Large Language Models (No.

arXiv:2405.06674). arXiv.

https://doi.org/10.48550/arXiv.2405.06674

Choi, D., Shin, M. C., Kim, E., & Shin, D. R. (2021).

RYANSQL: Recursively Applying Sketch-based

Slot Fillings for Complex Text-to-SQL in Cross-

Domain Databases. Computational Linguistics,

47(2), 309–332.

https://doi.org/10.1162/coli_a_00403

Gan, Y., Chen, X., Xie, J., Purver, M., Woodward, J. R.,

Drake, J., & Zhang, Q. (2021). Natural SQL: Making

SQL Easier to Infer from Natural Language

Specifications. In M.-F. Moens, X. Huang, L.

Specia, & S. W. Yih (Eds.), Findings of the

Association for Computational Linguistics: EMNLP

2021 (pp. 2030–2042). Association for

Computational Linguistics.

https://doi.org/10.18653/v1/2021.findings-emnlp.174

Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B.,

& Zhou, J. (2024). Text-to-SQL empowered by large

language models: A benchmark evaluation. Proc.

VLDB Endow., 17(5), 1132–1145.

https://doi.org/10.14778/3641204.3641221

Gao, Y., & Luo, Z. (2025). Automatic database

description generation for Text-to-SQL (No.

arXiv:2502.20657). arXiv.

https://doi.org/10.48550/arXiv.2502.20657

Gorti, S. K., Gofman, I., Liu, Z., Wu, J., Vouitsis, N.,

Yu, G., Cresswell, J. C., & Hosseinzadeh, R. (2025).

MSc-SQL: Multi-Sample Critiquing Small Language

Models For Text-To-SQL Translation. In L.

Chiruzzo, A. Ritter, & L. Wang (Eds.), Proceedings

of the 2025 Conference of the Nations of the

Americas Chapter of the Association for

Computational Linguistics: Human Language

Technologies (Volume 1: Long Papers) (pp. 2145–

2160). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2025.naacl-long.107

Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J.,

Huang, F., & Huang, X. (2025). Next-Generation

Database Interfaces: A Survey of LLM-based Text-

to-SQL (No. arXiv:2406.08426). arXiv.

https://doi.org/10.48550/arXiv.2406.08426

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,

Liu, T., Zhang, J., Yu, B., Lu, K., Dang, K., Fan, Y.,

Zhang, Y., Yang, A., Men, R., Huang, F., Zheng, B.,

Miao, Y., Quan, S., … Lin, J. (2024). Qwen2.5-

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 106-116

116

Coder Technical Report (No. arXiv:2409.12186).

arXiv. https://doi.org/10.48550/arXiv.2409.12186

Li, B., Zhang, Y., Bubeck, S., Pathuri, J., & Menache, I.

(2024). Small Language Models for Application

Interactions: A Case Study.

https://doi.org/10.48550/ARXIV.2405.20347

Li, C., Shao, Y., Li, Y., & Liu, Z. (2025). SEA-SQL:

Semantic-Enhanced Text-to-SQL with Adaptive

Refinement (No. arXiv:2408.04919). arXiv.

https://doi.org/10.48550/arXiv.2408.04919

Li, H., Zhang, J., Li, C., & Chen, H. (2023). Resdsql:

Decoupling schema linking and skeleton parsing for

text-to-sql. Proceedings of the AAAI Conference on

Artificial Intelligence, 37(11), 13067–13075.

https://ojs.aaai.org/index.php/AAAI/article/view/26535

Li, H., Zhang, J., Liu, H., Fan, J., Zhang, X., Zhu, J.,

Wei, R., Pan, H., Li, C., & Chen, H. (2024). CodeS:

Towards Building Open-source Language Models

for Text-to-SQL. Proceedings of the ACM on

Management of Data, 2(3), 1–28.

https://doi.org/10.1145/3654930

Mohammadjafari, A., Maida, A. S., & Gottumukkala, R.

(2025). From Natural Language to SQL: Review of

LLM-based Text-to-SQL Systems (No.

arXiv:2410.01066). arXiv.

https://doi.org/10.48550/arXiv.2410.01066

Nan, L., Zhao, Y., Zou, W., Ri, N., Tae, J., Zhang, E.,

Cohan, A., & Radev, D. (2023). Enhancing Text-to-

SQL Capabilities of Large Language Models: A Study

on Prompt Design Strategies. In H. Bouamor, J. Pino,

& K. Bali (Eds.), Findings of the Association for

Computational Linguistics: EMNLP 2023 (pp. 14935–

14956). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2023.findings-emnlp.996

OpenAI. (2025, June 13). SQL translation with GPT

models. OpenAI Platform Documentation.

https://platform.openai.com/docs/examples/default-

sql-translate

Pourreza, M., & Rafiei, D. (2023). DIN-SQL:

Decomposed In-Context Learning of Text-to-SQL

with Self-Correction (No. arXiv:2304.11015). arXiv.

https://doi.org/10.48550/arXiv.2304.11015

Pourreza, M., & Rafiei, D. (2024). DTS-SQL:

Decomposed Text-to-SQL with Small Large

Language Models. In Y. Al-Onaizan, M. Bansal, &

Y.-N. Chen (Eds.), Findings of the Association for

Computational Linguistics: EMNLP 2024 (pp. 8212–

8220). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2024.findings-emnlp.481

Qi, J., Tang, J., He, Z., Wan, X., Cheng, Y., Zhou, C.,

Wang, X., Zhang, Q., & Lin, Z. (2022). RASAT:

Integrating Relational Structures into Pretrained

Seq2Seq Model for Text-to-SQL. In Y. Goldberg, Z.

Kozareva, & Y. Zhang (Eds.), Proceedings of the

2022 Conference on Empirical Methods in Natural

Language Processing (pp. 3215–3229). Association

for Computational Linguistics.

https://doi.org/10.18653/v1/2022.emnlp-main.211

Tai, C.-Y., Chen, Z., Zhang, T., Deng, X., & Sun, H.

(2023). Exploring Chain of Thought Style Prompting

for Text-to-SQL. In H. Bouamor, J. Pino, & K. Bali

(Eds.), Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing

(pp. 5376–5393). Association for Computational

Linguistics. https://doi.org/10.18653/v1/2023.emnlp-

main.327

Wang, B., Ren, C., Yang, J., Liang, X., Bai, J., Chai, L.,

Yan, Z., Zhang, Q.-W., Yin, D., Sun, X., & Li, Z.

(2025). MAC-SQL: A Multi-Agent Collaborative

Framework for Text-to-SQL (No.

arXiv:2312.11242). arXiv.

https://doi.org/10.48550/arXiv.2312.11242

Wong, A., Pham, L., Lee, Y., Chan, S., Sadaya, R.,

Khmelevsky, Y., Clement, M., Cheng, F. W. Y.,

Mahony, J., & Ferri, M. (2024). Translating Natural

Language Queries to SQL Using the T5 Model. 2024

IEEE International Systems Conference (SysCon), 1–7.

https://ieeexplore.ieee.org/abstract/document/10553509/

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,

Li, Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z.,

& Radev, D. (2018). Spider: A Large-Scale Human-

Labeled Dataset for Complex and Cross-Domain

Semantic Parsing and Text-to-SQL Task. In E.

Riloff, D. Chiang, J. Hockenmaier, & J. Tsujii

(Eds.), Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing

(pp. 3911–3921). Association for Computational

Linguistics. https://doi.org/10.18653/v1/D18-1425

