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Translating natural language into SQL is essential for intuitive database 

access, yet open-source small language models (SLMs) still lag behind 

larger systems when faced with complex schemas and tight context 

windows. This paper introduces a two-phase workflow designed to 

enhance the Text-to-SQL capabilities of SLMs. Phase 1 (offline) transforms 

the database schema into a graph, partitions it with Louvain community 

detection, and enriches each component in a cluster with metadata, 

relationships, and sample rows. Phase 2 (at runtime) selects the relevant 

tables, generates SQL queries, and iteratively refines the SQL through an 

execution-driven feedback loop until the query executes successfully. 

Evaluated on the Spider test set, our pipeline raises Qwen-2.5-Coder-14B 

to 86.2% Execution Accuracy (EX), surpassing its zero-shot baseline and 

outperforming all contemporary SLM + ICL approaches and narrowing 

the gap to GPT-4-based systems all while running on consumer-grade 

hardware. Ablation studies confirm that both schema enrichment and self-

correction contribute significantly to the improvement. The study 

concludes that this workflow provides a practical methodology for 

deploying resource-efficient open-source SLMs in Text-to-SQL 

applications, effectively mitigating common challenges. An open-source 

implementation is released to support further research. 
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1. INTRODUCTION 

The rapid advancement of Large Language Models 

(LLMs) has significantly transformed natural 

language processing, demonstrating impressive 

capabilities across various tasks. In the realm of 

database interaction, these models have greatly 

enhanced Text-to-SQL systems, which translate 

natural language questions into executable SQL 

queries (Gao et al., 2023; Pourreza & Rafiei, 2023; 

Li et al., 2025; Wang et al., 2025). State-of-the-art 

proprietary models like GPT-4o demonstrate this 

potential by achieving high accuracy on complex 

benchmarks (Hong et al., 2025). However, the 

substantial computational resources required by 

these large models often limit their accessibility and 

practicality for widespread deployment. This has 

spurred growing interest in Small Language Models 

(SLMs), which offer a more resource-efficient 

alternative, balancing performance with lower costs 

and deployment flexibility, making them attractive 

candidates for specific applications like Text-to-

SQL interfaces. 

Despite the promise of SLMs, applying open-source 

variants to complex, real-world Text-to-SQL tasks 

remains challenging. Practical database schemas 

often dwarf the complexity found in benchmarks 
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like Spider, leading to significant performance 

degradation, particularly for smaller models. 

Furthermore, open-source SLMs generally lag 

behind proprietary counterparts like GPT-4o in 

handling intricate queries and large schemas (Chen 

et al., 2024), often due to their scale and inherent 

limitations. 

1.1. Core challenges 

Although open-source small language models 

(SLMs) have made notable strides, their deployment 

in practical Text-to-SQL systems is still hampered 

by four interlocking challenges that jointly constrain 

schema understanding, context retention, and query 

correctness. 

 
Figure 1. Challenges in vanilla database schema 

context enrichment 

− Understanding Complex Schemas: Grasping the 

semantics of large, real-world database schemas, 

SLMs struggle to comprehend relationships in 

large/ambiguous schemas, leading to mapping 

errors and severely degrading SQL quality. 

− Context-Window Limitations: Finite context 

windows restrict the amount of information that can 

be processed. Including complete details for 

expansive schemas is often infeasible, a problem 

exacerbated for SLMs which may have smaller 

windows and weaker long-input comprehension, 

forcing a trade-off between context sufficiency and 

overload. 

− Accuracy and Hallucination: Generating 

incorrect or non-executable SQL is a common issue. 

SLMs may hallucinate tables/columns or create 

flawed logic, particularly for complex operations 

like multi-table joins or nested queries, impacting 

the reliability of the output. 

− Performance Gap and Self-Correction Needs: A 

noticeable performance gap exists compared to 

leading proprietary models, with SLMs tending to 

produce more errors. This necessitates robust self-

correction mechanisms that leverage execution 

feedback, as basic error messages often prove 

insufficient for these models. 

Figure 1 illustrates how these general obstacles 

manifest concretely in the schema-description 

enrichment step, where the system extracts metadata 

from a database and uses an LLM to generate 

enhanced descriptions. 

1.2. Novel two-phase workflow approach 

To overcome the foregoing obstacles, we introduce 

a two-phase workflow that lifts the Text-to-SQL 

performance of open-source SLMs without 

exceeding consumer-grade resources. 

1.2.1. Database schema context enrichment 

Instead of truncating schemas, we model the 

database as a graph (tables as nodes, foreign keys as 

edges) and apply Louvain community detection 

(Banda & Motik, 2020) to cluster tables into 

semantically coherent groups. This reduces 

complexity by processing related tables together. 

Each cluster's context is enriched with metadata, 

relationships, and sample data, enabling the SLM to 

infer semantics and reduce hallucinations. 

1.2.2. SQL generation and self-correction 

For large databases, relevant schema are first 

selected based on the natural language query. The 

SLM then generates an initial SQL query using the 

enriched context. Critically, a rule-based validation 

step is applied to ensure the generated SQL is 

syntactically correct. Then, an execution-based self-

correction loop iteratively refines the query: it's 

executed against the database, and any error 

messages are fed back to the SLM for revision until 

the query runs successfully or a retry limit is met, 

grounding generation in real-world validity. 

This two-stage design addresses key bottlenecks 

such as schema understanding, context limits, and 

generation correctness providing a scalable 

framework for deploying open-source SLMs in 

realistic Text-to-SQL scenarios. 

1.3. Key contributions 

Our main contributions center on enhancing Text-

to-SQL capabilities for open-source Small 

Language Models (SLMs). (1) We introduce a novel 

two-phase workflow specifically tailored to address 

the challenges SLMs face with schema complexity, 

context limitations, and query accuracy. (2) This 

workflow includes a schema enrichment strategy 

that employs graph modeling and Louvain 

clustering to create semantically coherent table 
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groups, enabling more efficient and context-aware 

prompting. Furthermore (3) we present a multi-step 

query generation framework incorporating rule-

based validation and, crucially, an execution-driven 

self-correction loop that utilizes real database 

feedback to iteratively refine SQL accuracy. To 

promote transparency, reproducibility, and broader 

adoption, (4) we also provide an open-source 

implementation compatible with diverse SLM 

backends.  

1.4. Related work 

Text-to-SQL research evolved from early systems to 

Pre-trained Language Models like BERT and T5 

(Wong et al., 2024), which improved translation but 

often required significant fine-tuning or struggled 

with complex schemas (Qi et al., 2022; Li et al., 

2023). Subsequently, Large Language Models 

(LLMs) like GPT, Gemini, and Claude advanced the 

field using In-Context Learning (ICL) or Fine-

Tuning (FT) (Hong et al., 2025). Alongside these 

advancements, attention has increasingly turned to 

open-source Small Language Models (SLMs) (e.g., 

Llama, Phi, Qwen (Hui et al., 2024)). While offering 

transparency and efficiency benefits, these SLMs 

face pronounced challenges with large schemas and 

complex queries compared to proprietary LLMs, 

often due to inherent scale limitations affecting 

context handling and comprehension (Li et al., 

2024; Mohammadjafari et al., 2025). 

A key challenge remains schema understanding and 

linking, where language models, particularly open-

source SLMs, can falter with large or ambiguous 

schemas (Gao & Luo, 2025). Addressing this often 

involves techniques like schema filtering, graph-

based representations (GNNs, clustering) (Cai et al., 

2021) for efficient structuring, context enrichment, 

bidirectional linking (Cao et al., 2024), schema 

reduction, and using Retrieval-Augmented 

Generation (RAG) to dynamically provide relevant 

schema context. Such methods are especially 

pertinent for SLMs operating under tighter 

constraints. Our graph-based clustering aligns with 

these efforts, aiming to manage schema complexity 

within the typical context capabilities of SLMs. 

Ensuring SQL accuracy is another critical hurdle, as 

language models may generate incorrect SQL or 

hallucinate elements. This demands robust 

solutions, especially when working with SLMs. 

Relevant approaches include query decomposition 

(e.g., DIN-SQL; Pourreza & Rafiei, 2023, and DTS-

SQL which specifically targets SLMs; Pourreza & 

Rafiei, 2024), intermediate representations 

(NatSQL; Gan et al., 2021), Chain-of-Thought 

prompting (Tai et al., 2023), and self-correction 

mechanisms. Techniques leveraging execution-

based feedback (MAC-SQL; Wang et al., 2025) or 

critic models (SQLCritic; J. Chen et al., 2025) are 

particularly valuable for refining potentially 

inaccurate outputs from these SLMs, inspiring our 

own execution-driven correction loop. 

Standard evaluation uses benchmarks like Spider 

(Yu et al., 2019) with metrics like Execution 

Accuracy (EX) and Exact Matching (EM). The 

recognized performance gap for open-source SLMs 

on such complex tasks provides strong motivation 

for our two-phase workflow, which combines 

graph-based schema enrichment and execution-

driven self-correction specifically to enhance their 

Text-to-SQL performance. 

2. MATERIALS AND METHOD  

This section outlines our proposed two-phase 

methodology aimed at improving the accuracy of 

smaller open-source LLMs (less than 14B 

parameters) on complex Text-to-SQL tasks. The 

workflow begins with Phase I: Database Schema 

Context Enrichment, an offline process that 

converts intricate database schemas into more 

manageable and semantically richer representations 

tailored to LLM context limits, utilizing graph-

based clustering (as depicted in Figure 2). Next, 

Phase II: SQL Generation and Self-Correction takes 

place at query time, utilizing the enriched schema 

context to translate natural language questions into 

SQL queries and incorporating an execution-based 

self-correction loop to enhance accuracy (illustrated 

in Figure 3). This structured approach methodically 

tackles challenges such as schema complexity, 

context window limitations, and query inaccuracies 

inherent in smaller models. 

2.1. Materials 

2.1.1. Models 

To evaluate our schema enrichment and SQL 

generation pipeline, we compare two open-source 

models with distinct design emphases: 

Qwen2.5-Coder:14B (Hui et al., 2024) - A code-

specialized variant of Qwen2.5 model and further 

refined for programming tasks. Its strengths in 

syntax, schema comprehension, and code reasoning 

make it a good candidate for SQL generation. 

Phi-4:14B - A generalist model focused on 

reasoning, diverse training data underpins strong 

logical across domains. 
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Figure 2. Overview of the proposed Database Schema Context Enrichment methodology 

Both models are deployed in quantized format 

Q4_K_M GGUF format to enable efficient 

inference on consumer-grade hardware while 

maintaining high performance. For the experiments, 

we use a machine equipped with an RTX 4060 Ti 

GPU with 16GB of VRAM, representing typical 

hardware constraints faced by end-users. This 

comparison reveals whether a code-focused 

architecture or a broadly trained generalist better 

leverages enriched schema context for accurate SQL 

synthesis. 

2.1.2. Datasets 

We evaluate on the Spider dataset (Yu et al., 2019), 

a large-scale, cross-domain Text-to-SQL 

benchmark comprising 10,181 questions and 5,693 

SQL queries over 200 databases in 138 domains. Its 

complex queries (e.g., multi-table joins, nested 

subqueries) make it a standard testbed; we report 

results on the official development and test splits. 

2.2. Method 

2.2.1. Database schema context enrichment 

Database Schema Graph Representation - The 

relational database schema is formally modeled as 

an undirected graph  

𝐺 = (𝑉, 𝐸) 

where the set of vertices 𝑉 represents the tables 

within the database, and the set of edges  
𝐸 represents the foreign key relationships between 

tables. 

These edges are extracted from the relations field 

within column metadata, with duplicates removed 

for computational efficiency. The resulting graph 

structure effectively captures the inherent 

connectivity of the database schema. 

𝐸 =  { (𝑢, 𝑣) | 𝑢, 𝑣 ∈  𝑉 ∧  ∃ 𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐾𝑒𝑦(𝑢, 𝑣) } 

Louvain-based community detection - To 

effectively manage complex database schemas, we 

apply the Louvain community detection algorithm 

(Banda & Motik, 2020) to the schema graph. This 

algorithm partitions the graph by maximizing the 

modularity metric 𝑄: 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] δ(𝑐𝑖 , 𝑐𝑗)

𝑖,𝑗

 

where 𝐴𝑖𝑗 represents the edge between nodes 𝑖 and 

𝑗, 𝑘𝑖  is the sum of edges connected to node 𝑖, 𝑐𝑖  is 
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the community of node 𝑖, and 𝛿 is the Kronecker 

delta function. As an optimization, for schemas 

where |𝑉| <  5, we simply define a single cluster 

containing all tables. For larger schemas, we 

construct an appropriate graph representation and 

apply the community detection algorithm with a 

parameter 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  2.5 to control community 

granularity. 

The algorithm yields a partition 𝒫 = {𝐶1, 𝐶2, … , 𝐶𝑘} 

of tables into disjoint clusters. These clusters are 

then sorted by size in descending order, with tables 

within each cluster alphabetically ordered by their 

identifiers for consistent presentation. 

Overview database schema context generation - 

Before the cluster-level enrichment phase, the 

system first compresses the entire schema 𝐺 into a 

simple prompt representation to save tokens, 

yielding 

𝑃simple  =  𝑆𝐼𝑀𝑃𝐿𝐸(𝐺) 

From this compact prompt 𝑃simple, the SLM is 

instructed to generate a global description of the 

database, formalised by the function 

ℰglobal(𝐺)  =  { 𝐷db ,  𝑇desc  } 

More concretely, 

▪ 𝐷db = a concise description of the whole database 

▪ 𝑇desc = { (𝑇𝑗 ,  𝐷𝑇𝑗

short) | 𝑇𝑗 ∈ 𝐺 }   (table description) 

The resulting set ℰglobal(𝐺) acts as a high-level 

“mental map” that underpins the subsequent cluster-

specific context enrichment performed for every 

cluster 𝐶𝑖.   

Cluster-specific context generation - For each 

identified cluster 𝐶𝑖, we generate comprehensive 

contextual information to provide the LLM with 

sufficient understanding of the related tables. The 

enrichment process can be formalized as a function 

ℰ, that generates structured context for each cluster: 

ℰ(𝐶𝑖) = {𝐷𝑑𝑏 , 𝑇𝑚𝑒𝑡𝑎 , 𝐶𝑜𝑙𝑖𝑛𝑓𝑜 , 𝑅𝑓𝑘, 𝑆𝑑𝑎𝑡𝑎} 

where: 
▪ 𝐷𝑑𝑏    = Database description 

▪ 𝑇𝑚𝑒𝑡𝑎 = {(𝑇𝑗 , 𝐷𝑇𝑗
) | 𝑇𝑗 ∈ 𝐶𝑖  }  

▪ 𝐶𝑜𝑙𝑖𝑛𝑓𝑜 =

  {(𝑐𝑜𝑙𝑗𝑘 , 𝑡𝑦𝑝𝑒𝑗𝑘 , 𝑘𝑒𝑦𝑗𝑘 , 𝐷𝑐𝑜𝑙𝑗𝑘
) | 𝑐𝑜𝑙𝑗𝑘 ∈ 𝑇𝑗 , 𝑇𝑗 ∈ 𝐶𝑖  } 

▪ 𝑅𝑓𝑘       =

   {(𝑇𝑎 , 𝑐𝑜𝑙𝑎 , 𝑇𝑏 , 𝑐𝑜𝑙𝑏) | 𝑇𝑎, 𝑇𝑏 ∈ 𝐶𝑖 , (𝑇𝑎 , 𝑇𝑏) ∈ 𝐸} 

▪ 𝑆𝑑𝑎𝑡𝑎 = {(𝑇𝑗 , {𝑟1, … , 𝑟𝑚}) | 𝑇𝑗 ∈ 𝐶𝑖} 

The enriched representation includes database/table 

descriptions, detailed column metadata (names, 

types, keys), inter-table relationships (within and 

across clusters), and sample data rows to clarify 

semantics. 

The implementation follows a workflow pattern 

with error handling and retry mechanisms. For each 

cluster, the process attempts up to three retries if the 

initial generation fails. After generation, the 

descriptions are mapped back to the original 

schema, updating only fields that were previously 

empty or contained placeholder values. 

𝜏𝑖 = min{ 𝑗 ∈  {1,2,3}: 𝐸𝑗(𝐶𝑖) ≠  ∅ },   

𝐸𝑓𝑖𝑛𝑎𝑙(𝐶𝑖)  =  {
𝐸𝜏𝑖 

(𝐶𝑖) ,  𝜏𝑖  𝑒𝑥𝑖𝑠𝑡𝑠,

  ∅           , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

This approach preserves existing high-quality 

metadata while enriching incomplete elements. The 

enrichment process overcomes limitations of purely 

structural clustering by providing localized context 

that integrates structural details, semantic 

descriptions, and concrete data examples. The 

workflow tracks metrics including success rates and 

processing times to measure effectiveness. 

2.2.2. SQL generation and self-correction 

This phase executes at query time, taking a user's 

natural language question (NLQ) and the enriched 

schema representations from Phase I. The workflow 

implements a multi-step process with selective table 

filtering, SQL generation, validation, execution, and 

error correction. The detailed process is shown in 

Figure 3. 

Relevant table selection - When a database 

contains many tables, we first narrow down to only 

those likely needed to answer the user’s query. 

Formally, we define: 

𝒮:  𝑄 × {𝑇1, 𝑇2, … , 𝑇𝑛}  ⟶  {𝑇𝑟1
, 𝑇𝑟2

, … , 𝑇𝑟𝑚
} , 
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Where 𝑄 is the natural language question and {𝑇𝑟𝑗
} 

is the subset of tables deemed relevant. 

Concretely: 

𝒮(𝑄, {𝑇𝑖}𝑖=1
𝑛 ) =  {

{𝑇𝑖}𝑖=1
𝑛                         , 𝑛 ≤  𝜏,

𝒮𝑆𝐿𝑀(𝑄 , {𝑇𝑖}𝑖=1
𝑛 )    , 𝑛 >  𝜏,

 

With threshold 𝜏 (e.g. 𝜏 =  3). when 𝑛 > 𝜏, we 

call: 

𝒮𝑆𝐿𝑀(𝑄, {𝑇𝑖})  =  SLM(𝑃retrieval), 

 where the prompt 𝑃retrieval contains: 

▪ The user’s query 𝑄, 

▪ A list of all table names 𝑇𝑖  alongside their 

brief descriptions, 

▪ An instruction to “return the full set of all 

tables that might be relevant to answering 𝑄.” 

 

Figure 3. Comprehensive framework - Schema Context Enrichment (Phase I,  Figure.2) and SQL 

Generation & Self-Correction (Phase II) with table access control, LLM-based table selection, rule-

based validation, and execution-driven correction 

SQL generation and validity checking - Once the 

relevant table set has been determined, the system 

proceeds to generate and validate the first SQL 

statement using the prepared context. The workflow 

comprises four main stages: 

a.   Query generation 

A prompt 𝑃generation is submitted to the SLM to 

obtain the initial SQL query: 

𝑆𝑄𝐿initial = SLM(𝑃generation), 

𝑃generation = { 𝐼,  𝑆𝐶 ,  𝑄,  𝑑𝑖𝑎𝑙𝑒𝑐𝑡}, 

where 

▪ 𝐼 - An instruction that forces the model to 

output only a single SQL statement. 

▪ 𝑆𝐶  - Schema Context Serialisation 

(Restricted to Selected Tables) 

▪ 𝑄  - the user’s normalised English question 

▪ 𝑑𝑖𝑎𝑙𝑒𝑐𝑡 - the target SQL query syntax (e.g. 

PostgreSQL or MySQL) 
 

b.   SQL extraction and syntactic check 

From the SLM’s response, all non-SQL content 

(explanations, formatting, etc.) is stripped, 

leaving a clean SQL string. A lightweight 

parser is then invoked to ensure that the 

statement is syntactically valid. 

c.   Table-set validation 

The set of tables referenced by the query 

excluding intermediate CTEs is denoted 

Tables(𝑆𝑄𝐿). It is compared against the 
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permitted set 𝑇 identified in Relevant Table 

Selection step. 

 

𝑉(𝑆𝑄𝐿, 𝑇)  

=  {
 𝑇𝑟𝑢𝑒  , 𝑖𝑓 Tables(𝑆𝑄𝐿) ⊆ 𝑇,

  𝐹𝑎𝑙𝑠𝑒,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

d.   Automatic context expansion (if necessary) 

If 𝑉(𝑆𝑄𝐿, 𝑇) = True but the query references 

tables that were not included in the original 

context, the system automatically enlarges the 

relevant-table set, refreshes 𝑆𝐶 , and re-invokes 

the generation phase with the updated prompt. 

This guarantees that the final query is both 

syntactically correct and contextually coherent. 

Combining both syntactic validation and table-set 

consistency checking allows the system to exert 

strict quality control over the generated query, 

thereby minimizing errors caused by incorrect table 

references or by requests that exceed the context 

provided to the SLM. 

Execution and self-correction loop - After passing 

static validation, the candidate SQL statement is 

executed against the database. If no error occurs 
(𝑒𝑟𝑟𝑜𝑟 =  ∅), execution terminates, and the result 

is returned. Otherwise, the system enters the self‐

correction loop described in Algorithm 1. In each 

iteration, the prompt 𝑃generation supplies the model 

with the database schema, the original user query 𝑄, 

the most recent SQL attempt, the error message, and 

the SQL dialect. By leveraging direct execution 

feedback, this loop effectively resolves such as 

syntax errors, schema mismatches, and semantic 

issues until either a valid query is produced or reach 

limit retry is reached. 

Algorithm 1: SQL Self-Correction Loop 

1 𝑆𝑄𝐿current←𝑆𝑄𝐿initial 

2 𝑟𝑒𝑡𝑟𝑦 ←  0  

3 while 𝑟𝑒𝑡𝑟𝑦  <  𝑚𝑎𝑥_𝑟𝑒𝑡𝑟𝑖𝑒𝑠 do 

4  (𝑟𝑒𝑠𝑢𝑙𝑡,  𝑒𝑟𝑟𝑜𝑟) ← Execute(𝑆𝑄𝐿current,  𝐷𝐵) 

5  if 𝑒𝑟𝑟𝑜𝑟 =  ∅ then 

6   return 𝑆𝑄𝐿current                             ⊳ 𝑆𝑢𝑐𝑒𝑠𝑠 

7  end if    

8  𝑃corr ← Prompt(𝑆𝐶 , 𝑄, 𝑆𝑄𝐿current, 𝑒𝑟𝑟𝑜𝑟, 𝑑𝑖𝑎𝑙𝑒𝑐𝑡) 

9  𝑆𝑄𝐿current ← LLM(𝑃corr) 

10  𝑟𝑒𝑡𝑟𝑦 ← 𝑟𝑒𝑡𝑟𝑦 + 1 

11 end while 

12 return None ⊳ 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 

 

3. RESULTS AND DISCUSSION 

This section details the empirical results of our 

proposed two-phase workflow. We aim to assess its 

effectiveness in enhancing the Text-to-SQL 

capabilities of open-source SLMs and compare the 

performance of these models with different 

specializations (general-purpose vs. code-focused) 

when augmented by our framework. 

3.1. Results 

To isolate the effect of the proposed workflow, we 

benchmark it against a minimal baseline pipeline 

that invokes the language model with a single zero-

shot prompt. Whenever the authors of a model 

provide an official prompt as is the case for 

Qwen2.5-coder-14B, we adopt it unchanged; 

otherwise we fall back to the generic “SQL – 

Natural Language Translation” template from 

OpenAI (OpenAI, 2025). Because this baseline 

neither filters nor enriches the schema and performs 

no execution-guided repair, it serves as a rigorous 

reference point.  

Model quality is assessed on the Spider Dev and  

Test splits with the two canonical Text-to-SQL 

metrics: 

Execution accuracy (EX) - reports the fraction of 

generated queries that, when executed, return the 

same result set as the ground truth; any runtime error 

counts as a failure, so EX reflects functional 

correctness.   

Exact match (EM) is stricter after normalizing 

trivial differences in case and whitespace, it records 

the percentage of predictions whose SQL string is 

identical to the reference, thus capturing syntactic 

fidelity. 

The resulting EX and EM scores for both models 

under the full two-phase workflow are summarized 

in Table 1. 
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Table 1. Workflow Performance on Spider dataset. Baseline results are illustrative estimates (no 

enrichment and correction). The ↑ indicate improvement over baseline 

Method   |   Models 
Spider Dev Spider Test 

EX (%) EM (%) EX (%) EM (%) 

B
a

se
l

in e Qwen2.5-coder 81.8 58.8 83.7 57.9 

Phi4 75.1 27.1 77.0 29.2 

W o
r

k
fl

o w
 Qwen2.5-coder 83.1 ↑ 62.3 ↑ 86.2 ↑ 62.2 ↑ 

Phi4 76.6 ↑ 30.2 ↑ 77.9 ↑ 31.7 ↑ 

Table 1. illustrates the impact of the proposed two-

phase workflow on two open-source SLMs.  For 

Qwen2.5-coder, execution accuracy (EX) climbs 

from 81.8% to 83.1% on Spider-Dev set and from 

83.7% to 86.2% on Spider-Test, while exact-match 

accuracy (EM) increases from 58.8% to 62.3% and 

from 57.9% to 62.2%, respectively.  The more 

generalist Phi-4 model follows the same trend, 

albeit from a lower baseline, rising from 75.1% to 

76.6% EX on Dev and from 77.0% to 77.9% on 

Test, with EM improving by roughly three 

percentage points on both splits.  In every case the 

jump in EX outpaces that in EM, confirming that the 

execution-guided self-correction of Phase II 

successfully amends syntactic flaws that previously 

prevented query execution even when the final SQL 

string diverges from the reference. 

Table 2. The comparison of Text-to-SQL performance of our proposed workflow on the Spider dataset 

with reference methods 

Method 
Spider Dev Spider Test 

EX (%) EM (%) EX (%) EM (%) 

(A) Rule-based + Pre-trained Models 

RYANSQL (Choi et al., 2021) - 58.2 - 66.6 

SADGA (Cai et al., 2021) 71.6 - 66.7 29.2 

RESDSQL + NATSQL (H. Li et al., 2023) 84.1 80.5 79.9 72.0 

(B) LLM + In-context Learning 

DIN-SQL (Pourreza & Rafiei, 2023) - - 85.3 60.0 

DAIL-SQL (D. Gao et al., 2023) 86.6 - 84.4 74.4 

MAC-SQL (Wang et al., 2025) 86.8 - 82.8 - 

(C) SLM + ICL / Fine-tune 

MSc-SQL (Gorti et al., 2025) - - 84.7 - 

DTS-SQL (Pourreza & Rafiei, 2024) 85.5 79.1 84.4 60.0 

CodeS (H. Li et al., 2024) 85.4 - - - 

Proposed workflow 83.1 62.3 86.2 62.2 

A broader comparison in Table 2. positions the 

workflow among three established families of 

methods. Against rule-based systems coupled with 

pre-trained language models, whose best result is 

79.9% EX on Spider-Test (RESDSQL + NatSQL), 

the workflow achieves 86.2%, thereby exceeding 

every member of that family while relying solely on 

open-source weights. When set beside GPT-4 

systems using in-context learning, it attains a higher 

Test EX than all published variants—for example, 

surpassing DIN-SQL at 85.3% and MAC-SQL at 

82.8%. Within the SLM category, the strongest prior 

result is DTS-SQL at 84.7%; the workflow therefore 

establishes a new state-of-the-art for models of 

comparable size, demonstrating that carefully 

engineered prompting plus execution feedback can 

close, and in this instance invert, the gap to larger 

proprietary LLMs without costly fine-tuning.  The 

workflow does not yet match the leading EM figures 

of RESDSQL + NatSQL method (80.5% Dev, 

72.0% Test) or DAIL-SQL (74.4% Test), indicating 

that further work on SQL string canonicalization 

would be needed to eliminate residual lexical 

mismatches. 
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Table 3. Ablation study: Impact of workflow components on EX accuracy (%) of Qwen2.5-Coder:14B 

model. (SPIDER Test) 

Method   Configuration Easy Med Hard Extra All 

Full Workflow (Phase I + II) 93.6 89.3 80.5 76.3 86.2 

w/o Enrichment (Phase I) 93.2 88.6 76.0 69.6 83.8 

w/o Self-Correction (Phase II) 91.5 84.3 67.2 45.8 77.0 

Baseline (No workflow) 93.4 87.2 78.6 69.7 83.8 

Table 4. Ablation study: Impact of workflow components on EX accuracy (%) of Phi:14B model. 

(SPIDER Dev) 

Method   Configuration Easy Med Hard Extra All 

Full Workflow (Phase I + II) 87.5 83.4 65.5 53.9 76.6 

w/o Enrichment (Phase I) 89.5 83.0 63.8 47.0 75.5 

w/o Self-Correction (Phase II) 88.3 81.4 60.3 50.6 74.6 

Baseline (No workflow) 90.7 82.1 58.0 50.9 75.1 

The ablation in Table 3. confirms that both phases 

are indispensable for Qwen2.5-coder.  Removing 

schema enrichment leaves overall EX at 83.8% and, 

more tellingly, drops the Hard subset from 80.5% to 

76% and the Extra subset to 69.6%.  Eliminating 

self-correction is even more damaging: overall EX 

falls to 77.0%, with  Extra queries subset collapsing 

to 45.8 %. The same pattern appears for Phi-4 in 

Table 4. The full workflow reaches 76.6% EX, 

whereas discarding enrichment reduces it to 75.5% 

and discarding self-correction to 74.6%. Again the 

steepest degradation is concentrated in the Extra 

tier, where scores drop from 53.9% to 47.0% 

without enrichment and to 50.6% without self-

correction. These observations reinforce the 

complementary roles of the two phases: enrichment 

supplies concise, relevant schema context that 

becomes critical as relational complexity grows, and 

execution feedback repairs generation errors that 

SLMs alone cannot consistently avoid. 

Taken together, the experiments validate the 

effectiveness of the two-phase strategy. Across both 

SLMs the workflow consistently yields higher 

execution accuracy most notably a 2.5 percentage 

point gain on Spider Test for Qwen2.5-coder and 

delivers the highest published Test EX (86.2%) 

among systems that eschew closed-source models 

and extensive fine-tuning. The improvements are 

most pronounced on the hardest queries, indicating 

that schema pruning and post-generation self-repair 

are complementary and jointly indispensable for 

bringing open-source models to production-grade 

Text-to-SQL performance. 

This section presents the empirical evaluation of our 

proposed two-phase workflow, designed to enhance 

the Text-to-SQL capabilities of open-source Small 

Language Models (SLMs). We analyze the 

performance improvements achieved by integrating 

the schema enrichment phase and self-correction 

mechanisms, utilizing the challenging Spider 

benchmark. 

3.2. Discussion 

The results highlight that schema enrichment and 

execution-driven self-correction are complementary 

components for improving Text-to-SQL accuracy 

with open-source small language models. Compared 

to prior rule-based and LLM-based approaches, the 

proposed workflow consistently closes the gap with 

larger proprietary models while maintaining 

resource efficiency. Notably, the workflow achieves 

higher execution accuracy than GPT-4–based in-

context learning methods on the Spider benchmark, 

underscoring the potential of carefully engineered 

prompting combined with lightweight feedback 

mechanisms. 

The ablation analysis further emphasizes that both 

phases are indispensable. Schema enrichment 

provides structured and contextually relevant 

schema knowledge, which becomes increasingly 

important as query complexity grows, while the 

self-correction loop effectively mitigates syntactic 

and semantic errors that would otherwise prevent 

successful execution. These findings suggest that a 

hybrid strategy combining structural schema 

management with dynamic error repair offers a 

robust pathway for deploying SLMs in production-

grade environments. 

Limitations: This study's limitations include 

evaluation primarily on the Spider benchmark, 

potentially not covering all real-world database 

complexities. Performance may vary with different 

SLMs beyond the two tested. The enrichment 

phase's effectiveness depends on initial metadata 
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quality and clustering suitability. The self-

correction loop has limits in resolving highly 

complex errors, and computational overhead might 

be relevant in certain contexts. The evaluation 

focused on accuracy metrics, omitting latency or 

deeper query quality analysis. 

4. CONCLUSION 

This research directly confronts the difficulties in 

leveraging open-source Small Language Models for 

practical Text-to-SQL applications, particularly 

their struggles with complex schemas and context 

limitations. We introduced and validated a novel 

two-phase workflow integrating offline, graph-

based schema enrichment via Louvain clustering 

with runtime, execution-driven self-correction. 

Empirical results on the challenging Spider 

benchmark demonstrate that this approach markedly 

improves execution accuracy for diverse SLMs like 

Qwen2.5-coder and Phi-4. Our work provides not 

just a conceptual framework but a practical, 

validated methodology, paving the way for wider 

deployment of resource-efficient, open-source 

models in sophisticated natural language database 

interfaces. Future efforts could focus on extending 

this methodology to broader database types and 

further enhancing the robustness and efficiency of 

the self-correction loop for highly complex queries. 
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