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Article info. ABSTRACT

Received 15 Jul 2025 Traffic congestion is becoming an increasingly serious and challenging
Revised 18 Aug 2025 issue in major urban areas. This problem not only causes a waste of time
Accepted 3 Oct 2025 and increased fuel consumption but also contributes to environmental

pollution and deterioration of residents’ quality of life. In this study, a new
method of predicting the average speed reported by traffic sensors across

Keywords the city was proposed. In this method, we make the most of two core
models: Graph Convolutional Networks and Long Short-Term Memory.

Graph convolutional The YOLO model is used to analyze images and video during data

networks, long short-term collection. By leveraging Graphe Convolution Networks ability to capture

memory, traffic flow spatial information, Long Short-Term Memory capacity to model temporal

prediction, YOLO dynamics, and YOLO's strength in visual object detection, our integrated
framework enhances the accuracy of traffic flow predictions at specific
locations and time intervals. This comprehensive approach aims to support
real-world applications such as adaptive traffic light control, traffic
planning support, and congestion alerts. The proposed method
outperforms other methods on the Caltrans PeMS dataset.

1. INTRODUCTION optimize transportation and logistics, reduce traffic

accidents, and serve as the foundation for intelligent

Traffic congestion is a pressing issue in many urban . . .
g P g 4 transportation systems in modern cities.

areas around the world, negatively impacting the

economy, environment, and quality of life. The Therefore, the application of technology for real-
rapid growth in urban population, the increasing time traffic flow prediction is essential to assist
number of private vehicles, and underdeveloped regulatory authorities and the public in optimizing
transportation infrastructure have exacerbated travel plans, reducing congestion, and enhancing
congestion in many countries, including Viet Nam. traffic efficiency.

Moreover, traditional traffic control methods Traffic forecasting is a crucial component of
(signage, fixed-timing traffic lights, and direct modern transportation systems, influencing various
traffic police intervention) have become less aspects of traffic management, safety, and urban
effective as vehicle volume continues to rise. planning. Accurate predictions of traffic conditions

are essential for managing urban mobility,

Traffic flow forecasting is very important because it alleviating congestion, and enhancing road safety.

helps manage and direct traffic effectively, reduce
congestion, support infrastructure planning, In the context of Intelligent Transportation Systems
enhance the experience of traffic participants, (ITS), forecasting technologies, particularly
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machine learning and deep learning methodologies,
have transformed how traffic conditions are
predicted. Techniques such as LSTM networks and
hybrid models have demonstrated superior
capabilities in short-term traffic forecasting,
effectively capturing the complex temporal and
spatial dependencies of traffic phenomena (Ren et
al., 2021; Tran et al., 2022).

Additionally, Gao et al. (2021) emphasize that
accurate traffic speed forecasting is integral for
providing real-time data, which can significantly
improve the decision-making process for both
traffic managers and individual travelers. When
combined with historical data, such forecasting
empowers travelers with predictive insights,
allowing for better route choices and, in turn,
reducing overall congestion (Awan et al., 2020).
This predictive capability is pivotal in developing
Ren et al. (2021) integrated transport solutions that
cater to the evolving dynamics of urban road
networks.

The importance of traffic forecasting extends
beyond mere prediction. It encompasses safety
enhancements, infrastructure planning, and the
overall optimization of urban mobility solutions. As
cities continue to grow and traffic conditions evolve,
leveraging advanced forecasting techniques will be
essential for sustaining efficient and safe
transportation systems.

In this study, a new method of predicting the
average speed reported by traffic sensors across the
city was proposed. In this method, we combine two
core models, GCN and LSTM. The YOLO model is
used to analyse images and video during data
collection. By leveraging GCN’s ability to capture
spatial information, LSTM’s capacity to model
temporal dynamics, and YOLO’s strength in visual
object detection, our integrated framework enhances
the accuracy of traffic flow predictions at specific
locations and time intervals. This comprehensive
approach aims to support real-world applications
such as adaptive traffic light control, traffic planning
support, and congestion alerts.

This study is divided into five sections. The first
section discusses the importance of traffic flow
prediction, why it needs to be addressed, and
proposes a method to solve the problem. The second
section is the related works study. The third section
proposed a method to solve the problem of
predicting the average speed. The fourth section
analyzes the collected dataset as well as the
application results of the problem using this dataset.
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Finally, the conclusion is based on the obtained
results and outlines directions for future research.

2. RELATED WORKS

Traffic-related research has been widely developed
and expanded in recent years, especially in the area
of predicting traffic flow in cities. This task is
crucial for building an Intelligent Transportation
System (ITS), which aims to address traffic-related
problems efficiently. The advancement of artificial
neural networks, particularly Graph Convolutional
Networks (GCNs), has made the problem of traffic
prediction more feasible. In the past, traffic
prediction research often relied on traditional
statistical methods. For instance, Chandra and Al-
Deek (2009) employed the Auto Regression (VAR)
model to extract data from historical records in order
to predict present values; Wang et al. (2003) also
utilized VAR for traffic analysis. Meanwhile,
Kumar and Vanajakshi (2015) adopted a traditional
time  series  forecasting = method—ARIMA
(Autoregressive Integrated Moving Average) —
with the goal of predicting city traffic flow. A
common limitation of these methods is the
assumption of time series stationarity. However,
traffic data often exhibits complex spatiotemporal
characteristics, which means the stationarity
assumption may not be satisfied. Although
traditional statistical approaches such as ARIMA,
VAR, and similar models have been widely used in
time series forecasting tasks, they have not
demonstrated high effectiveness when applied to
real-world urban traffic systems. In this context, the
rapid advancement of machine learning and deep
learning has opened up new directions for
addressing the challenges of traffic prediction more
effectively. Manoel et al. (2009) applied Support
Vector Regression (SVR) to exploit traffic data.
Building on this, Random Forest models developed
by Johansson et al. (2014) showed promising results
in capturing temporal patterns through machine
learning techniques. Furthermore, Markov models
implemented by Zhang et al. (2018) demonstrated
effectiveness in identifying traffic patterns from
large volumes of historical traffic data. Although
these methods generally perform better than
statistical approaches due to their ability to capture
nonlinear  spatio-temporal  correlations, their
performance remains suboptimal when applied to
large road networks with hundreds or even
thousands of road links. With the remarkable
success of deep learning techniques, there have been
numerous efforts to apply deep learning to traffic
flow prediction. With the rapid development of deep
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learning, researchers have begun applying
Recurrent Neural Networks (RNNs); Chung et al.
(2014) and Knol et al. (2021) have utilized RNNs
for time series prediction. Following that, with the
improvement of RNNs, the Long Short-Term
Memory (LSTM) network is considered a viable
solution for traffic prediction due to its ability to
capture long-term dependencies. Yang et al. (2019)
and Zhao et al. (2017) demonstrated the
effectiveness of LSTM networks. However, LSTM
still treats traffic sequences from different road
segments as independent data streams, ignoring
spatial relationships, and therefore cannot optimize
the prediction performance of the entire network.
Zhu et al. (2020) combined RNN with GCN to
address spatial limitations. However, RNNs suffer
from vanishing or exploding gradient problems,
therefore Zhao et al. (2019) proposed a T-GCN
network combined with GRU to overcome the
drawbacks of RNN, such as gradient explosion and
vanishing, while integrating graph convolution to
extract corresponding spatial and temporal feature,
Yu etal. (2017) also proposed a graph convolutional
network to extract spatial and temporal graph
convolutional features. Although the above studies
have achieved many positive results, there are still
some challenges that need to be addressed. Notably,
most current models assume the traffic network to
be an undirected graph, whereas in reality, urban
traffic networks are often directed, which
significantly affects prediction accuracy.

In addition, the paper also touches on the topic of
object detection, a core area in computer vision.
Viola and Jones (2001) introduced a real-time face
detection classifier. Continuing this development,
Dalal et al. (2021) introduced an object detector
using HOG features. The first appearance of the
object detection model YOLO by Joseph et al.
(2016) marked significant advancement in computer
vision. In this study, we will perform vehicle
detection using the YOLOv8 model due to its
stability, fast processing speed, and accuracy for
real-time processing.

Traffic flow prediction is a crucial area of research
within Intelligent Transportation Systems (ITS),
aiming to enhance traffic management, reduce
congestion, and improve road safety. The
integration of advanced machine learning
techniques has marked a significant shift in how
traffic flow is analyzed and predicted. This synthesis
discusses various methodologies and advancements
in traffic flow prediction using machine learning
and deep learning approaches, highlighting
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influential studies in the field. Haghshenas et al.
(2023) review the efficacy of multiple machine-
learning techniques in traffic flow prediction. They
provide both qualitative and quantitative analyses,
advancements in urban traffic flow prediction
technologies. The authors acknowledge that modern
machine learning applications have transformed
traditional methods, offering improved efficiencies
in traffic management and signal control. Ma et al.
(2020) proposed a Multi-Parameter Chaotic Fusion
approach for traffic flow forecasting that accounts
for various external factors, such as weather
conditions and geographic influences. Their
findings suggest that understanding these variables
can enhance the stability and accuracy of traffic
predictions. This analysis fits within a broader
framework recognizing that traffic conditions are
inherently dynamic and influenced by multifaceted
factors. Li et al. (2020) extends with a focus on
vehicle counting and traffic parameter estimation
within dense traffic scenes. They identify challenges
related to accuracy and speed in estimating
parameters such as volume and density, key
components for real-time traffic management
systems. Their findings align with those of Yang et
al. (2024), who emphasize the effectiveness of
machine learning methods in enhancing traffic flow
monitoring through the integration of cloud data.

In the realm of deep learning, innovative models
have emerged to tackle the complexities of traffic
flow prediction. Li et al. (2021) developed a hybrid
deep learning framework integrating wavelet
decomposition and convolutional neural networks
with long short-term memory networks (CNN-
LSTM). Their work emphasizes the importance of
accurate long-term predictions to enable better
strategic  planning for traffic ~management.
Similarly, Huang et al. (2024) proposed an MEA-
LSTM model that leverages chaotic characteristics
for short-term traffic prediction, enhancing accuracy
by understanding upstream and downstream traffic
behaviors. Karim and Nower (2024) research into
long-term traffic predictions using a Stacked GCN
model is particularly relevant, as it addresses the
increasing necessity for precise modeling in urban
environments where traffic patterns are rapidly
evolving. Their work underscores the importance of
predictive models that are accurate and applicable to
real-world traffic management challenges. Turki
and Hasson (2023) focused on employing Artificial
Neural Networks (ANN) to estimate hourly traffic
flows on motorways, highlighting the potential of
deep learning methodologies to capture temporal
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patterns and predict future flows accurately. Such
methodologies are further supported by Shigemi et
al. (2023), who explored the prediction of traffic
breakdowns using detector data, illustrating the
growing importance of data-driven decision-making
in managing congestion.

The landscape of traffic flow prediction is evolving
through the advanced integration of machine
learning and deep learning methodologies.
Continuous research and development in this area
enhance predictive accuracy and significantly
contribute to the optimization of urban traffic
systems and safety strategies.

3. PROPOSED METHOD FOR TRAFFIC
FLOW PREDICTION

Traffic flow prediction is a difficult problem and has

many challenges such as accuracy, real-time, etc.
Graph Convolutional Network
learns spatial representations
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Real-time prediction depends heavily on hardware,
infrastructure and proposed methods. This section
proposes a traffic flow prediction method using
directed graphs to build a system that combines
three deep learning models GCN, LSTM, and
YOLO in order to achieve better outcomes. The
models GCN, LSTM and YOLO has its own
advantages and disadvantages. In this paper, we
combine all three models to take advantage of their
respective advantages. And each model is used to
serve a different purpose in the solving process.
Figure 1 presents the combination of three model
GCN, LSTM and YOLO with three stages:

(i) Recognizes and object tracks
(i1) Extracting information from data structures
(iii) Time-series data processing

Long Short-Term Memory
captures the temporal
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Figure 1. Detailed architecture of the combination of models

3.1. Recognizes and object tracks

The data extracted from the surveillance cameras on
the road are videos, which are also the input data of
our system. The core of the video is a sequence of
image frames. Objects (vehicles, people, etc.) in
these frames are detected and localized using the
YOLO object model (blue, red, purple boxes in the
image).

One of the primary advantages of YOLO is its
single-stage detection process, which performs
object classification and localization in one go. This
architecture significantly reduces the computational
load compared to traditional two-stage methods like
R-CNN or SSD, which require separate processes
for detecting and classifying objects (Guan, 2023;
Vaikunth et al., 2024). The efficiency gained from
this simplified structure allows YOLO to achieve
remarkable real-time processing capabilities,
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making it well-suited for scenarios where speed is
critical. Moreover, the YOLO model has
incorporated enhancements that further improve
detection accuracy and manage occlusions better
than earlier versions.

In these stages, YOLOVS is used for recognizing and
tracking objects. The reason YOLOVS8 was chosen
for this task is:

— The YOLOv8 framework has emerged as a
significant advancement in the field of object
detection, offering improvements over its
predecessors. This iteration integrates
enhancements in efficiency, accuracy, and usability,
making it suitable for various applications.

— One key advantage of YOLOVS is its improved
detection speed and accuracy. Compared to earlier
iterations, YOLOvS8 features refined architectural
elements that optimize the processing workflow,
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allowing it to maintain a high frame rate while
analyzing images.

— Additionally, YOLOVS maintains a compact and
lightweight design, which facilitates its deployment
on various platforms.

3.2. Extracting information from data
structures

To describe spatial information and interactions
between objects, a graph G = (V, E) is used, where:

V: nodes (representing each object, e.g. each
vehicle).

E: edges (representing spatial relationships between
objects).

This graph stores spatial information and
interactions between objects. Each node (object)
will have features extracted based on its location and
relationship with other nodes. To extract features on
G, a Graph Convolutional Networks (GCN) model
is used. GCN is a deep learning model specialized
in processing graph-structured data (graphs). Unlike
CNN (Convolutional Neural Networks), which
operate on grid-like data (images), GCNs can work
with data that lacks a fixed structure, such as traffic
systems. GCNs are widely used in the field of traffic
flow prediction because the GCN structure is
designed to process graph-based data, and
predicting the traffic flow of a city requires a
network of sensors and traffic cameras across the
entire city. GCNs are particularly effective in
extracting information from data structures with
complex relationships, where each node not only
carries its own information but is also influenced by
neighboring nodes.

The GCN network allows for the propagation and
aggregation of information from neighboring nodes
through graph convolution operations, thereby
learning integrated representations that combine
both node content and graph structure.

The formula for computing the layers of GCN is as
follows (Singh, 2019):

where,

H;'*': The hidden layer at level L +1
A: The aggregated value from nodes.

W: The weight at layer 1.

GCN learns spatial representations at each time
point. Each node (object) will have features
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extracted based on its location and relationship to
other nodes. The formula y (where, y = W-F) shows
how weights (W) are multiplied by feature vectors
(F) to create a new representation. The
representations are pooled (mean or aggregate) to
reduce dimensionality and normalize the
information. The output of this step retains the most
important features for each node.

3.3. Time series data processing

To process time series data, Long Short-Term
Memory (LSTM) is proposed for use. LSTM (Long
Short-Term Memory) is a variant of Recurrent
Neural Networks (RNNs), designed to handle time
series data. Thanks to its long-term memory
mechanism, LSTM can learn both long-term and
short-term trends in the data, helping to overcome
the vanishing gradient problem found in traditional
RNNEs.

LSTM learns temporal dependencies. Each node
across video frames is fed into a separate LSTM to
learn sequence dynamics. The goal is to recognize
the movement or change trend of each object over
time. As we can observe, the convolution operation
processes neighboring nodes and aggregates their
features. For example, at timestep t where t € T =
{1,2,3, ...}, nodes A, B, and C have values of [10,
20, 30] respectively. When we perform convolutio
at node A, we consider its two adjacent nodes and
aggregate them. If we apply Mean (average) as the
aggregation method, we compute the average of
these node values: Mean([10, 20, 30]) = 20. This
value is considered the feature of a node at a specific
time, aggregated to be fed into the Long Short-Term
Memory (LSTM) network.

In traditional neural networks, we assume that the
inputs are independent; however, in reality, these
values are not. For example, today's data may
influence the data of subsequent days. RNNs have
been effective at modeling and learning from such
dependencies.

o HH

Figure 2. Illustration of the learning process in
an RNN

(Source: Bengio et al., 2002)
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In the figure 2, X (0,1,2,3,...t) denotes the input
data at time t, A represents the neural network block,
h (0,1,2,3,...t) is the output at time t. Intuitively, at
t= 0 (the start of a sequential chain), there is no prior
information to learn from. For subsequent steps t =
12,3,...T, at each layer t # 0, there will be a loop in
the hidden layers (A) that captures the preceding
values.

However, a key weakness of RNNGs is their handling
of long-term dependencies.

For example, if T 1000-time steps, during
backpropagation to update the model's weights, we
must perform Gradient Descent 1000 times. The
backpropagation process of RNN:

oL oL y oh,  0h,_, oh,
ow Ls 0h " Ohey " Ohe, dhy,
where:

OL : Partial derivative of loss function L
OW: Partial derivative of weight W
oht : Partial derivative of the hidden layer at time t

During each gradient descent step, if we use the
sigmoid activation function, its output range is
(0, 1). Every back propagation step multiplies the
current gradient by a factor such as 0.5, 0.6. Over
many steps, these repeated multiplications drive the
gradient toward 0, leading to the vanishing gradient
problem.

Because of this weakness, plain RNNs are less
popular in practice than LSTM networks, which can
retain long-term information by design. Thanks to
this ability, LSTMs are widely used in time series
analysis and NLP tasks.

To handle more complex interactions between
nodes or between features, the interaction module
(nonlinear interaction) is used. It can include
attention or additional connections to model deeper
relationships and map the LSTM output through a
linear mapping layer. The final output can be either
predicted coordinates (e.g. A00, B0OO, CO0O... are the
locations of each object) or the state (stopped,
moving, redirected...) of the object.

4. EXPERIMENT END EVALUATE
RESULTS

4.1. Dataset analysis

In this study, public dataset from Caltrans PeMS
(Caltrans, "n.d.") is wused. PeMS dataset
continuously gathers real-time measurements from
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nearly 40000 sensors installed along the entire
freeway network in California’s major urban areas.
For this study we selected the “Station 5 Minute”
table, in which each sensor uploads a record every
five minutes. The data collection period is from
01/01/2025 to 07/03/2025. The dataset includes 16
variables defined as follows:

— Timestamp: Date and start time of the
summarized interval. For example, time 08:00:00
indicates  that aggregated values contain
measurements collected from 08:00:00 to 08:04:59.
Note that the “seconds” value is always 0 for five-
minute aggregates. Format: MM/DD/YYYY
HH24:MI:SS.

Station: Unique station ID, cross referenced with
the metadata files.

— District: County name.

— Direction of Travel: Travel direction (East |
West | South | North)

Lane Type:

e CD (Coll/Dist) — Collector/Distributor Lane:
Intermediate lanes that distribute traffic flow
between mainlines and entrance/exit ramps,
typically found at major interchanges.

e CH (Conventional Highway): Standard highway -
Roads without median barriers, featuring at-grade
intersections (crossroads, traffic signals).

e FF (Fwy-Fwy Connector): Freeway-to-freeway
connector - Short roadway segments enabling
transitions between two freeways without exiting
the freeway system.

e HV (HOV) (High Occupancy Vehicle Lane):
Carpool lane - Dedicated lanes for multi-occupant
vehicles (e.g., vehicles carrying 2-3+ passengers,
buses, or electric vehicles in some regions).

e ML (Mainline): Mainline lanes - Primary freeway
lanes carrying the main traffic flow.

e OR (On Ramp): Entrance ramp - Access roads
connecting local roads or other routes to the
freeway.

Station Length: Length of roadway covered by
the station, in miles/kilometers.

Samples: Total number of sensor samples
received across all lanes.

Observed (%): Percentage of individual lane points
at this location that were actually observed (i.e., not
imputed/filled values).
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Total flow: Sum of traffic flows over a 5-minute
interval across all lanes.

— Avg Occupancy: Average occupancy across all
lanes during a 5-minute interval, expressed as a
decimal between 0 and 1.

— Avg Speed (mph): Average speed of vehicles
over a 5-minute interval.

— Lane N Samples: Number of valid samples
obtained for Lane N, where N ranges from 1 to the
total number of lanes at that location.

— Lane N: Total traffic volume for lane N during a
5-minute interval, normalized by the number of
valid samples.

— Lane N Avg Occ (%): Average occupancy for
Lane N, expressed as a decimal between 0 and 1. N
ranges from 1 to the total number of lanes.

— Lane N Avg (mph): Weighted average speed for
Lane N (weighted by flow). If flow is 0, the
arithmetic mean of lane speeds over the 5-minute

Distribution of total_flow - Lane Type ML
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interval is used. N ranges from 1 to the total number
of lanes.

= Lane N Observed: Indicates observed data (1 =
observed, 0 = imputed/filled data).

Data extraction challenges included missing data
and noisy data. Removing such data improve.
accuracy. Processing was done in PyCharm using
Python 3.12.2 with these libraries: Patoolib, Os, and
Pandas.

This study focuses on the Avg Speed variable from
S5-minute sensor intervals, as average speed
significantly impacts traffic flow. The dataset
contains six lane types: CD, CH, FF, HV, ML, and
OR. We analyze total-flow and avg-flow
distributions per lane type. These variables help
filter noisy sensors during training and identify the
data distribution of both total-flow and avg-flow
variables for each lane type.

Distribution of avg_speed - Lane Type ML

) 20 40

avg_speed

60 80

Figure 3. Distribution of total-flow and avg-speed data on ML lanes

Figure 3 shows that ML lane data has the most
uniform distribution and the highest data volume
compared to other lane types. Therefore, we
selected this lane type for model implementation.

4.2. Experiment

Within the scope of this study, YOLO is used to
simulate the process of data collection from traffic
cameras. Specifically, the system utilizes the
YOLOvVS8 model for the purpose of identifying and
detecting objects so that we can collect data from
sensors, such as data on average speed, traffic
volume, etc., and that data will be sent to the server
for analysis and processing.

The operational procedure includes the following
key steps:

Connect to real-time video streams from traffic
camera sensors (livestream .m3u8 format).
Read and process each frame from the video
stream.

123

Use the YOLO model to detect traffic objects
present in each frame.

Record information about the detected objects,
including: vehicle type, confidence score,
position, and time of appearance.

Store or visualize the detection results to
simulate the actual traffic data collection
process.

By using YOLO, the system can quickly detect and
collect object data in real-time conditions, laying the
foundation for subsequent processing steps such as
traffic flow analysis, speed calculation, or
congestion prediction. Figure 4 presents an image
captured from a real-time sensor (image cropped
from available video).



CTU Journal of Innovation and Sustainable Development

Figure 4. Image captured from a real-time
sensor (image cropped from available video)

To process this, YOLO and its associated tools are
utilized, such as the Ultralytics and Supervision
libraries. These libraries simplify tasks like drawing
bounding boxes, labeling, processing video streams,
and visualizing object detection results in real-time.

Since the YOLO model is trained on Facebook’s
COCO dataset, which can detect approximately 80
types of objects, in this study, we only focus on
traffic-related objects such as cars, buses, trucks,
etc. Other unrelated objects are excluded to prevent
unnecessary or redundant predictions from the
model.

ByteTrack, a component of the Supervision library,
is responsible for tracking objects to prevent them
from being lost during detection. To perform this
tracking effectively, we need to configure specific
parameters for object tracking as follows:

e Track activation threshold =0.25: An object
detected by the YOLO model with a confidence
score higher than 25% will be tracked.

e Jlost_track buffer=30: If an object is lost for 30
consecutive frames, it will be removed from the
tracking system. This helps to reduce the issue of
losing track when the object is temporarily
occluded.

e minimum_matching threshold=0.8: The
minimum similarity threshold (IoU or cosine
distance) required to match objects between frames.
A higher value makes the system more "selective,"
reducing the chances of misidentifying objects.

frame rate=30: This is the video's frame rate, which
is crucial for determining the time and speed of
moving objects.

e minimum consecutive frames=3: An object
must be detected for at least 3 consecutive frames to
be considered valid.

Next, we need to add annotations to each bounding
box of the object, such as the object’s name and the
confidence score. To do this, we use the
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BoxAnnotator and LabelAnnotator classes from the
Supervision library. Figure 5 presented annotations
on each object (image cropped from available
video).

Figure 5. Annotations on each object (image
cropped from available video)

As we can see, each object predicted by YOLO will
be annotated with two values: the class name and the
confidence score for the prediction.

Next, we will track the objects to calculate the speed
of each object detected by YOLO:

In the image, we can see that each object's bounding
box has a line extending behind it. To achieve this,
we use the TraceAnnotator class from the
supervision library.

The parameters for this object include thickness(the
thickness of the motion trace line) and position(the
display position, which in this case is set to the
bottom center of the bounding box)

Next, we simply calculate the speed of each object
based on its tracking path. To calculate the speed of
an object, follow these steps:

e [terate over the objects detected by YOLO.

e Check if the number of stored coordinates for
that object is less than half a second's worth (i.e.,
half the number of frames per second). If True, it
means the object has just appeared and doesn't have
enough tracking information to calculate speed, so
add that object to the label for speed calculation in
the next frame.

Obtain the object's coordinates in a single frame,
and then compute the distance by subtracting the
initial position from the current position across
frames.

e C(Calculate the travel time by dividing the number
of frames by the frame rate (fps).

e Calculate the velocity, then multiply by 3.6 to
convert from m/s to km/h.
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e Add a label that shows the object ID and speed
(e.g., label: 5, 32 km/h).

Figure 6. Calculated Speed (image cropped
from available video)

Figure 6 presented the results after calculation. We
simply need to collect data over a period (e.g., 5
minutes, 10 minutes, or longer) so that the model
can predict the average speed of vehicles on a given
road segment.

The model training process is conducted to learn
optimal parameters that help the model make the
most accurate predictions. In this section, the model
is trained on a dataset that has been preprocessed,
normalized, and divided into two parts: a training
dataset, a validation dataset and a testing dataset in
the ratio 7:1:2.

The input parameters are as follows:

e In feat = In feat = 1: The number of input
features, which in this case is 1, meaning only
one attribute — avg_speed (average speed) —
is selected.

e Epochs =50: The number of times the model is
trained over the entire dataset.

e Input seqenuce length = 12: The number of
previous time steps used as input for training
the model

e Forecast hoziron = 3: The number of future
time steps the model is expected to predict.

e Out feat: The number of output features
generated by the graph convolution.

e Graph conv_params: Parameters used during
the graph convolution process:

+ aggregation_type: The chosen aggregation
method is mean, which averages the neighboring
node features.

+ combination type: The selected combination
method is concat, which concatenates the features of
the current node with its neighbors.

+ activation: No activation function is used in this
setup.
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+ Optimization method: Adam optimizer is used
with a learning rate of 0.01.

+ Loss: The Mean Square Error (MSE) is used to
calculate the loss.

The train dataset has been divided into multiple
batches during the data preprocessing step for the
model. Each batch in the train_dataset is a tuple of
data (Input, Target), where Input has the shape (64,
12, 168, 1) corresponding to (batch size,
input_sequence length, num_nodes,avg_speed),
and Target has the shape (64, 3, 168) corresponding
to (batch_size, output _sequence_length,
num_nodes).

Validation_data: the data used to evaluate the
model's performance during the training process.

Epochs refers to the number of complete passes
through the entire dataset for updating the loss.

Callbacks: The Early Stopping callback is set with a
patience value of 10, which means that if the loss
value does not improve significantly for 10
consecutive epochs, the training process will stop
early to ensure the model retains the best-
performing weights.

4.3. Evaluate results

First, we need to visualize the Loss function over
each epoch. After performing the training process,
we obtained the following result. Figure 7 shows the
relationship between Training and validation loss.
We can observe that the Loss value gradually
decreases on both the training and validation sets,
indicating that the model is learning effectively
from the data. The final result yields a Mean
Squared Error (MSE) of 0.2634, which is a
relatively good score for this model.

Training and Validation Loss

— Training Loss
~ Validation Loss

Epochs

Figure 7. Training and validation loss
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Given that the number of sensors is 168, we
randomly select three values to visualize the
behavior of these sensors. Below is the visualization
of these three randomly selected sensors as Figures
8, 9and 10.

Sensor 18

Figure 8. Visualize the behavior of sensor
number 18

At sensor number 18, there are some small errors,
which could be due to sudden changes on the route
that sensor number 18 recorded, leading to some
discrepancies.

Semsor 5
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Figure 9. Visualize the behavior of the sensor
number 5

At sensor number 5, we can see that the predicted
data closely matches the actual data, indicating that
the model performs very well.

Sensor 117

Actual Value
Predicted Val

1000 1500 2000 2500 3000

Figure 10. Visualize the behavior of sensor
number 117

Similarly, at sensor number 117, we can see that the
results are quite accurate compared to the actual
data.
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To evaluate the objectivity of the results achieved
by the proposed method, the results of the proposed
method will be compared with the results of other
methods such as: ST-GCN (Yu et al, 2017),
EIGRN (Ma et al., 2023), GCN-GRU (Karim &
Nower, 2024). The comparison results are shown in
Table 1. The evaluation scales used are: Mean
Absolute Error (MAE) and Root Mean Square Error
(RMSE).

MAE measures the average magnitude of the errors
in a set of predictions without considering their
direction. It is the average value over the test sample
of the absolute difference between the prediction
and the actual observation, where all individual
differences are weighted equally.

RMSE measures the average difference between the
predicted value of a statistical model and the actual
value. Mathematically, it is the standard deviation of
the residuals. The residuals represent the distance
between the regression line and the data points.

Table 1. Comparison of the results of the
proposed method with other results

Methods MAE RMSE
ST-GCN 2.37 7.56
EIGRN 1.14 245
GCN-GRU 3.4033 2.0273
Our Method 1.115 2.057

From Table 1, our method achieves the lowest MAE
(1.115) and RMSE (2.057) on the PEMSD?7 dataset,
substantially outperforming ST-GCN, EIGRN , and
GCN-GRU. This improvement stems from our
model’s ability to capture, jointly, complex spatio-
temporal dependencies through adaptive graph
learning and temporal attention mechanisms.

In contrast, ST-GCN relies on fixed graph
structures, limiting its spatial flexibility. EIGRN
struggles with long-term temporal patterns and is
sensitive to noise. GCN-GRU separates spatial and
temporal modeling, which weakens interaction
learning. These limitations result in significantly
higher prediction errors.

The results demonstrate the superiority and
robustness of our approach for spatio-temporal
forecasting tasks.

5. CONCLUSIONS

Traffic flow prediction is a crucial area of research
within ITS, aiming to enhance traffic management,
reduce congestion, and improve road safety. The
integration of advanced machine learning
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techniques has marked a significant shift in how
traffic flow is analyzed and predicted. This paper
presented a method to predict the average speed
reported by traffic sensors across the city by
combining two core models, GCN and LSTM. The
YOLO model is used to analyze images and video
during data collection. Proper data processing plays
a critical role in enabling the model to learn
effectively and achieve better performance. This
research successfully constructed and integrated
two models: GCN and LSTM to predict the average
speed of vehicles detected by sensors across the city.
This integration allows the model to generalize both
spatial and temporal relationships inherent in traffic
data. Furthermore, the study also applied the YOLO
model to simulate the sample data collection process
from traffic sensors, providing a clearer
understanding of how sensor data is gathered in
practice.

However, this proposed method still has limitations,
most notably, the model has not yet been deployed
in a real-world environment. It has only been trained
and evaluated on computers and has not been
deployed on a server for live inference or large-scale
application. The study does not provide
comparisons with other experimental models, such
as the combination of GCN with RNN or GCN with
GRU. YOLO is only used at a simulation level to
emulate the data collection process and has not been
fully exploited for its advanced capabilities. The
GCN model currently uses a static graph structure.
This poses a significant limitation—if a new sensor
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