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Traffic congestion is becoming an increasingly serious and challenging 

issue in major urban areas. This problem not only causes a waste of time 

and increased fuel consumption but also contributes to environmental 

pollution and deterioration of residents’ quality of life. In this study, a new 

method of predicting the average speed reported by traffic sensors across 

the city was proposed. In this method, we make the most of two core 

models: Graph Convolutional Networks and Long Short-Term Memory. 

The YOLO model is used to analyze images and video during data 

collection. By leveraging Graphe Convolution Networks ability to capture 

spatial information, Long Short-Term Memory capacity to model temporal 

dynamics, and YOLO’s strength in visual object detection, our integrated 

framework enhances the accuracy of traffic flow predictions at specific 

locations and time intervals. This comprehensive approach aims to support 

real-world applications such as adaptive traffic light control, traffic 

planning support, and congestion alerts. The proposed method 

outperforms other methods on the Caltrans PeMS dataset. 
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1. INTRODUCTION 

Traffic congestion is a pressing issue in many urban 

areas around the world, negatively impacting the 

economy, environment, and quality of life. The 

rapid growth in urban population, the increasing 

number of private vehicles, and underdeveloped 

transportation infrastructure have exacerbated 

congestion in many countries, including Viet Nam. 

Moreover, traditional traffic control methods 

(signage, fixed-timing traffic lights, and direct 

traffic police intervention) have become less 

effective as vehicle volume continues to rise. 

Traffic flow forecasting is very important because it 

helps manage and direct traffic effectively, reduce 

congestion, support infrastructure planning, 

enhance the experience of traffic participants, 

optimize transportation and logistics, reduce traffic 

accidents, and serve as the foundation for intelligent 

transportation systems in modern cities. 

Therefore, the application of technology for real-

time traffic flow prediction is essential to assist 

regulatory authorities and the public in optimizing 

travel plans, reducing congestion, and enhancing 

traffic efficiency. 

Traffic forecasting is a crucial component of 

modern transportation systems, influencing various 

aspects of traffic management, safety, and urban 

planning. Accurate predictions of traffic conditions 

are essential for managing urban mobility, 

alleviating congestion, and enhancing road safety. 

In the context of Intelligent Transportation Systems 

(ITS), forecasting technologies, particularly 
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machine learning and deep learning methodologies, 

have transformed how traffic conditions are 

predicted. Techniques such as LSTM networks and 

hybrid models have demonstrated superior 

capabilities in short-term traffic forecasting, 

effectively capturing the complex temporal and 

spatial dependencies of traffic phenomena (Ren et 

al., 2021; Tran et al., 2022). 

Additionally, Gao et al. (2021) emphasize that 

accurate traffic speed forecasting is integral for 

providing real-time data, which can significantly 

improve the decision-making process for both 

traffic managers and individual travelers. When 

combined with historical data, such forecasting 

empowers travelers with predictive insights, 

allowing for better route choices and, in turn, 

reducing overall congestion (Awan et al., 2020). 

This predictive capability is pivotal in developing 

Ren et al. (2021) integrated transport solutions that 

cater to the evolving dynamics of urban road 

networks. 

The importance of traffic forecasting extends 

beyond mere prediction. It encompasses safety 

enhancements, infrastructure planning, and the 

overall optimization of urban mobility solutions. As 

cities continue to grow and traffic conditions evolve, 

leveraging advanced forecasting techniques will be 

essential for sustaining efficient and safe 

transportation systems. 

In this study, a new method of predicting the 

average speed reported by traffic sensors across the 

city was proposed. In this method, we combine two 

core models, GCN and LSTM. The YOLO model is 

used to analyse images and video during data 

collection. By leveraging GCN’s ability to capture 

spatial information, LSTM’s capacity to model 

temporal dynamics, and YOLO’s strength in visual 

object detection, our integrated framework enhances 

the accuracy of traffic flow predictions at specific 

locations and time intervals. This comprehensive 

approach aims to support real-world applications 

such as adaptive traffic light control, traffic planning 

support, and congestion alerts. 

This study is divided into five sections. The first 

section discusses the importance of traffic flow 

prediction, why it needs to be addressed, and 

proposes a method to solve the problem. The second 

section is the related works study. The third section 

proposed a method to solve the problem of 

predicting the average speed. The fourth section 

analyzes the collected dataset as well as the 

application results of the problem using this dataset. 

Finally, the conclusion is based on the obtained 

results and outlines directions for future research. 

2. RELATED WORKS  

Traffic-related research has been widely developed 

and expanded in recent years, especially in the area 

of predicting traffic flow in cities. This task is 

crucial for building an Intelligent Transportation 

System (ITS), which aims to address traffic-related 

problems efficiently. The advancement of artificial 

neural networks, particularly Graph Convolutional 

Networks (GCNs), has made the problem of traffic 

prediction more feasible. In the past, traffic 

prediction research often relied on traditional 

statistical methods. For instance, Chandra and Al-

Deek (2009) employed the Auto Regression (VAR) 

model to extract data from historical records in order 

to predict present values; Wang et al. (2003) also 

utilized VAR for traffic analysis. Meanwhile, 

Kumar and Vanajakshi (2015) adopted a traditional 

time series forecasting method—ARIMA 

(Autoregressive Integrated Moving Average) — 

with the goal of predicting city traffic flow. A 

common limitation of these methods is the 

assumption of time series stationarity. However, 

traffic data often exhibits complex spatiotemporal 

characteristics, which means the stationarity 

assumption may not be satisfied. Although 

traditional statistical approaches such as ARIMA, 

VAR, and similar models have been widely used in 

time series forecasting tasks, they have not 

demonstrated high effectiveness when applied to 

real-world urban traffic systems. In this context, the 

rapid advancement of machine learning and deep 

learning has opened up new directions for 

addressing the challenges of traffic prediction more 

effectively. Manoel et al. (2009) applied Support 

Vector Regression (SVR) to exploit traffic data. 

Building on this, Random Forest models developed 

by Johansson et al. (2014) showed promising results 

in capturing temporal patterns through machine 

learning techniques. Furthermore, Markov models 

implemented by Zhang et al. (2018) demonstrated 

effectiveness in identifying traffic patterns from 

large volumes of historical traffic data. Although 

these methods generally perform better than 

statistical approaches due to their ability to capture 

nonlinear spatio-temporal correlations, their 

performance remains suboptimal when applied to 

large road networks with hundreds or even 

thousands of road links. With the remarkable 

success of deep learning techniques, there have been 

numerous efforts to apply deep learning to traffic 

flow prediction. With the rapid development of deep 
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learning, researchers have begun applying 

Recurrent Neural Networks (RNNs); Chung et al. 

(2014) and Knol et al. (2021) have utilized RNNs 

for time series prediction. Following that, with the 

improvement of RNNs, the Long Short-Term 

Memory (LSTM) network is considered a viable 

solution for traffic prediction due to its ability to 

capture long-term dependencies. Yang et al. (2019) 

and Zhao et al. (2017) demonstrated the 

effectiveness of LSTM networks. However, LSTM 

still treats traffic sequences from different road 

segments as independent data streams, ignoring 

spatial relationships, and therefore cannot optimize 

the prediction performance of the entire network. 

Zhu et al. (2020) combined RNN with GCN to 

address spatial limitations. However, RNNs suffer 

from vanishing or exploding gradient problems, 

therefore Zhao et al. (2019) proposed a T-GCN 

network combined with GRU to overcome the 

drawbacks of RNN, such as gradient explosion and 

vanishing, while integrating graph convolution to 

extract corresponding spatial and temporal feature, 

Yu et al. (2017) also proposed a graph convolutional 

network to extract spatial and temporal graph 

convolutional features. Although the above studies 

have achieved many positive results, there are still 

some challenges that need to be addressed. Notably, 

most current models assume the traffic network to 

be an undirected graph, whereas in reality, urban 

traffic networks are often directed, which 

significantly affects prediction accuracy. 

In addition, the paper also touches on the topic of 

object detection, a core area in computer vision. 

Viola and Jones (2001) introduced a real-time face 

detection classifier. Continuing this development, 

Dalal et al. (2021) introduced an object detector 

using HOG features. The first appearance of the 

object detection model YOLO by Joseph et al. 

(2016) marked significant advancement in computer 

vision. In this study, we will perform vehicle 

detection using the YOLOv8 model due to its 

stability, fast processing speed, and accuracy for 

real-time processing. 

Traffic flow prediction is a crucial area of research 

within Intelligent Transportation Systems (ITS), 

aiming to enhance traffic management, reduce 

congestion, and improve road safety. The 

integration of advanced machine learning 

techniques has marked a significant shift in how 

traffic flow is analyzed and predicted. This synthesis 

discusses various methodologies and advancements 

in traffic flow prediction using machine learning 

and deep learning approaches, highlighting 

influential studies in the field. Haghshenas et al. 

(2023) review the efficacy of multiple machine-

learning techniques in traffic flow prediction. They 

provide both qualitative and quantitative analyses, 

advancements in urban traffic flow prediction 

technologies. The authors acknowledge that modern 

machine learning applications have transformed 

traditional methods, offering improved efficiencies 

in traffic management and signal control. Ma et al. 

(2020) proposed a Multi-Parameter Chaotic Fusion 

approach for traffic flow forecasting that accounts 

for various external factors, such as weather 

conditions and geographic influences. Their 

findings suggest that understanding these variables 

can enhance the stability and accuracy of traffic 

predictions. This analysis fits within a broader 

framework recognizing that traffic conditions are 

inherently dynamic and influenced by multifaceted 

factors. Li et al. (2020) extends with a focus on 

vehicle counting and traffic parameter estimation 

within dense traffic scenes. They identify challenges 

related to accuracy and speed in estimating 

parameters such as volume and density, key 

components for real-time traffic management 

systems. Their findings align with those of Yang et 

al. (2024), who emphasize the effectiveness of 

machine learning methods in enhancing traffic flow 

monitoring through the integration of cloud data. 

In the realm of deep learning, innovative models 

have emerged to tackle the complexities of traffic 

flow prediction. Li et al. (2021) developed a hybrid 

deep learning framework integrating wavelet 

decomposition and convolutional neural networks 

with long short-term memory networks (CNN-

LSTM). Their work emphasizes the importance of 

accurate long-term predictions to enable better 

strategic planning for traffic management. 

Similarly, Huang et al. (2024) proposed an MEA-

LSTM model that leverages chaotic characteristics 

for short-term traffic prediction, enhancing accuracy 

by understanding upstream and downstream traffic 

behaviors. Karim and Nower (2024) research into 

long-term traffic predictions using a Stacked GCN 

model is particularly relevant, as it addresses the 

increasing necessity for precise modeling in urban 

environments where traffic patterns are rapidly 

evolving. Their work underscores the importance of 

predictive models that are accurate and applicable to 

real-world traffic management challenges. Turki 

and Hasson (2023) focused on employing Artificial 

Neural Networks (ANN) to estimate hourly traffic 

flows on motorways, highlighting the potential of 

deep learning methodologies to capture temporal 
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patterns and predict future flows accurately. Such 

methodologies are further supported by Shigemi et 

al. (2023), who explored the prediction of traffic 

breakdowns using detector data, illustrating the 

growing importance of data-driven decision-making 

in managing congestion. 

The landscape of traffic flow prediction is evolving 

through the advanced integration of machine 

learning and deep learning methodologies. 

Continuous research and development in this area 

enhance predictive accuracy and significantly 

contribute to the optimization of urban traffic 

systems and safety strategies. 

3. PROPOSED METHOD FOR TRAFFIC 

FLOW PREDICTION 

Traffic flow prediction is a difficult problem and has 

many challenges such as accuracy, real-time, etc. 

Real-time prediction depends heavily on hardware, 

infrastructure and proposed methods. This section 

proposes a traffic flow prediction method using 

directed graphs to build a system that combines 

three deep learning models GCN, LSTM, and 

YOLO in order to achieve better outcomes. The 

models GCN, LSTM and YOLO has its own 

advantages and disadvantages. In this paper, we 

combine all three models to take advantage of their 

respective advantages. And each model is used to 

serve a different purpose in the solving process. 

Figure 1 presents the combination of three model 

GCN, LSTM and YOLO with three stages: 

(i) Recognizes and object tracks 

(ii) Extracting information from data structures 

(iii) Time-series data processing 

 

Figure 1. Detailed architecture of the combination of models 

3.1. Recognizes and object tracks 

The data extracted from the surveillance cameras on 

the road are videos, which are also the input data of 

our system. The core of the video is a sequence of 

image frames. Objects (vehicles, people, etc.) in 

these frames are detected and localized using the 

YOLO object model (blue, red, purple boxes in the 

image). 

One of the primary advantages of YOLO is its 

single-stage detection process, which performs 

object classification and localization in one go. This 

architecture significantly reduces the computational 

load compared to traditional two-stage methods like 

R-CNN or SSD, which require separate processes 

for detecting and classifying objects (Guan, 2023; 

Vaikunth et al., 2024). The efficiency gained from 

this simplified structure allows YOLO to achieve 

remarkable real-time processing capabilities, 

making it well-suited for scenarios where speed is 

critical. Moreover, the YOLO model has 

incorporated enhancements that further improve 

detection accuracy and manage occlusions better 

than earlier versions. 

In these stages, YOLOv8 is used for recognizing and 

tracking objects. The reason YOLOV8 was chosen 

for this task is: 

− The YOLOv8 framework has emerged as a 

significant advancement in the field of object 

detection, offering improvements over its 

predecessors. This iteration integrates 

enhancements in efficiency, accuracy, and usability, 

making it suitable for various applications.  

− One key advantage of YOLOv8 is its improved 

detection speed and accuracy. Compared to earlier 

iterations, YOLOv8 features refined architectural 

elements that optimize the processing workflow, 
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allowing it to maintain a high frame rate while 

analyzing images. 

− Additionally, YOLOv8 maintains a compact and 

lightweight design, which facilitates its deployment 

on various platforms. 

3.2. Extracting information from data 

structures 

To describe spatial information and interactions 

between objects, a graph G = (V, E) is used, where: 

V: nodes (representing each object, e.g. each 

vehicle). 

E: edges (representing spatial relationships between 

objects). 

This graph stores spatial information and 

interactions between objects. Each node (object) 

will have features extracted based on its location and 

relationship with other nodes. To extract features on 

G, a Graph Convolutional Networks (GCN) model 

is used. GCN is a deep learning model specialized 

in processing graph-structured data (graphs). Unlike 

CNN (Convolutional Neural Networks), which 

operate on grid-like data (images), GCNs can work 

with data that lacks a fixed structure, such as traffic 

systems. GCNs are widely used in the field of traffic 

flow prediction because the GCN structure is 

designed to process graph-based data, and 

predicting the traffic flow of a city requires a 

network of sensors and traffic cameras across the 

entire city. GCNs are particularly effective in 

extracting information from data structures with 

complex relationships, where each node not only 

carries its own information but is also influenced by 

neighboring nodes. 

The GCN network allows for the propagation and 

aggregation of information from neighboring nodes 

through graph convolution operations, thereby 

learning integrated representations that combine 

both node content and graph structure. 

The formula for computing the layers of GCN is as 

follows (Singh, 2019): 

where, 

𝐻𝑖
𝑙+1: The hidden layer at level L +1 

𝐴: The aggregated value from nodes. 

W: The weight at layer l. 

GCN learns spatial representations at each time 

point. Each node (object) will have features 

extracted based on its location and relationship to 

other nodes. The formula y (where, y = W·F) shows 

how weights (W) are multiplied by feature vectors 

(F) to create a new representation. The 

representations are pooled (mean or aggregate) to 

reduce dimensionality and normalize the 

information. The output of this step retains the most 

important features for each node. 

3.3. Time series data processing 

To process time series data, Long Short-Term 

Memory (LSTM) is proposed for use. LSTM (Long 

Short-Term Memory) is a variant of Recurrent 

Neural Networks (RNNs), designed to handle time 

series data. Thanks to its long-term memory 

mechanism, LSTM can learn both long-term and 

short-term trends in the data, helping to overcome 

the vanishing gradient problem found in traditional 

RNNs.  

LSTM learns temporal dependencies. Each node 

across video frames is fed into a separate LSTM to 

learn sequence dynamics. The goal is to recognize 

the movement or change trend of each object over 

time. As we can observe, the convolution operation 

processes neighboring nodes and aggregates their 

features. For example, at timestep t where t ∈ T = 

{1, 2, 3, …}, nodes A, B, and C have values of [10, 

20, 30] respectively. When we perform convolutio 

at node A, we consider its two adjacent nodes and 

aggregate them. If we apply Mean (average) as the 

aggregation method, we compute the average of 

these node values: Mean([10, 20, 30]) = 20. This 

value is considered the feature of a node at a specific 

time, aggregated to be fed into the Long Short-Term 

Memory (LSTM) network. 

In traditional neural networks, we assume that the 

inputs are independent; however, in reality, these 

values are not. For example, today's data may 

influence the data of subsequent days. RNNs have 

been effective at modeling and learning from such 

dependencies. 

 

Figure 2. Illustration of the learning process in 

an RNN  

(Source: Bengio et al., 2002) 
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In the figure 2, X_(0,1,2,3,…t) denotes the input 

data at time t, A represents the neural network block, 

h_(0,1,2,3,…t) is the output at time t. Intuitively, at 

t = 0 (the start of a sequential chain), there is no prior 

information to learn from. For subsequent steps t = 

12,3,…T, at each layer t ≠ 0, there will be a loop in 

the hidden layers (A) that captures the preceding 

values. 

However, a key weakness of RNNs is their handling 

of long-term dependencies. 

For example, if T = 1000-time steps, during 

backpropagation to update the model's weights, we 

must perform Gradient Descent 1000 times. The 

backpropagation process of RNN: 

𝜕𝐿

𝜕𝑊
= ∑

𝑇

𝑡=1

𝜕𝐿

𝜕ℎ𝑡

 ×  
𝜕ℎ𝑡

𝜕ℎ𝑡−1

 ×  
𝜕ℎ𝑡−1

𝜕ℎ𝑡−2

× … ×
𝜕ℎ1

𝜕ℎ𝑊

 

where: 

∂L : Partial derivative of loss function L 

∂W: Partial derivative of weight W 

∂ht : Partial derivative of the hidden layer at time t  

During each gradient descent step, if we use the 

sigmoid activation function, its output range is 

(0, 1). Every back propagation step multiplies the 

current gradient by a factor such as 0.5, 0.6. Over 

many steps, these repeated multiplications drive the 

gradient toward 0, leading to the vanishing gradient 

problem.  

Because of this weakness, plain RNNs are less 

popular in practice than LSTM networks, which can 

retain long-term information by design. Thanks to 

this ability, LSTMs are widely used in time series 

analysis and NLP tasks.  

To handle more complex interactions between 

nodes or between features, the interaction module 

(nonlinear interaction) is used. It can include 

attention or additional connections to model deeper 

relationships and map the LSTM output through a 

linear mapping layer. The final output can be either 

predicted coordinates (e.g. A00, B00, C00… are the 

locations of each object) or the state (stopped, 

moving, redirected…) of the object. 

4. EXPERIMENT END EVALUATE 

RESULTS 

4.1. Dataset analysis 

In this study, public dataset from Caltrans PeMS 

(Caltrans, "n.d.") is used. PeMS dataset 

continuously gathers real-time measurements from 

nearly 40 000 sensors installed along the entire 

freeway network in California’s major urban areas. 

For this study we selected the “Station 5 Minute” 

table, in which each sensor uploads a record every 

five minutes. The data collection period is from 

01/01/2025 to 07/03/2025. The dataset includes 16 

variables defined as follows:  

− Timestamp: Date and start time of the 

summarized interval. For example, time 08:00:00 

indicates that aggregated values contain 

measurements collected from 08:00:00 to 08:04:59. 

Note that the “seconds” value is always 0 for five-

minute aggregates. Format: MM/DD/YYYY 

HH24:MI:SS.  

− Station: Unique station ID, cross referenced with 

the metadata files. 

− District: County name. 

− Direction of Travel: Travel direction (East | 

West | South | North) 

Lane Type:  

● CD (Coll/Dist) – Collector/Distributor Lane: 

Intermediate lanes that distribute traffic flow 

between mainlines and entrance/exit ramps, 

typically found at major interchanges. 

● CH (Conventional Highway): Standard highway - 

Roads without median barriers, featuring at-grade 

intersections (crossroads, traffic signals). 

● FF (Fwy-Fwy Connector): Freeway-to-freeway 

connector - Short roadway segments enabling 

transitions between two freeways without exiting 

the freeway system. 

● HV (HOV) (High Occupancy Vehicle Lane): 

Carpool lane - Dedicated lanes for multi-occupant 

vehicles (e.g., vehicles carrying 2-3+ passengers, 

buses, or electric vehicles in some regions). 

● ML (Mainline): Mainline lanes - Primary freeway 

lanes carrying the main traffic flow. 

● OR (On Ramp): Entrance ramp - Access roads 

connecting local roads or other routes to the 

freeway. 

− Station Length: Length of roadway covered by 

the station, in miles/kilometers. 

− Samples: Total number of sensor samples 

received across all lanes. 

Observed (%): Percentage of individual lane points 

at this location that were actually observed (i.e., not 

imputed/filled values).  
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− Total flow: Sum of traffic flows over a 5-minute 

interval across all lanes. 

− Avg Occupancy: Average occupancy across all 

lanes during a 5-minute interval, expressed as a 

decimal between 0 and 1. 

− Avg Speed (mph): Average speed of vehicles 

over a 5-minute interval.  

− Lane N Samples:  Number of valid samples 

obtained for Lane N, where N ranges from 1 to the 

total number of lanes at that location. 

− Lane N: Total traffic volume for lane N during a 

5-minute interval, normalized by the number of 

valid samples. 

− Lane N Avg Occ (%): Average occupancy for 

Lane N, expressed as a decimal between 0 and 1. N 

ranges from 1 to the total number of lanes.  

− Lane N Avg (mph): Weighted average speed for 

Lane N (weighted by flow). If flow is 0, the 

arithmetic mean of lane speeds over the 5-minute 

interval is used. N ranges from 1 to the total number 

of lanes.  

= Lane N Observed: Indicates observed data (1 = 

observed, 0 = imputed/filled data). 

Data extraction challenges included missing data 

and noisy data. Removing such data improve.                      

accuracy. Processing was done in PyCharm using 

Python 3.12.2 with these libraries: Patoolib, Os, and 

Pandas.  

This study focuses on the Avg Speed variable from 

5-minute sensor intervals, as average speed 

significantly impacts traffic flow. The dataset 

contains six lane types: CD, CH, FF, HV, ML, and 

OR. We analyze total-flow and avg-flow 

distributions per lane type. These variables help 

filter noisy sensors during training and identify the 

data distribution of both total-flow and avg-flow 

variables for each lane type.         

 

      Figure 3. Distribution of total-flow and avg-speed data on ML lanes 

Figure 3 shows that ML lane data has the most 

uniform distribution and the highest data volume 

compared to other lane types. Therefore, we 

selected this lane type for model implementation. 

4.2. Experiment 

Within the scope of this study, YOLO is used to 

simulate the process of data collection from traffic 

cameras. Specifically, the system utilizes the 

YOLOv8 model for the purpose of identifying and 

detecting objects so that we can collect data from 

sensors, such as data on average speed, traffic 

volume, etc., and that data will be sent to the server 

for analysis and processing. 

The operational procedure includes the following 

key steps: 

• Connect to real-time video streams from traffic 

camera sensors (livestream .m3u8 format).      

• Read and process each frame from the video 

stream. 

• Use the YOLO model to detect traffic objects 

present in each frame. 

• Record information about the detected objects, 

including: vehicle type, confidence score, 

position, and time of appearance. 

• Store or visualize the detection results to 

simulate the actual traffic data collection 

process. 

By using YOLO, the system can quickly detect and 

collect object data in real-time conditions, laying the 

foundation for subsequent processing steps such as 

traffic flow analysis, speed calculation, or 

congestion prediction. Figure 4 presents an image 

captured from a real-time sensor (image cropped 

from available video). 
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Figure 4. Image captured from a real-time 

sensor (image cropped from available video) 

To process this, YOLO and its associated tools are 

utilized, such as the Ultralytics and Supervision 

libraries. These libraries simplify tasks like drawing 

bounding boxes, labeling, processing video streams, 

and visualizing object detection results in real-time. 

Since the YOLO model is trained on Facebook’s 

COCO dataset, which can detect approximately 80 

types of objects, in this study, we only focus on 

traffic-related objects such as cars, buses, trucks, 

etc. Other unrelated objects are excluded to prevent 

unnecessary or redundant predictions from the 

model. 

ByteTrack, a component of the Supervision library, 

is responsible for tracking objects to prevent them 

from being lost during detection. To perform this 

tracking effectively, we need to configure specific 

parameters for object tracking as follows: 

● Track_activation_threshold =0.25: An object 

detected by the YOLO model with a confidence 

score higher than 25% will be tracked. 

● lost_track_buffer=30: If an object is lost for 30 

consecutive frames, it will be removed from the 

tracking system. This helps to reduce the issue of 

losing track when the object is temporarily 

occluded. 

● minimum_matching_threshold=0.8: The 

minimum similarity threshold (IoU or cosine 

distance) required to match objects between frames. 

A higher value makes the system more "selective," 

reducing the chances of misidentifying objects. 

frame_rate=30: This is the video's frame rate, which 

is crucial for determining the time and speed of 

moving objects. 

● minimum_consecutive_frames=3: An object 

must be detected for at least 3 consecutive frames to 

be considered valid. 

Next, we need to add annotations to each bounding 

box of the object, such as the object’s name and the 

confidence score. To do this, we use the 

BoxAnnotator and LabelAnnotator classes from the 

Supervision library. Figure 5 presented annotations 

on each object (image cropped from available 

video). 

 

Figure 5. Annotations on each object (image 

cropped from available video) 

As we can see, each object predicted by YOLO will 

be annotated with two values: the class name and the 

confidence score for the prediction. 

Next, we will track the objects to calculate the speed 

of each object detected by YOLO: 

In the image, we can see that each object's bounding 

box has a line extending behind it. To achieve this, 

we use the TraceAnnotator class from the 

supervision library. 

The parameters for this object include thickness(the 

thickness of the motion trace line) and position(the 

display position, which in this case is set to the 

bottom center of the bounding box) 

Next, we simply calculate the speed of each object 

based on its tracking path. To calculate the speed of 

an object, follow these steps: 

● Iterate over the objects detected by YOLO. 

● Check if the number of stored coordinates for 

that object is less than half a second's worth (i.e., 

half the number of frames per second). If True, it 

means the object has just appeared and doesn't have 

enough tracking information to calculate speed, so 

add that object to the label for speed calculation in 

the next frame. 

Obtain the object's coordinates in a single frame, 

and then compute the distance by subtracting the 

initial position from the current position across 

frames. 

● Calculate the travel time by dividing the number 

of frames by the frame rate (fps). 

● Calculate the velocity, then multiply by 3.6 to 

convert from m/s to km/h. 
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● Add a label that shows the object ID and speed 

(e.g., label: 5, 32 km/h). 

 

Figure 6. Calculated Speed (image cropped 

from available video) 

Figure 6 presented the results after calculation. We 

simply need to collect data over a period (e.g., 5 

minutes, 10 minutes, or longer) so that the model 

can predict the average speed of vehicles on a given 

road segment. 

The model training process is conducted to learn 

optimal parameters that help the model make the 

most accurate predictions. In this section, the model 

is trained on a dataset that has been preprocessed, 

normalized, and divided into two parts: a training 

dataset, a validation dataset and a testing dataset in 

the ratio 7:1:2. 

The input parameters are as follows: 

• In_feat = In_feat = 1: The number of input 

features, which in this case is 1, meaning only 

one attribute — avg_speed (average speed) — 

is selected. 

• Epochs = 50: The number of times the model is 

trained over the entire dataset.  

• Input_seqenuce_length = 12: The number of 

previous time steps used as input for training 

the model 

• Forecast_hoziron = 3: The number of future 

time steps the model is expected to predict. 

• Out_feat: The number of output features 

generated by the graph convolution. 

• Graph_conv_params: Parameters used during 

the graph convolution process: 

+ aggregation_type: The chosen aggregation 

method is mean, which averages the neighboring 

node features. 

+ combination_type: The selected combination 

method is concat, which concatenates the features of 

the current node with its neighbors. 

+ activation: No activation function is used in this 

setup. 

+ Optimization method: Adam optimizer is used 

with a learning rate of 0.01. 

+ Loss: The Mean Square Error (MSE) is used to 

calculate the loss. 

The train_dataset has been divided into multiple 

batches during the data preprocessing step for the 

model. Each batch in the train_dataset is a tuple of 

data (Input, Target), where Input has the shape (64, 

12, 168, 1) corresponding to (batch_size, 

input_sequence_length, num_nodes,avg_speed), 

and Target has the shape (64, 3, 168) corresponding 

to (batch_size, output_sequence_length, 

num_nodes). 

Validation_data: the data used to evaluate the 

model's performance during the training process. 

Epochs refers to the number of complete passes 

through the entire dataset for updating the loss. 

Callbacks: The Early Stopping callback is set with a 

patience value of 10, which means that if the loss 

value does not improve significantly for 10 

consecutive epochs, the training process will stop 

early to ensure the model retains the best-

performing weights. 

4.3. Evaluate results 

First, we need to visualize the Loss function over 

each epoch. After performing the training process, 

we obtained the following result. Figure 7 shows the 

relationship between Training and validation loss. 

We can observe that the Loss value gradually 

decreases on both the training and validation sets, 

indicating that the model is learning effectively 

from the data. The final result yields a Mean 

Squared Error (MSE) of 0.2634, which is a 

relatively good score for this model. 

 

Figure 7. Training and validation loss 
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Given that the number of sensors is 168, we 

randomly select three values to visualize the 

behavior of these sensors. Below is the visualization 

of these three randomly selected sensors as Figures 

8,  9 and 10. 

 

Figure 8. Visualize the behavior of sensor 

number 18 

At sensor number 18, there are some small errors, 

which could be due to sudden changes on the route 

that sensor number 18 recorded, leading to some 

discrepancies. 

 

Figure 9. Visualize the behavior of the sensor 

number 5 

At sensor number 5, we can see that the predicted 

data closely matches the actual data, indicating that 

the model performs very well. 

 

Figure 10. Visualize the behavior of sensor 

number 117 

Similarly, at sensor number 117, we can see that the 

results are quite accurate compared to the actual 

data. 

To evaluate the objectivity of the results achieved 

by the proposed method, the results of the proposed 

method will be compared with the results of other 

methods such as: ST-GCN (Yu et al., 2017),  

EIGRN (Ma et al., 2023), GCN-GRU (Karim & 

Nower, 2024). The comparison results are shown in 

Table 1. The evaluation scales used are: Mean 

Absolute Error (MAE) and Root Mean Square Error 

(RMSE). 

MAE measures the average magnitude of the errors 

in a set of predictions without considering their 

direction. It is the average value over the test sample 

of the absolute difference between the prediction 

and the actual observation, where all individual 

differences are weighted equally. 

RMSE measures the average difference between the 

predicted value of a statistical model and the actual 

value. Mathematically, it is the standard deviation of 

the residuals. The residuals represent the distance 

between the regression line and the data points. 

Table 1. Comparison of the results of the 

proposed method with other results 

Methods MAE RMSE 

ST-GCN 2.37 7.56 

EIGRN 1.14 2.45 

GCN-GRU  3.4033 2.0273 

Our Method 1.115 2.057 

From Table 1, our method achieves the lowest MAE 

(1.115) and RMSE (2.057) on the PEMSD7 dataset, 

substantially outperforming ST-GCN, EIGRN , and 

GCN-GRU. This improvement stems from our 

model’s ability to capture, jointly, complex spatio-

temporal dependencies through adaptive graph 

learning and temporal attention mechanisms. 

In contrast, ST-GCN relies on fixed graph 

structures, limiting its spatial flexibility. EIGRN 

struggles with long-term temporal patterns and is 

sensitive to noise. GCN-GRU separates spatial and 

temporal modeling, which weakens interaction 

learning. These limitations result in significantly 

higher prediction errors. 

The results demonstrate the superiority and 

robustness of our approach for spatio-temporal 

forecasting tasks. 

5. CONCLUSIONS 

Traffic flow prediction is a crucial area of research 

within ITS, aiming to enhance traffic management, 

reduce congestion, and improve road safety. The 

integration of advanced machine learning 
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techniques has marked a significant shift in how 

traffic flow is analyzed and predicted. This paper 

presented a method to predict the average speed 

reported by traffic sensors across the city by 

combining two core models, GCN and LSTM. The 

YOLO model is used to analyze images and video 

during data collection. Proper data processing plays 

a critical role in enabling the model to learn 

effectively and achieve better performance. This 

research successfully constructed and integrated 

two models: GCN and LSTM to predict the average 

speed of vehicles detected by sensors across the city. 

This integration allows the model to generalize both 

spatial and temporal relationships inherent in traffic 

data. Furthermore, the study also applied the YOLO 

model to simulate the sample data collection process 

from traffic sensors, providing a clearer 

understanding of how sensor data is gathered in 

practice.  

However, this proposed method still has limitations, 

most notably, the model has not yet been deployed 

in a real-world environment. It has only been trained 

and evaluated on computers and has not been 

deployed on a server for live inference or large-scale 

application. The study does not provide 

comparisons with other experimental models, such 

as the combination of GCN with RNN or GCN with 

GRU. YOLO is only used at a simulation level to 

emulate the data collection process and has not been 

fully exploited for its advanced capabilities. The 

GCN model currently uses a static graph structure. 

This poses a significant limitation—if a new sensor 

is added or one of the existing sensors fails, the 

entire model might need to be retrained, leading to 

increased computational cost and inefficiency. 

Furthermore, the study does not address the 

correlation between motorcycles and cars in the 

traffic flow, which is particularly relevant for 

regions like Viet Nam where motorcycles are 

dominant. The model has not yet been developed 

using datasets from Viet Nam, which limits its 

generalizability. Current data is focused primarily 

on four-wheeled vehicles, whereas in Viet Nam, 

two-wheeled vehicles account for a significantly 

larger proportion of traffic.  

In the future, integrating more powerful neural 

networks like GRU may help produce better results, 

while applying YOLO in real-world environments 

for real-time prediction. A different GCN model 

could also be adopted, where the graph structure 

allows for the addition or removal of unnecessary 

nodes, thereby reducing computational costs. 

Furthermore, a long-term goal is to identify the 

correlation between the speed of two-wheeled and 

four-wheeled vehicles, which could be particularly 

useful in regions like Viet Nam where two-wheeled 

vehicles are more prevalent. 
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