
CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

117

DOI:10.22144/ctujoisd.2025.059

Traffic flow prediction using adaptive graph convolutional networks and long short-

term memory

Phan Thi Ngoc Han*, Ho Quoc Ngoc, Nguyen Quoc Trung, and Nguyen Thanh Binh

Faculty of Information Technology, Ho Chi Minh City University of Foreign Languages - Information

Technology, Viet Nam

*Corresponding author (hanptn@huflit.edu.vn)

Article info. ABSTRACT

Received 15 Jul 2025

Revised 18 Aug 2025

Accepted 3 Oct 2025

Traffic congestion is becoming an increasingly serious and challenging

issue in major urban areas. This problem not only causes a waste of time

and increased fuel consumption but also contributes to environmental

pollution and deterioration of residents’ quality of life. In this study, a new

method of predicting the average speed reported by traffic sensors across

the city was proposed. In this method, we make the most of two core

models: Graph Convolutional Networks and Long Short-Term Memory.

The YOLO model is used to analyze images and video during data

collection. By leveraging Graphe Convolution Networks ability to capture

spatial information, Long Short-Term Memory capacity to model temporal

dynamics, and YOLO’s strength in visual object detection, our integrated

framework enhances the accuracy of traffic flow predictions at specific

locations and time intervals. This comprehensive approach aims to support

real-world applications such as adaptive traffic light control, traffic

planning support, and congestion alerts. The proposed method

outperforms other methods on the Caltrans PeMS dataset.

Keywords

Graph convolutional

networks, long short-term

memory, traffic flow

prediction, YOLO

1. INTRODUCTION

Traffic congestion is a pressing issue in many urban

areas around the world, negatively impacting the

economy, environment, and quality of life. The

rapid growth in urban population, the increasing

number of private vehicles, and underdeveloped

transportation infrastructure have exacerbated

congestion in many countries, including Viet Nam.

Moreover, traditional traffic control methods

(signage, fixed-timing traffic lights, and direct

traffic police intervention) have become less

effective as vehicle volume continues to rise.

Traffic flow forecasting is very important because it

helps manage and direct traffic effectively, reduce

congestion, support infrastructure planning,

enhance the experience of traffic participants,

optimize transportation and logistics, reduce traffic

accidents, and serve as the foundation for intelligent

transportation systems in modern cities.

Therefore, the application of technology for real-

time traffic flow prediction is essential to assist

regulatory authorities and the public in optimizing

travel plans, reducing congestion, and enhancing

traffic efficiency.

Traffic forecasting is a crucial component of

modern transportation systems, influencing various

aspects of traffic management, safety, and urban

planning. Accurate predictions of traffic conditions

are essential for managing urban mobility,

alleviating congestion, and enhancing road safety.

In the context of Intelligent Transportation Systems

(ITS), forecasting technologies, particularly

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

118

machine learning and deep learning methodologies,

have transformed how traffic conditions are

predicted. Techniques such as LSTM networks and

hybrid models have demonstrated superior

capabilities in short-term traffic forecasting,

effectively capturing the complex temporal and

spatial dependencies of traffic phenomena (Ren et

al., 2021; Tran et al., 2022).

Additionally, Gao et al. (2021) emphasize that

accurate traffic speed forecasting is integral for

providing real-time data, which can significantly

improve the decision-making process for both

traffic managers and individual travelers. When

combined with historical data, such forecasting

empowers travelers with predictive insights,

allowing for better route choices and, in turn,

reducing overall congestion (Awan et al., 2020).

This predictive capability is pivotal in developing

Ren et al. (2021) integrated transport solutions that

cater to the evolving dynamics of urban road

networks.

The importance of traffic forecasting extends

beyond mere prediction. It encompasses safety

enhancements, infrastructure planning, and the

overall optimization of urban mobility solutions. As

cities continue to grow and traffic conditions evolve,

leveraging advanced forecasting techniques will be

essential for sustaining efficient and safe

transportation systems.

In this study, a new method of predicting the

average speed reported by traffic sensors across the

city was proposed. In this method, we combine two

core models, GCN and LSTM. The YOLO model is

used to analyse images and video during data

collection. By leveraging GCN’s ability to capture

spatial information, LSTM’s capacity to model

temporal dynamics, and YOLO’s strength in visual

object detection, our integrated framework enhances

the accuracy of traffic flow predictions at specific

locations and time intervals. This comprehensive

approach aims to support real-world applications

such as adaptive traffic light control, traffic planning

support, and congestion alerts.

This study is divided into five sections. The first

section discusses the importance of traffic flow

prediction, why it needs to be addressed, and

proposes a method to solve the problem. The second

section is the related works study. The third section

proposed a method to solve the problem of

predicting the average speed. The fourth section

analyzes the collected dataset as well as the

application results of the problem using this dataset.

Finally, the conclusion is based on the obtained

results and outlines directions for future research.

2. RELATED WORKS

Traffic-related research has been widely developed

and expanded in recent years, especially in the area

of predicting traffic flow in cities. This task is

crucial for building an Intelligent Transportation

System (ITS), which aims to address traffic-related

problems efficiently. The advancement of artificial

neural networks, particularly Graph Convolutional

Networks (GCNs), has made the problem of traffic

prediction more feasible. In the past, traffic

prediction research often relied on traditional

statistical methods. For instance, Chandra and Al-

Deek (2009) employed the Auto Regression (VAR)

model to extract data from historical records in order

to predict present values; Wang et al. (2003) also

utilized VAR for traffic analysis. Meanwhile,

Kumar and Vanajakshi (2015) adopted a traditional

time series forecasting method—ARIMA

(Autoregressive Integrated Moving Average) —

with the goal of predicting city traffic flow. A

common limitation of these methods is the

assumption of time series stationarity. However,

traffic data often exhibits complex spatiotemporal

characteristics, which means the stationarity

assumption may not be satisfied. Although

traditional statistical approaches such as ARIMA,

VAR, and similar models have been widely used in

time series forecasting tasks, they have not

demonstrated high effectiveness when applied to

real-world urban traffic systems. In this context, the

rapid advancement of machine learning and deep

learning has opened up new directions for

addressing the challenges of traffic prediction more

effectively. Manoel et al. (2009) applied Support

Vector Regression (SVR) to exploit traffic data.

Building on this, Random Forest models developed

by Johansson et al. (2014) showed promising results

in capturing temporal patterns through machine

learning techniques. Furthermore, Markov models

implemented by Zhang et al. (2018) demonstrated

effectiveness in identifying traffic patterns from

large volumes of historical traffic data. Although

these methods generally perform better than

statistical approaches due to their ability to capture

nonlinear spatio-temporal correlations, their

performance remains suboptimal when applied to

large road networks with hundreds or even

thousands of road links. With the remarkable

success of deep learning techniques, there have been

numerous efforts to apply deep learning to traffic

flow prediction. With the rapid development of deep

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

119

learning, researchers have begun applying

Recurrent Neural Networks (RNNs); Chung et al.

(2014) and Knol et al. (2021) have utilized RNNs

for time series prediction. Following that, with the

improvement of RNNs, the Long Short-Term

Memory (LSTM) network is considered a viable

solution for traffic prediction due to its ability to

capture long-term dependencies. Yang et al. (2019)

and Zhao et al. (2017) demonstrated the

effectiveness of LSTM networks. However, LSTM

still treats traffic sequences from different road

segments as independent data streams, ignoring

spatial relationships, and therefore cannot optimize

the prediction performance of the entire network.

Zhu et al. (2020) combined RNN with GCN to

address spatial limitations. However, RNNs suffer

from vanishing or exploding gradient problems,

therefore Zhao et al. (2019) proposed a T-GCN

network combined with GRU to overcome the

drawbacks of RNN, such as gradient explosion and

vanishing, while integrating graph convolution to

extract corresponding spatial and temporal feature,

Yu et al. (2017) also proposed a graph convolutional

network to extract spatial and temporal graph

convolutional features. Although the above studies

have achieved many positive results, there are still

some challenges that need to be addressed. Notably,

most current models assume the traffic network to

be an undirected graph, whereas in reality, urban

traffic networks are often directed, which

significantly affects prediction accuracy.

In addition, the paper also touches on the topic of

object detection, a core area in computer vision.

Viola and Jones (2001) introduced a real-time face

detection classifier. Continuing this development,

Dalal et al. (2021) introduced an object detector

using HOG features. The first appearance of the

object detection model YOLO by Joseph et al.

(2016) marked significant advancement in computer

vision. In this study, we will perform vehicle

detection using the YOLOv8 model due to its

stability, fast processing speed, and accuracy for

real-time processing.

Traffic flow prediction is a crucial area of research

within Intelligent Transportation Systems (ITS),

aiming to enhance traffic management, reduce

congestion, and improve road safety. The

integration of advanced machine learning

techniques has marked a significant shift in how

traffic flow is analyzed and predicted. This synthesis

discusses various methodologies and advancements

in traffic flow prediction using machine learning

and deep learning approaches, highlighting

influential studies in the field. Haghshenas et al.

(2023) review the efficacy of multiple machine-

learning techniques in traffic flow prediction. They

provide both qualitative and quantitative analyses,

advancements in urban traffic flow prediction

technologies. The authors acknowledge that modern

machine learning applications have transformed

traditional methods, offering improved efficiencies

in traffic management and signal control. Ma et al.

(2020) proposed a Multi-Parameter Chaotic Fusion

approach for traffic flow forecasting that accounts

for various external factors, such as weather

conditions and geographic influences. Their

findings suggest that understanding these variables

can enhance the stability and accuracy of traffic

predictions. This analysis fits within a broader

framework recognizing that traffic conditions are

inherently dynamic and influenced by multifaceted

factors. Li et al. (2020) extends with a focus on

vehicle counting and traffic parameter estimation

within dense traffic scenes. They identify challenges

related to accuracy and speed in estimating

parameters such as volume and density, key

components for real-time traffic management

systems. Their findings align with those of Yang et

al. (2024), who emphasize the effectiveness of

machine learning methods in enhancing traffic flow

monitoring through the integration of cloud data.

In the realm of deep learning, innovative models

have emerged to tackle the complexities of traffic

flow prediction. Li et al. (2021) developed a hybrid

deep learning framework integrating wavelet

decomposition and convolutional neural networks

with long short-term memory networks (CNN-

LSTM). Their work emphasizes the importance of

accurate long-term predictions to enable better

strategic planning for traffic management.

Similarly, Huang et al. (2024) proposed an MEA-

LSTM model that leverages chaotic characteristics

for short-term traffic prediction, enhancing accuracy

by understanding upstream and downstream traffic

behaviors. Karim and Nower (2024) research into

long-term traffic predictions using a Stacked GCN

model is particularly relevant, as it addresses the

increasing necessity for precise modeling in urban

environments where traffic patterns are rapidly

evolving. Their work underscores the importance of

predictive models that are accurate and applicable to

real-world traffic management challenges. Turki

and Hasson (2023) focused on employing Artificial

Neural Networks (ANN) to estimate hourly traffic

flows on motorways, highlighting the potential of

deep learning methodologies to capture temporal

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

120

patterns and predict future flows accurately. Such

methodologies are further supported by Shigemi et

al. (2023), who explored the prediction of traffic

breakdowns using detector data, illustrating the

growing importance of data-driven decision-making

in managing congestion.

The landscape of traffic flow prediction is evolving

through the advanced integration of machine

learning and deep learning methodologies.

Continuous research and development in this area

enhance predictive accuracy and significantly

contribute to the optimization of urban traffic

systems and safety strategies.

3. PROPOSED METHOD FOR TRAFFIC

FLOW PREDICTION

Traffic flow prediction is a difficult problem and has

many challenges such as accuracy, real-time, etc.

Real-time prediction depends heavily on hardware,

infrastructure and proposed methods. This section

proposes a traffic flow prediction method using

directed graphs to build a system that combines

three deep learning models GCN, LSTM, and

YOLO in order to achieve better outcomes. The

models GCN, LSTM and YOLO has its own

advantages and disadvantages. In this paper, we

combine all three models to take advantage of their

respective advantages. And each model is used to

serve a different purpose in the solving process.

Figure 1 presents the combination of three model

GCN, LSTM and YOLO with three stages:

(i) Recognizes and object tracks

(ii) Extracting information from data structures

(iii) Time-series data processing

Figure 1. Detailed architecture of the combination of models

3.1. Recognizes and object tracks

The data extracted from the surveillance cameras on

the road are videos, which are also the input data of

our system. The core of the video is a sequence of

image frames. Objects (vehicles, people, etc.) in

these frames are detected and localized using the

YOLO object model (blue, red, purple boxes in the

image).

One of the primary advantages of YOLO is its

single-stage detection process, which performs

object classification and localization in one go. This

architecture significantly reduces the computational

load compared to traditional two-stage methods like

R-CNN or SSD, which require separate processes

for detecting and classifying objects (Guan, 2023;

Vaikunth et al., 2024). The efficiency gained from

this simplified structure allows YOLO to achieve

remarkable real-time processing capabilities,

making it well-suited for scenarios where speed is

critical. Moreover, the YOLO model has

incorporated enhancements that further improve

detection accuracy and manage occlusions better

than earlier versions.

In these stages, YOLOv8 is used for recognizing and

tracking objects. The reason YOLOV8 was chosen

for this task is:

− The YOLOv8 framework has emerged as a

significant advancement in the field of object

detection, offering improvements over its

predecessors. This iteration integrates

enhancements in efficiency, accuracy, and usability,

making it suitable for various applications.

− One key advantage of YOLOv8 is its improved

detection speed and accuracy. Compared to earlier

iterations, YOLOv8 features refined architectural

elements that optimize the processing workflow,

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

121

allowing it to maintain a high frame rate while

analyzing images.

− Additionally, YOLOv8 maintains a compact and

lightweight design, which facilitates its deployment

on various platforms.

3.2. Extracting information from data

structures

To describe spatial information and interactions

between objects, a graph G = (V, E) is used, where:

V: nodes (representing each object, e.g. each

vehicle).

E: edges (representing spatial relationships between

objects).

This graph stores spatial information and

interactions between objects. Each node (object)

will have features extracted based on its location and

relationship with other nodes. To extract features on

G, a Graph Convolutional Networks (GCN) model

is used. GCN is a deep learning model specialized

in processing graph-structured data (graphs). Unlike

CNN (Convolutional Neural Networks), which

operate on grid-like data (images), GCNs can work

with data that lacks a fixed structure, such as traffic

systems. GCNs are widely used in the field of traffic

flow prediction because the GCN structure is

designed to process graph-based data, and

predicting the traffic flow of a city requires a

network of sensors and traffic cameras across the

entire city. GCNs are particularly effective in

extracting information from data structures with

complex relationships, where each node not only

carries its own information but is also influenced by

neighboring nodes.

The GCN network allows for the propagation and

aggregation of information from neighboring nodes

through graph convolution operations, thereby

learning integrated representations that combine

both node content and graph structure.

The formula for computing the layers of GCN is as

follows (Singh, 2019):

where,

𝐻𝑖
𝑙+1: The hidden layer at level L +1

𝐴: The aggregated value from nodes.

W: The weight at layer l.

GCN learns spatial representations at each time

point. Each node (object) will have features

extracted based on its location and relationship to

other nodes. The formula y (where, y = W·F) shows

how weights (W) are multiplied by feature vectors

(F) to create a new representation. The

representations are pooled (mean or aggregate) to

reduce dimensionality and normalize the

information. The output of this step retains the most

important features for each node.

3.3. Time series data processing

To process time series data, Long Short-Term

Memory (LSTM) is proposed for use. LSTM (Long

Short-Term Memory) is a variant of Recurrent

Neural Networks (RNNs), designed to handle time

series data. Thanks to its long-term memory

mechanism, LSTM can learn both long-term and

short-term trends in the data, helping to overcome

the vanishing gradient problem found in traditional

RNNs.

LSTM learns temporal dependencies. Each node

across video frames is fed into a separate LSTM to

learn sequence dynamics. The goal is to recognize

the movement or change trend of each object over

time. As we can observe, the convolution operation

processes neighboring nodes and aggregates their

features. For example, at timestep t where t ∈ T =

{1, 2, 3, …}, nodes A, B, and C have values of [10,

20, 30] respectively. When we perform convolutio

at node A, we consider its two adjacent nodes and

aggregate them. If we apply Mean (average) as the

aggregation method, we compute the average of

these node values: Mean([10, 20, 30]) = 20. This

value is considered the feature of a node at a specific

time, aggregated to be fed into the Long Short-Term

Memory (LSTM) network.

In traditional neural networks, we assume that the

inputs are independent; however, in reality, these

values are not. For example, today's data may

influence the data of subsequent days. RNNs have

been effective at modeling and learning from such

dependencies.

Figure 2. Illustration of the learning process in

an RNN

(Source: Bengio et al., 2002)

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

122

In the figure 2, X_(0,1,2,3,…t) denotes the input

data at time t, A represents the neural network block,

h_(0,1,2,3,…t) is the output at time t. Intuitively, at

t = 0 (the start of a sequential chain), there is no prior

information to learn from. For subsequent steps t =

12,3,…T, at each layer t ≠ 0, there will be a loop in

the hidden layers (A) that captures the preceding

values.

However, a key weakness of RNNs is their handling

of long-term dependencies.

For example, if T = 1000-time steps, during

backpropagation to update the model's weights, we

must perform Gradient Descent 1000 times. The

backpropagation process of RNN:

𝜕𝐿

𝜕𝑊
= ∑

𝑇

𝑡=1

𝜕𝐿

𝜕ℎ𝑡

 ×
𝜕ℎ𝑡

𝜕ℎ𝑡−1

 ×
𝜕ℎ𝑡−1

𝜕ℎ𝑡−2

× … ×
𝜕ℎ1

𝜕ℎ𝑊

where:

∂L : Partial derivative of loss function L

∂W: Partial derivative of weight W

∂ht : Partial derivative of the hidden layer at time t

During each gradient descent step, if we use the

sigmoid activation function, its output range is

(0, 1). Every back propagation step multiplies the

current gradient by a factor such as 0.5, 0.6. Over

many steps, these repeated multiplications drive the

gradient toward 0, leading to the vanishing gradient

problem.

Because of this weakness, plain RNNs are less

popular in practice than LSTM networks, which can

retain long-term information by design. Thanks to

this ability, LSTMs are widely used in time series

analysis and NLP tasks.

To handle more complex interactions between

nodes or between features, the interaction module

(nonlinear interaction) is used. It can include

attention or additional connections to model deeper

relationships and map the LSTM output through a

linear mapping layer. The final output can be either

predicted coordinates (e.g. A00, B00, C00… are the

locations of each object) or the state (stopped,

moving, redirected…) of the object.

4. EXPERIMENT END EVALUATE

RESULTS

4.1. Dataset analysis

In this study, public dataset from Caltrans PeMS

(Caltrans, "n.d.") is used. PeMS dataset

continuously gathers real-time measurements from

nearly 40 000 sensors installed along the entire

freeway network in California’s major urban areas.

For this study we selected the “Station 5 Minute”

table, in which each sensor uploads a record every

five minutes. The data collection period is from

01/01/2025 to 07/03/2025. The dataset includes 16

variables defined as follows:

− Timestamp: Date and start time of the

summarized interval. For example, time 08:00:00

indicates that aggregated values contain

measurements collected from 08:00:00 to 08:04:59.

Note that the “seconds” value is always 0 for five-

minute aggregates. Format: MM/DD/YYYY

HH24:MI:SS.

− Station: Unique station ID, cross referenced with

the metadata files.

− District: County name.

− Direction of Travel: Travel direction (East |

West | South | North)

Lane Type:

● CD (Coll/Dist) – Collector/Distributor Lane:

Intermediate lanes that distribute traffic flow

between mainlines and entrance/exit ramps,

typically found at major interchanges.

● CH (Conventional Highway): Standard highway -

Roads without median barriers, featuring at-grade

intersections (crossroads, traffic signals).

● FF (Fwy-Fwy Connector): Freeway-to-freeway

connector - Short roadway segments enabling

transitions between two freeways without exiting

the freeway system.

● HV (HOV) (High Occupancy Vehicle Lane):

Carpool lane - Dedicated lanes for multi-occupant

vehicles (e.g., vehicles carrying 2-3+ passengers,

buses, or electric vehicles in some regions).

● ML (Mainline): Mainline lanes - Primary freeway

lanes carrying the main traffic flow.

● OR (On Ramp): Entrance ramp - Access roads

connecting local roads or other routes to the

freeway.

− Station Length: Length of roadway covered by

the station, in miles/kilometers.

− Samples: Total number of sensor samples

received across all lanes.

Observed (%): Percentage of individual lane points

at this location that were actually observed (i.e., not

imputed/filled values).

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

123

− Total flow: Sum of traffic flows over a 5-minute

interval across all lanes.

− Avg Occupancy: Average occupancy across all

lanes during a 5-minute interval, expressed as a

decimal between 0 and 1.

− Avg Speed (mph): Average speed of vehicles

over a 5-minute interval.

− Lane N Samples: Number of valid samples

obtained for Lane N, where N ranges from 1 to the

total number of lanes at that location.

− Lane N: Total traffic volume for lane N during a

5-minute interval, normalized by the number of

valid samples.

− Lane N Avg Occ (%): Average occupancy for

Lane N, expressed as a decimal between 0 and 1. N

ranges from 1 to the total number of lanes.

− Lane N Avg (mph): Weighted average speed for

Lane N (weighted by flow). If flow is 0, the

arithmetic mean of lane speeds over the 5-minute

interval is used. N ranges from 1 to the total number

of lanes.

= Lane N Observed: Indicates observed data (1 =

observed, 0 = imputed/filled data).

Data extraction challenges included missing data

and noisy data. Removing such data improve.

accuracy. Processing was done in PyCharm using

Python 3.12.2 with these libraries: Patoolib, Os, and

Pandas.

This study focuses on the Avg Speed variable from

5-minute sensor intervals, as average speed

significantly impacts traffic flow. The dataset

contains six lane types: CD, CH, FF, HV, ML, and

OR. We analyze total-flow and avg-flow

distributions per lane type. These variables help

filter noisy sensors during training and identify the

data distribution of both total-flow and avg-flow

variables for each lane type.

 Figure 3. Distribution of total-flow and avg-speed data on ML lanes

Figure 3 shows that ML lane data has the most

uniform distribution and the highest data volume

compared to other lane types. Therefore, we

selected this lane type for model implementation.

4.2. Experiment

Within the scope of this study, YOLO is used to

simulate the process of data collection from traffic

cameras. Specifically, the system utilizes the

YOLOv8 model for the purpose of identifying and

detecting objects so that we can collect data from

sensors, such as data on average speed, traffic

volume, etc., and that data will be sent to the server

for analysis and processing.

The operational procedure includes the following

key steps:

• Connect to real-time video streams from traffic

camera sensors (livestream .m3u8 format).

• Read and process each frame from the video

stream.

• Use the YOLO model to detect traffic objects

present in each frame.

• Record information about the detected objects,

including: vehicle type, confidence score,

position, and time of appearance.

• Store or visualize the detection results to

simulate the actual traffic data collection

process.

By using YOLO, the system can quickly detect and

collect object data in real-time conditions, laying the

foundation for subsequent processing steps such as

traffic flow analysis, speed calculation, or

congestion prediction. Figure 4 presents an image

captured from a real-time sensor (image cropped

from available video).

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

124

Figure 4. Image captured from a real-time

sensor (image cropped from available video)

To process this, YOLO and its associated tools are

utilized, such as the Ultralytics and Supervision

libraries. These libraries simplify tasks like drawing

bounding boxes, labeling, processing video streams,

and visualizing object detection results in real-time.

Since the YOLO model is trained on Facebook’s

COCO dataset, which can detect approximately 80

types of objects, in this study, we only focus on

traffic-related objects such as cars, buses, trucks,

etc. Other unrelated objects are excluded to prevent

unnecessary or redundant predictions from the

model.

ByteTrack, a component of the Supervision library,

is responsible for tracking objects to prevent them

from being lost during detection. To perform this

tracking effectively, we need to configure specific

parameters for object tracking as follows:

● Track_activation_threshold =0.25: An object

detected by the YOLO model with a confidence

score higher than 25% will be tracked.

● lost_track_buffer=30: If an object is lost for 30

consecutive frames, it will be removed from the

tracking system. This helps to reduce the issue of

losing track when the object is temporarily

occluded.

● minimum_matching_threshold=0.8: The

minimum similarity threshold (IoU or cosine

distance) required to match objects between frames.

A higher value makes the system more "selective,"

reducing the chances of misidentifying objects.

frame_rate=30: This is the video's frame rate, which

is crucial for determining the time and speed of

moving objects.

● minimum_consecutive_frames=3: An object

must be detected for at least 3 consecutive frames to

be considered valid.

Next, we need to add annotations to each bounding

box of the object, such as the object’s name and the

confidence score. To do this, we use the

BoxAnnotator and LabelAnnotator classes from the

Supervision library. Figure 5 presented annotations

on each object (image cropped from available

video).

Figure 5. Annotations on each object (image

cropped from available video)

As we can see, each object predicted by YOLO will

be annotated with two values: the class name and the

confidence score for the prediction.

Next, we will track the objects to calculate the speed

of each object detected by YOLO:

In the image, we can see that each object's bounding

box has a line extending behind it. To achieve this,

we use the TraceAnnotator class from the

supervision library.

The parameters for this object include thickness(the

thickness of the motion trace line) and position(the

display position, which in this case is set to the

bottom center of the bounding box)

Next, we simply calculate the speed of each object

based on its tracking path. To calculate the speed of

an object, follow these steps:

● Iterate over the objects detected by YOLO.

● Check if the number of stored coordinates for

that object is less than half a second's worth (i.e.,

half the number of frames per second). If True, it

means the object has just appeared and doesn't have

enough tracking information to calculate speed, so

add that object to the label for speed calculation in

the next frame.

Obtain the object's coordinates in a single frame,

and then compute the distance by subtracting the

initial position from the current position across

frames.

● Calculate the travel time by dividing the number

of frames by the frame rate (fps).

● Calculate the velocity, then multiply by 3.6 to

convert from m/s to km/h.

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

125

● Add a label that shows the object ID and speed

(e.g., label: 5, 32 km/h).

Figure 6. Calculated Speed (image cropped

from available video)

Figure 6 presented the results after calculation. We

simply need to collect data over a period (e.g., 5

minutes, 10 minutes, or longer) so that the model

can predict the average speed of vehicles on a given

road segment.

The model training process is conducted to learn

optimal parameters that help the model make the

most accurate predictions. In this section, the model

is trained on a dataset that has been preprocessed,

normalized, and divided into two parts: a training

dataset, a validation dataset and a testing dataset in

the ratio 7:1:2.

The input parameters are as follows:

• In_feat = In_feat = 1: The number of input

features, which in this case is 1, meaning only

one attribute — avg_speed (average speed) —

is selected.

• Epochs = 50: The number of times the model is

trained over the entire dataset.

• Input_seqenuce_length = 12: The number of

previous time steps used as input for training

the model

• Forecast_hoziron = 3: The number of future

time steps the model is expected to predict.

• Out_feat: The number of output features

generated by the graph convolution.

• Graph_conv_params: Parameters used during

the graph convolution process:

+ aggregation_type: The chosen aggregation

method is mean, which averages the neighboring

node features.

+ combination_type: The selected combination

method is concat, which concatenates the features of

the current node with its neighbors.

+ activation: No activation function is used in this

setup.

+ Optimization method: Adam optimizer is used

with a learning rate of 0.01.

+ Loss: The Mean Square Error (MSE) is used to

calculate the loss.

The train_dataset has been divided into multiple

batches during the data preprocessing step for the

model. Each batch in the train_dataset is a tuple of

data (Input, Target), where Input has the shape (64,

12, 168, 1) corresponding to (batch_size,

input_sequence_length, num_nodes,avg_speed),

and Target has the shape (64, 3, 168) corresponding

to (batch_size, output_sequence_length,

num_nodes).

Validation_data: the data used to evaluate the

model's performance during the training process.

Epochs refers to the number of complete passes

through the entire dataset for updating the loss.

Callbacks: The Early Stopping callback is set with a

patience value of 10, which means that if the loss

value does not improve significantly for 10

consecutive epochs, the training process will stop

early to ensure the model retains the best-

performing weights.

4.3. Evaluate results

First, we need to visualize the Loss function over

each epoch. After performing the training process,

we obtained the following result. Figure 7 shows the

relationship between Training and validation loss.

We can observe that the Loss value gradually

decreases on both the training and validation sets,

indicating that the model is learning effectively

from the data. The final result yields a Mean

Squared Error (MSE) of 0.2634, which is a

relatively good score for this model.

Figure 7. Training and validation loss

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

126

Given that the number of sensors is 168, we

randomly select three values to visualize the

behavior of these sensors. Below is the visualization

of these three randomly selected sensors as Figures

8, 9 and 10.

Figure 8. Visualize the behavior of sensor

number 18

At sensor number 18, there are some small errors,

which could be due to sudden changes on the route

that sensor number 18 recorded, leading to some

discrepancies.

Figure 9. Visualize the behavior of the sensor

number 5

At sensor number 5, we can see that the predicted

data closely matches the actual data, indicating that

the model performs very well.

Figure 10. Visualize the behavior of sensor

number 117

Similarly, at sensor number 117, we can see that the

results are quite accurate compared to the actual

data.

To evaluate the objectivity of the results achieved

by the proposed method, the results of the proposed

method will be compared with the results of other

methods such as: ST-GCN (Yu et al., 2017),

EIGRN (Ma et al., 2023), GCN-GRU (Karim &

Nower, 2024). The comparison results are shown in

Table 1. The evaluation scales used are: Mean

Absolute Error (MAE) and Root Mean Square Error

(RMSE).

MAE measures the average magnitude of the errors

in a set of predictions without considering their

direction. It is the average value over the test sample

of the absolute difference between the prediction

and the actual observation, where all individual

differences are weighted equally.

RMSE measures the average difference between the

predicted value of a statistical model and the actual

value. Mathematically, it is the standard deviation of

the residuals. The residuals represent the distance

between the regression line and the data points.

Table 1. Comparison of the results of the

proposed method with other results

Methods MAE RMSE

ST-GCN 2.37 7.56

EIGRN 1.14 2.45

GCN-GRU 3.4033 2.0273

Our Method 1.115 2.057

From Table 1, our method achieves the lowest MAE

(1.115) and RMSE (2.057) on the PEMSD7 dataset,

substantially outperforming ST-GCN, EIGRN , and

GCN-GRU. This improvement stems from our

model’s ability to capture, jointly, complex spatio-

temporal dependencies through adaptive graph

learning and temporal attention mechanisms.

In contrast, ST-GCN relies on fixed graph

structures, limiting its spatial flexibility. EIGRN

struggles with long-term temporal patterns and is

sensitive to noise. GCN-GRU separates spatial and

temporal modeling, which weakens interaction

learning. These limitations result in significantly

higher prediction errors.

The results demonstrate the superiority and

robustness of our approach for spatio-temporal

forecasting tasks.

5. CONCLUSIONS

Traffic flow prediction is a crucial area of research

within ITS, aiming to enhance traffic management,

reduce congestion, and improve road safety. The

integration of advanced machine learning

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

127

techniques has marked a significant shift in how

traffic flow is analyzed and predicted. This paper

presented a method to predict the average speed

reported by traffic sensors across the city by

combining two core models, GCN and LSTM. The

YOLO model is used to analyze images and video

during data collection. Proper data processing plays

a critical role in enabling the model to learn

effectively and achieve better performance. This

research successfully constructed and integrated

two models: GCN and LSTM to predict the average

speed of vehicles detected by sensors across the city.

This integration allows the model to generalize both

spatial and temporal relationships inherent in traffic

data. Furthermore, the study also applied the YOLO

model to simulate the sample data collection process

from traffic sensors, providing a clearer

understanding of how sensor data is gathered in

practice.

However, this proposed method still has limitations,

most notably, the model has not yet been deployed

in a real-world environment. It has only been trained

and evaluated on computers and has not been

deployed on a server for live inference or large-scale

application. The study does not provide

comparisons with other experimental models, such

as the combination of GCN with RNN or GCN with

GRU. YOLO is only used at a simulation level to

emulate the data collection process and has not been

fully exploited for its advanced capabilities. The

GCN model currently uses a static graph structure.

This poses a significant limitation—if a new sensor

is added or one of the existing sensors fails, the

entire model might need to be retrained, leading to

increased computational cost and inefficiency.

Furthermore, the study does not address the

correlation between motorcycles and cars in the

traffic flow, which is particularly relevant for

regions like Viet Nam where motorcycles are

dominant. The model has not yet been developed

using datasets from Viet Nam, which limits its

generalizability. Current data is focused primarily

on four-wheeled vehicles, whereas in Viet Nam,

two-wheeled vehicles account for a significantly

larger proportion of traffic.

In the future, integrating more powerful neural

networks like GRU may help produce better results,

while applying YOLO in real-world environments

for real-time prediction. A different GCN model

could also be adopted, where the graph structure

allows for the addition or removal of unnecessary

nodes, thereby reducing computational costs.

Furthermore, a long-term goal is to identify the

correlation between the speed of two-wheeled and

four-wheeled vehicles, which could be particularly

useful in regions like Viet Nam where two-wheeled

vehicles are more prevalent.

ACKNOWLEDGMENT

This research is funded by Ho Chi Minh City

University of Foreign Languages -

Information (HUFLIT) under grand number

H2024-11.

REFERENCES

Awan, F. M., Minerva, R., & Crespi, N. (2020).

Improving road traffic forecasting using air pollution

and atmospheric data: Experiments based on LSTM

recurrent neural network. Sensors, 20(13), 3749.

https://doi.org/10.3390/s20133749

Bengio, Y., Frasconi, P., & Simard, P. (2002 Aug 06).

The problem of learning long-term dependencies in

recurrent networks. In IEEE International

Conference on Neural Networks, San Francisco, CA,

USA (pp. 1183-1188)

https://ieeexplore.ieee.org/document/298725).

Caltrans. (n.d.). Source performance measurement

system data. https://dot.ca.gov/programs/traffic-

operations/mpr/pems-source

Chandra, S. R., & Al-Deek, H. (2009). Predictions of

freeway traffic speeds and volumes using vector

autoregressive models. Taylor and Francis, 13(2),

53-72. https://www.tandfonline.com/journals/gits20

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014).

Empirical Evaluation of gated recurrent neural

networks on sequence modeling. Arxiv,

https://doi.org/10.48550/arXiv.1412.3555

Guan, Z. (2023). Real time object recognition based on

yolo model. Theoretical and Natural Science, 137-

143. https://doi.org/10.54254/2753-

8818/28/20230450

Haghshenas, S. S., Astarita, V., Guido, G., Seraji, M. H.

M. S., Gonzalez, P. A. A., Haghdadi, A., &

Haghshenas, S. S. (2023). Assessment of machine

learning techniques and traffic flow: Aqualitative

and quantitative analysis. Semantic Scholar, 3, 119-

129. https://doi.org/10.47852/bonviewjcce32021062

Huang, Z., Zhang, Z., Li, Y., & Zhao, D. (2024). Short-

term traffic flow prediction: A method of MEA-

LSTM model based on chaotic characteristics

analysis. Journal of Sustainable Built Environment,

1(1), https://doi.org/10.70731/yk3fpz22

Johansson, U., Boström, H., Löfström, T., & Linusson,

H. (2014). Regression conformal prediction with

CTU Journal of Innovation and Sustainable Development Vol. 17, Special issue on ISDS (2025): 117-128

128

random forests. Springer Nature, 97, 55-176.

http://dx.doi.org/10.1007/s10994-014-5453-0

Karim, A. A., & Nower, N. (2024). Probabilistic spatio-

temporal graph convolutional network for traffic

forecasting. Springer Nature Link, 54, 7070–7085.

Knol, D., Leeuw, F., Meirink, J. F., &

Krzhizhanovskaya, V. (2021 Jun 09). Deep learning

for solar irradiance nowcasting: A comparison of a

recurrent neural network and two traditional

methods. Computational Science – ICCS 2021

Conference paper. 12746, (pp. 309-322). Springer

Nature Link.

Kumar, S., & Vanajakshi, L. (2015). Short-term traffic

flow prediction using seasonal ARIMA model with

limited input data. Springer Nature link,

https://link.springer.com/article/10.1007/s12544-

015-0170-8

Li, S., Chang, F., Liu, C., & Li, N. (2020). Vehicle

counting and traffic flow parameter estimation for

dense traffic scenes. IET Research, 14, 1517-1523.

https://doi.org/10.1049/iet-its.2019.0521

Li, Y., Chai, S., Ma, Z., & Wang, G. (2021). A hybrid

deep learning framework for long-term traffic flow

prediction. IEEE, 9, 11264-11271.

https://doi.org/10.1109/access.2021.3050836

Ma, C., Sun, K., Chang, L., & Qu, Z. (2023). Enhanced

information graph recursive network for traffic

forecasting. Electronics, 12(11), 2519,

2519.https://doi.org/10.3390/electronics12112519

Ma, Q., Huang, G. H., & Ullah, S. (2020). A multi-

parameter chaotic fusion approach for traffic flow

forecasting. IEEE Xplore, 8, 222774-222781.

https://doi.org/10.1109/access.2020.3043777

Manoel, C., Jeong, Y. , Jeong, M., & Han, L. (2009).

Online-SVR for short-term traffic flow prediction

under typical and atypical traffic conditions.

Sciencedirct, 36(3), 6164-6173.

https://doi.org/10.1016/j.eswa.2008.07.069

Ren, C., Chai, C., Yin, C., Ji, H., Cheng, X., Gao, G., &

Zhang, H. (2021). Short-term traffic flow prediction:

A method of combined deep learnings. Journal of

Advanced Transportation, 2021(1), 9928073.

https://doi.org/10.1155/2021/9928073

Shigemi, R., Ando, H., Wada, K., & Mukai, R. (2023).

Predicting traffic breakdown on expressways using

linear combination of vehicle detector data.

Nonlinear Theory and Its Applications, IEICE,

14(2), 416-427. https://doi.org/10.1587/nolta.14.416

Singh, P. (2019). Wading through Graph Neural

Networks. https://spraphul.github.io/blog/GCN

Tran, Q. H., Fang, Y., Chou, T., Hoang, T. V., Wang, C.,

Vu, V. T., Ho, T. L. H., Le, Q., & Chen M. (2022).

Short-term traffic speed forecasting model for a

parallel multi-lane arterial road using gps-monitored

data based on deep learning approach. Sustainability,

14(10), 6351. Https://doi.org/10.3390/su14106351.

Turki, A. I., & Hasson, S. T. (2023). Study estimating

hourly traffic flow using artificial neural network: A

M25 motorway case. Samarra Journal of Pure and

Applied Science, 5(1), 47-59.

https://doi.org/10.54153/sjpas.2023.v5i1.448

Vaikunth, M., Dejey, D., Vishaal, C., & Balamurali, S.

(2024). Optimizing helmet detection with hybrid

yolo pipelines: A detailed analysis. Big Data, IOT

and Blockchain Trends 2025, 83-93.

https://doi.org/10.5121/csit.2024.142406

Viola, P., & Jones, M. (2001, December). Rapid object

detection using a boosted cascade of simple features.

In Proceedings of the 2001 IEEE computer society

conference on computer vision and pattern

recognition. CVPR 2001 (Vol. 1, pp. I-I). IEEE.

https://ieeexplore.ieee.org/document/990517

Wang, S., Zhang, X., Li, F., Yu, P. S., & Huang, Z.

(2018). Efficient traffic estimation with multi-

sourced data by parallel coupled hidden markov

model. IEEE, 20(8), 3010-3023.

Https://ieeexplore.ieee.org/Xplore/home.jsp

Yang, D., Chen, K., Yang, M., & Zhao, X. (2019).

Urban rail transit passenger flow forecast based on

LSTM with enhanced long-term features.

SemanticScholar, 13(10), 1475-1482.

https://doi.org/10.1049%2Fiet-its.2018.5511

Yang, P., Chen, Z., Su, G., & Wang, B. (2024).

Enhancing traffic flow monitoring with machine

learning integration on cloud data warehousing.

ResearchGate, 67, 1-7.

Https://doi.org/10.54254/2755-2721/67/2024ma0058

Yu, B., Yin H., & Zhu, Z. (2017). Spatio-temporal graph

convolutional networks: A deep learning framework

for traffic forecasting. ArXiv, 3634-3640.

https://doi.org/10.24963/ijcai.2018/505

Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J.

(2017). LSTM network: A deep learning approach

for short‐term traffic forecast. IET intelligent

transport systems, 11(2), 68-75.

http://dx.doi.org/10.1049/iet-its.2016.0208

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., & Lin,

T. (2019 Aug 22). T-GCN: A Temporal Graph

Convolutional Network for Trafic Prediction. IEEE

Transactions on Intelligent Transportation Systems

(pp. 3848-3858.

https://ieeexplore.ieee.org/document/8809901).

Zhu, H., Xie, Y., He, W., Sun, C., Zhu, K., Zhou, G., &

Ma, N. (2020). A novel traffic flow forecasting

method based on RNN-GCN and BRB. Journal of

Advanced Transportation, 2020(1), 7586154.

http://dx.doi.org/10.1155/2020/7586154

