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 The application of data based mechanistic modeling approach to predict 
thermal histories of conductive foodstuffs during heating is reported. In 
the experiment, minced fish was filled in 307x113 steel cans as the con-
ductive food. Step increase in heating medium was applied while the 
product temperature was recorded. The simplified refined instrumental 
variable algorithm was used as model parameter identification tool to 
obtain the best model order and parameters. As a result, the first order 
transfer function model is proved to be sufficiently enough for describing 
the heat transfer from heating medium to product with a high statistical 
significance (R2 > 0.99). In this model, a parameter related to the heat 
transfer coefficient was found and could be used to predict the product 
temperature during heating processes. 
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1 INTRODUCTION 

Thermal processing is one of the major preserva-
tion technologies used for producing safe and 
shelf-stable food (Chen and Ramaswamy, 2004). 
Temperature, which is the most important process 
variable in most operations involving the transfor-
mation and preservation of foods, has a direct in-
fluence on the kinetics of chemical reactions, on 
enzymatic and microbial activities, etc. and it 
should be control during the processes. 

Thermal processes calculations referred to the de-
sign and/or the evaluations of a thermal process are 
mainly dependent on the internal temperature 

changes with time of heating, and are broadly di-
vided into two classes: “general method” and 
“formula methods”. The “general method” inte-
grate the lethal effects by a graphical or numerical 
integration procedure based on the time-
temperature data obtained from test containers pro-
cessed under actual commercial processing condi-
tions during “formula methods” make use of pa-
rameters obtained from these heat penetration data 
together with several mathematical procedures to 
integrate the lethal effects (Hosahalli and Singh, 
1997). In “formula methods”, predicted product 
temperature is associated with constant retort tem-
perature (Stoforos, 2010). 
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Most studies have only focused on the finding of 
the best fitting of transfer function in thermal pro-
cessing (black box model), i.e. the black box mod-
eling (Glavina et al., 2006; Ansorena and Scala, 
2009; Ansorena et al., 2010). However, there is 
still a need for finding a physically meaningful 
parameter in a transfer function to predict and con-
trol product temperature during heating. 

The objective of this work is to characterize the 
thermal response of canned conductive food in 

batch retorts and try to model the process by using 
a data-based mechanistic modeling approach. 

2 MATERIALS AND METHODS 

2.1 Laboratory test equipment 

In this experiment, minced fish was filled in 
307x113 steel cans as the conductive food. To ob-
tain the temperature profiles, the calibrated type T 
thermocouples are positioned in the center of cans 
as Figure 1 and all thermocouples were connected 
to a digital data logger (Keithley 2700, USA). 

 

(a)                                          (b) 

Fig. 1:  (a) Analog Keithley 2700; (b) Sensor position  

During thermal treatment, the container was placed 
in a water bath. The product and water temperature 
during experiment are recorded at 10-second  
interval. 

To obtain the data sets for dynamic modeling, the 
steps up of temperature was adjusted from 50 to 
80oC, heating medium and product temperature 
were monitored for 160 minutes as Figure 2. 
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Fig. 2:  Step up experiment 

2.2 Data-based mechanistic (DBM) modeling 
approach  

The term “data-based mechanistic modeling” was 
first introduced by Young and Lees in 1992 (cited 
in Young, 2002). This modeling approach obtained 
initially from the analysis of observational time-
series but was only considered credible if it can be 
interpreted in the physically meaningful terms. As 
illustrated in Figure 3, the DBM approach consists 
of data based and mechanistic phases. The first step 
in DBM modeling is to identify a suitable mathe-
matical model from a generic model class that is 
both capable of explaining the data in a parametri-
cally efficient manner and having minimal com-
plexity in terms of model order and model parame-
ters. After this initial black-box modeling stage is 
complete, the model is interpreted in a physically 
meaningful, mechanistic manner based on the na-
ture of the system under study and the physical, 
chemical, biological or socio-economic laws that 
are most likely to control its behavior. 
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Fig. 3: Data based mechanistic (DBM) modeling technique 

A continuous-time transfer function model for a 
single-input single-output (SISO) system has the 
following general form: 
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2.2.1 Data phase in thermal processing 

High frequent data (10-second interval) was ob-
tained from dynamic experiments. In the “Data-
based phase”, a dynamic transfer function model 
was fitted through data and evaluated on its accu-
racy. Although other techniques are available, in 
this study the simplified refined instrumental vari-
able (SRIV) approach was used as a method for 
model identification, since it not only yields con-
sistent estimates of the parameters but also exhibits 
close to optimum performance in the model order 
reduction context (Young, 1984). 

The ability to estimate the parameters represents 
only one side of the model identification problem. 
Equally important is the problem of objective mod-
el order identification resulting in low complexity. 
The process of model order identification can be 
assisted by the use of well-chosen mathematical 
measures which indicate the presence of over pa-
rameterization. A reasonably successful identifica-
tion procedure used to select the most appropriate 
model structure is based on the minimization of the 
young identification criterion, YIC (Young et al., 
1981). The Young Identification Criterion (YIC) is 
a heuristic statistical criterion, which consists of 
three elements. The first term provides a normal-
ized measure of how well the model explains the 
data: the smaller the variance of the model residu-
als in relation to the variance of the measured out-
put, the more negative this term becomes. The sec-
ond term is a normalized measure of how well the 
model parameter estimates are defined for the order 
model, the smaller the relative error variance, the 
better defined are the parameter estimate in statistic 
terms, and this is one more reflected in a more neg-
ative value for the term. The third term provides a 
compromise between goodness of fit and number 
of parameters, model order increased, so the first 
term tends to decrease, while the second term tends 
to decrease at first and then to increase quite mark-
edly when the model becomes over parameterized 
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and the standard error on this parameter estimates 
becomes larger in relation to the estimated values.    

Consequently, the model, which minimizes the 
YIC, provides a good compromise between good-
ness of fit and parametric efficiency. While the 
YIC ensures that the model is not over parameter-
ized, it is not always good at discriminating models 
that have a lower order than the ‘best’ model. Be-
cause of this, the YIC will often, if applied strictly, 
identify a model that is under-parameterized. 
Therefore, it is used together with the coefficient of 
determination R2. If the YIC identified model has 
an adequate R2, which is not significantly lower 
than the R2 of the higher order models, it may be 
fully accepted as the best model in identification 
terms. 

2.2.2 Mechanistic phase in thermal processing 

Ti(t)

Tm(t)

Heating medium

 
Fig. 4:  Heat transfer during heat treatment 

Assuming uniformity of product temperature dur-
ing heat treatment, the heat transfer between heat-
ing medium to product as shown in Figure 4 is 
governed by the following equation: 

m
p,m m m i m
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Where m: mass of product (kg); Cp,m: specific heat 
of product (J/kg oC); km: heat transfer coefficient 
(W/m2 oC); Sm: surface of product (m2); Ti(t): heat-
ing medium temperature at time (oC); Tm(t): prod-
uct temperature at time (oC). 

The Eq. 1 can be rewritten as: 
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Where α is a heat transfer rate (1/s) 

The Eq. (2) can be written as: 
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   Under steady state condition 0mdT
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, and Eq. 

(4) will become 
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If we only consider small temperature perturba-
tions (ti(t), tm(t)) around steady state, subtracting 
Eq. (5) from Eq. (4) results in: 
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After converting Eq. (6) with the Laplace operator, 
the transfer function results in: 

m i( ) ( )t t t t
s







  (7) 

The  value in Eq. 3 contains an important param-
eter; it is a heat transfer coefficient km which is 
related to medium characteristics, medium velocity 
and surface of product.  

3 RESULTS AND DISCUSSION 

3.1 Change of heating medium and product 
temperature 

Heating medium and product temperature were 
recorded and performed in Figure 5. Product tem-
perature was reached to medium temperature after 
100 min. 
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Fig. 5: Heating medium and product temperature during experiment 

3.2 Data-based phase in heating process  

Applying continuous-time simplified refined in-
strumental variable (SRIV) algorithm (Young, 
1981) to estimate the parameters in the first and 

second order transfer function, based on coefficient 
of determination R2 and minimization of the YIC 
value in the test  as the example of for the calculat-
ing method. 

Table 1: The model parameter estimates for heating process 

TF [m, n, ] Model parameters SE R2 YIC 

First order 
[0, 1, 28] a1= 0.0105 

0.0077 0.9999 -23.15 
b0= 0.0106 

Second order 

[1, 2, 28] a1= 0.0191 

0.0057 0.999 -12.52 
a2= 0.0001 
b0= 0.0104 
b1= 0.0001 

TF: transfer function; SE: standard error of equations; R2: coefficient of determination; YIC: Young identification crite-
rion; m, n and , denominator, numerator and time delay; a1, a2, b0, b1, parameters in the first and second order of 
transfer function 
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Fig. 6: The output of the first order of transfer function model compared with the measured tempera-

ture response (above) and residual plot (below) 

From Table 1, it is obvious that the first and the 
second order transfer function can be applied. The 
second order of transfer function is the best fitting 
model, but the first order has a lower value for YIC 
and will be selected as the best fitted model. The 
first order of transfer function model compared 

with the measured temperature response and the 
residual plot are shown in Figure 6. 

The selected model from this experiment in form: 
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3.3 Physical meaningful parameter in a model 

The second step in data-based mechanistic model-
ing approach is interpreted in a physically mean-
ingful way based on the nature of the system 
(Young and Garnier, 2006). In this research, the 
first order of fitted model was selected to seek the 
physical meaning of this process. From Eq. (7) and 
(8), the importantly found value  is equal to b0, 
was defined as a “heating rate” term in relation to 
heat transfer coefficient from the heating medium 
to product and the estimated parameters a1 and b0 
are not very different, also proved the accuracy of 

selected model. 

3.4 Applying of a selected model for predicting 
of product temperature during heat treatment 

The transfer function performed in Eq. 8 contained 
a physically meaning parameter. So, it is possible 
to apply to predict product temperature during heat 
treatment and can be used to online calculate F-
value (Least Sterilizing Value) during heat treat-
ment.  

The algorithm to predict product temperature was 
presented in Figure 7. 
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Fig. 7:  The algorithm to predict product temperature during heating 

From Figure 7, with initial of product temperature, 
initial temperature of heating medium and record-
ing heating medium, the predicting product tem-
perature can be obtained. It is a basic for online 
calculating of the F-value with temperature refer-
ence (Tref) and thermal resistance (z). 

4 CONCLUSIONS 

The application of data-based mechanistic model-
ing approach to predict thermal histories of con-
ductive foodstuffs when surroundings present dif-
ferent forcing functions during heating of processes 
was reported in this paper. The comparison of ex-
perimental data with proposed model presented a 
very satisfactory result with the first-order transfer 
function. A physically meaningful parameter found 
in this model is a heat transfer coefficient from 
heating medium to product, which can be used to 
predict and control a product temperature during 
heating process. 
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