In vitro anti-inflammatory resorcinol derivatives and their in silico analysis

Rahen Mahmuda¹, Shahenul Islam¹, Negar Sultana Shoshi¹, Khadija Akhter Poly¹, Pranoy Saha¹, Shamima Akhter¹, Tran Quang De² and Sukumar Bepary¹*
¹Department of Pharmacy, Jagannath University, Dhaka-1100, Bangladesh
²Department of Chemistry, College of Natural Sciences, Can Tho University, Vietnam
*Correspondence: Sukumar Bepary (email: sukumarsb@yahoo.com)

Article info.
Received 11 Jun 2020
Revised 10 Sep 2020
Accepted 30 Nov 2020

ABSTRACT
Resorcinol with its two hydroxyl groups was derivatized in laboratory to observe the anti-inflammatory potential in vitro. Subsequently, in silico docking analysis was done for observing the binding modes in cyclooxygenase enzyme to have idea about the subsequent possible developments. At the doses of 200 μg/mL and 400 μg/mL, the compounds showed the anti-inflammatory property. Among them, 1,3-phenylene bis(2-chloro-4-nitrobenzoate) also offered dose dependent 51% and 70% of inhibition of heat-induced hemolysis respectively. The scaffold thus poses as an interesting pharmacophore suitable for further development for managing the inflammatory disorders.

Keywords
Anti-inflammatory, docking, nitrobenzoic acid, resorcinol

1 INTRODUCTION
Cyclooxygenase (COX) is responsible for formation of prostanooids (Jane, 2019) including thromboxane and prostaglandins like prostacyclin, from arachidonic acid. The two types, namely COX-1 and COX-2 having minor variations in structure and distribution pattern in the human body, are responsible for different types of human chronic inflammatory disorders like cancer, cardiovascular diseases, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, asthma, depression and Parkinson’s disease, etc. Though there are diversified classes of non-steroidal anti-inflammatory drugs (NSAIDs), most of them results in gastrointestinal complications (da Silva Guerra et al., 2011; dos Santos et al., 2012; Elhenawy et al., 2014; Suryawanshi et al., 2014, Goldstein et al., 2015) including primary local irritation to gastrointestinal ulceration. These agents are not suitable for long term applications in managing the chronic inflammatory disorders, thereby demanding the better alternatives. Thus, this scaffold has been considered for study and the results have been reported here.

2 EXPERIMENTAL SECTION
2.1 Materials and methods
The necessary reagents were purchased from Sigma-Aldrich (USA) and TCI (Japan). Methanol and dichloromethane were collected from Duksan Pure Chemicals Co. Ltd, South Korea. Solvents were collected from Daejung Chemical & Metal Co. Ltd. Derivatives were synthesized in the laboratory and then were purified by flash column chromatography using silica gel (45-100 μ). The reaction end
points were checked by the TLC using Sigma-Aldrich Glass plates having silica gel coated with fluorescent indicator F254. The compounds were characterized by \(^1H\) NMR by Bruker 400 MHz.

2.2 Synthesis of resorcinol derivatives

To the stirred solution of appropriate benzoic acid (A) was added 3.0 equivalent of thionyl chloride and the resulting solution was refluxed for 2 hours (Scheme-1). After subsequent removal of excess thionyl chloride by vacuum evaporation, dry dichloromethane was added. Under an ice bath system then were added triethylamine and resorcinol. Stirring was continued for overnight and reaction end point was confirmed by using of TLC. After subsequent addition of distilled water, the organic layer was collected by a separating funnel, washed successively by brine and water. The organic layer was then dried with sodium sulfate before it was subjected to filtration by using Whatman filter paper to collect the filtrate. The solvent was evaporated _in vacuo_ to afford crude esters which were then purified by flash column chromatography to get the desired products (01-03, 82-88% yield).

![Scheme 1: Synthesis of resorcinol derivatives](image)

The level of hemolysis was calculated by using the following equation:

\[
\text{Percentage of hemolysis} = 100 \times \frac{(\text{OD}_2 - \text{OD}_1)}{(\text{OD}_3 - \text{OD}_1)}
\]

Where, \(\text{OD}_1\) = absorbance of test sample unheated; \(\text{OD}_2\) = absorbance of test sample heated; \(\text{OD}_3\) = absorbance of control sample heated.

The percentage inhibition of hemolysis was calculated by using the following relation:

\[
\text{Inhibition of hemolysis (\%) = 100 – hemolysis (\%)}
\]

2.4 Docking analysis

The compounds were subsequently docked into the cyclooxygenase-2 enzyme. The enzyme protein Data Bank (PDB) was collected from the internet (Orlando et al., 2015). The original PDB was having the reference drug ibuprofen docked into the ligand binding site of cyclooxygenase-2 enzyme. However, after getting the original PDB file, the ligand
was separated out and the receptor PDB was processed for the docking studies.

2.4.1 Preparation of the ligand file of the synthesized compounds

The compound structures were drawn by using the ChemDraw software. The structures thus obtained were in 2-D from and thus were converted to 3-D which were then transformed to PDBQT files by using the Python Molecular Viewer (PMV).

2.4.2 Docking of the ligand PDBQT in the receptor PDBQT file

The ligand PDBQT files were then docked in the receptor PDBQT by using the Autodock Vina software (Trott et al., 2010). The output PDBQT files were then viewed by using the PyMOL software. The binding modes with lowest energy were taken under consideration for interaction analysis. This selected ligand PDBQT files were taken along with the ligand PDB to find out the binding interactions and next possible improvements.

3 RESULTS AND DISCUSSION

3.1 Synthesis of resorcinol ester of benzoic acids

To the benzoic acid, thionyl chloride, triethylamine, resorcinol, and other necessary chemicals, reagents and utilities were collected from local suppliers. The laboratory condition was sufficient for getting very good yields. The process was reproducible and thus can be used for further derivatizations if desired. Compounds were characterized by using the 1H NMR available in the Bangladesh Council of Scientific and Industrial Research (BCSIR).

3.2 Proton NMR data of the synthesized compounds

Comound (01) 1,3-Phenylene bis(4-nitrobenzoate) is an orange solid with yield of 77% and 1H NMR (400 MHz, CDCl$_3$): δ 7.20-7.24 (m, 2H), 7.54 (t, J = 8.0 Hz, 1H), 8.26-8.39 (m, 9H).

Comound (02) 1,3-Phenylene bis(2-chloro-4-nitrobenzoate) is a pale orange solid with yield of 81% and 1H NMR (400 MHz, CDCl$_3$): δ 7.23-7.29 (m, 3H), 7.54 (t, J = 8.0 Hz, 1H), 8.17-8.20 (m, 2H), 8.23-8.25 (m, 2H), 8.39 (m, 2H).

Comound (03) 3-Hydroxyphenyl 2-chloro-4-nitrobenzoate is a yellow solid with yield of 79% and 1H NMR (400 MHz, CDCl$_3$): δ 6.76-6.82 (m, 3H), 7.28 (t, J = 8.0 Hz, 1H), 8.13-8.15 (m, 1H), 8.21-8.26 (m, 1H), 8.37-8.38 (m, 1H).

3.3 Biological evaluation of resorcinol ester of benzoic acids

The compounds were observed for the anti-inflammatory property by using the in vitro methods where the efficacy in preventing the heat induced hemolysis of the human red blood cells (HRBC) was observed. The results obtained have been given in the Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Strength (μg/ml)</th>
<th>Absorbance</th>
<th>Lysis (%)</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hot</td>
<td>Cold</td>
<td>(Heat-Cool)/(Control-Cool)*100</td>
<td>(100-Lysis%)</td>
</tr>
<tr>
<td>01</td>
<td>200</td>
<td>0.060</td>
<td>0.048</td>
<td>44</td>
</tr>
<tr>
<td>02</td>
<td>400</td>
<td>0.043</td>
<td>0.029</td>
<td>49</td>
</tr>
<tr>
<td>03</td>
<td>200</td>
<td>0.064</td>
<td>0.038</td>
<td>72</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>100</td>
<td>0.038</td>
<td>0.030</td>
<td>17</td>
</tr>
<tr>
<td>Control</td>
<td>Blank</td>
<td>0.075</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The compound 03 was found to be comparatively weak (27% inhibition) in preventing the lysis of HRBC. Whereas, compound 02 having di-substitution, showed significantly higher inhibition (51%). There was a good dose-dependent increase in the efficacy as shown by 400 μg/mL (70% inhibition). The compound 01, having di-substitution but no halogen, was comparable with 02. Ibuprofen was used as the reference compound in this study.

3.4 In silico analysis for the binding pattern

Docking analysis was done by using the Autodock Vina software published from The Scripps Research Institute. Compound 01 and 02 showed similar types of inhibition and so the former was taken for this study. In this study, various modes were observed from the output PDBQT files having different energy levels. The lowest energy mode was taken into consideration for further prediction.

Table 1: Efficacy of compound 01, 02 and 03 in preventing the heat induced hemolysis
One of the nitrobenzene moieties was found to be projected to a side pocket having the non-polar characters due to the dominance of the side chains from Val-117, Met-114, Leu-532, and Leu-360 as shown in Figure 1. Thus more groups can be tried based on this study. The other nitrobenzene ring was also found to be projected to another non-polar site though was staying little far. Accordingly, this ring can be replaced to ensure proper fit in this pocket. On the other hand, the central phenyl ring has projected its unsubstituted part to another site having non-polar residues like, Phe-529, Val-523, Leu-353. But as shown in Figure 2, there is little more blank space which can be utilized for introducing additional non-polar groups and/or atoms on this central ring.

4 CONCLUSIONS

It is obvious that the resorcinol derivatives possessed encouraging potency for inhibiting the heat-induced lysis of the HRBC membrane which may be significant while targeting the chronic inflammatory disorders. Moreover, since this scaffold does not bear any carboxylic acid group, this may be better tolerated option for the long-term managements. Thus further study should be done with this scaffold to develop more derivatives and thereby to make a comprehensive structure-activity-relationship study with this pharmacophore.

ACKNOWLEDGMENTS

We are thankful to Jagannath University and University Grants Commission of Bangladesh for providing the required laboratory facilities and complementary financial supports for this project.

REFERENCES

