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The synchronization in complete network consisting of n  nodes is studied 

in this paper. Each node is connected to all other ones by nonlinear cou-

pling and is represented by a reaction-diffusion system of FitzHugh-

Nagumo type which can be obtained by simplifying the famous Hodgkin-

Huxley model. From this complete network, the sufficient condition on the 

coupling strength to achieve the synchronization is found. The result 

shows that the networks with bigger in-degrees of nodes synchronize 

more easily. The paper also presents the numerical simulations for theo-

retical result and shows a compromise between the theoretical and nu-

merical results. 
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1. INTRODUCTION 

Synchronization is a ubiquitous feature in many 

natural systems and nonlinear science. The word 

"synchronization" is of Greek origin, with syn as 

“common” and chronos as “time”, which means 

having the same behavior at the same time. There-

fore, the synchronization of two dynamical systems 

usually means that one system copies the move-

ment of the other. When the behaviors of many 

systems are synchronized, these systems are called 

synchronous. Aziz-Alaoui (2006) and Corson 

(2009) suggested that a phenomenon of synchroni-

zation may appear in a network of many weakly 

coupled oscillators. A broad variety of applications 

have emerged to increase the power of lasers, syn-

chronize the output of electric circuits, control os-

cillations in chemical reactions or encode electron-

ic messages for secure communications (Aziz-

Alaoui, 2006; Pikovsky et al., 2001). 

In recent years, the synchronization has been ex-

tensively studied in many fields, many natural phe-

nomena also reflect the synchronization such as the 

movement of birds forming the cloud, the move-

ment of fishes in the lake, the movement of the 

parade, the reception and transmission of a group 

of cells, etc. (Aziz-Alaoui, 2006; Ermentrout & 

Terman, 2009; Hodgkin & Huxley, 1952; 

Izhikevich, 2005; Murray, 2002). Therefore, the 

study of the synchronization in the network of cells 

is very necessary. In order to make the study easier, 

the complete network of n  neurons interconnected 

together with non-linear coupling is investigated 

and the sufficient condition on the coupling 

strength is sought to achieve the synchronization. 

Each neuron is represented by a dynamical system 

named FitzHugh-Nagumo model. It was introduced 

as a dimensional reduction of the well-known 

Hodgkin-Huxley model (Ermentrout, 2009; Hodg-

kin, 1952; Izhikevich, 2007; Keener, 2009; Mur-

ray, 2002; Nagumo, 1962). It is more analytically 

tractable and maintains some biophysical meaning. 

The model is constituted a common form of two 

equations in the two variables u and v . The first 

variable is the fast one called excitatory which rep-

resents the transmembrane voltage. The second is 

the slow recovery variable which describes the 

time dependence of several physical quantities, 
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such as electrical conductivity of ion currents 

across the membrane. The FitzHugh-Nagumo 

equations (FHN) are given by 

( )
du

f u v
dt

dv
au bv c

dt

 = −

= − +







 

where, ,a b  and c are constants (a and b are strictly 

positive), 0 1  and 
3

( ) 3f u u u= − + . 

 However, this equation is not strong enough to 

describe the propagation of action potential. To 

solve this problem, the cable equation is investigat-

ed. It is a mathematical equation derived from a 

circuit model of the membrane and its intracellular 

and extracellular space to provide a quantitative 

description of current flow and voltage change both 

within and between neurons, allowing a quantita-

tive and qualitative understanding of how neurons 

function. So, in this study, the following partial 

differential equations (PDE) is considered: 

  

( )
du

u f u v d ut u
dt

dv
v au bv ct

dt

 = = − + 

= = − +







    (1) 

where, ( , ), ( , ), ( , ) ,u u x t v v x t x t du
+

= =   is 

a positive constant, u is the Laplace operator of 

u , ,
N

N
+

    is a regular bounded open 

set and with Neumann zero flux boundary condi-

tions. This system allows the emergence of a varie-

ty of patterns and relevant phenomena in physiolo-

gy (Ambrosio & Aziz-Alaoui, 2012; Ambrosio & 

Aziz-Alaoui, 2013). It is a system of two nonlinear 

partial differential equations of incomplete parabol-

ic type which describes the action potential and the 

recovery variable in the whole set of neurons. It is 

noted that the first equation is similar to the so-

called cable equation, which describes the distribu-

tion of the potential along the axon of a single neu-

ron (Ermentrout, 2009; Izhikevich, 2005). For ex-

ample, in figure 1, there are two solutions of sys-

tem (1) corresponding to different values of t on 

space    0;100 0;100 . =    Figure 1(a) repre-

sents, for 0t = , the isovalues ( , , 0)1 2u x x of one 

solution of system (1). Figure 1(b) represents, for 

190t = , the isovalues ( , ,190)1 2u x x  of one solution 

of system (1). Such a solution is called spiral one 

obtained by a particular choice of initial conditions. 

 

Figure 1. Figure (a) represents, for t=0, the isovalues  1 2( , ,0)u x x  of one solution of system (1). Figure 

(b) represents, for t=190, the isovalues 1 2( , ,190)u x x  of one solution of system (1). Such a solution is 

called spiral one obtained by a particular choice of initial conditions 

After having the model of a neuron, we consider a 

network of n  coupled systems (1) based on FHN 

type as follows: 

( ) ( , )

, 1, ..., , ,

u f u v d u h u vu uit i i i ii i

v au bv cit i i

i j n i j

 = − +  −

= − +

= 





   (2) 

where, ( , ), 1, 2, ...,u v i ni i =  is defined by (1). 

The function h is the coupling function that deter-

mines the type of connection between neurons i 

and j. Connections between neurons are essentially 

of two types: chemical which is much more abun-

dant and electrical. If the connections are made by 

chemical synapse, the coupling is non-linear and 

given by the function: 
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( , ) ( ) ( ),

1

1, 2, ..., .

n
h u v u V g c usyn syni i i ij j

j

i n

= − 
=

=

     (3) 

The parameter syng  represents the coupling 

strength. The coefficients ijc  are the elements of 

the connectivity matrix ( )C cn n nij=  , defined by 

1 if i and j are coupled

0 if i and j arenot coupled

, 1, 2, ..., , .

cij

cij

i j n i j

=

=

= 





 

The function  is a non-linear threshold function 

1
( ) .

1 exp( ( ))
u j

u synj 
 =

+ − −
 

The parameters have the following physiological 

meanings: 

synV  is the reversal potential and must be larger 

than ( , ),iu x t  for all , , 0i x t   since synap-

ses are supposed excitatory. 

syn  is the threshold reached by every action po-

tential for a neuron. 

  is a positive number (Belykh et al., 2005; 

Corson, 2009). The bigger   is and the better we 

approach the Heaviside function. 

Corson (2009) is interested in the generation of the 

burst oscillations from a network of equations on 

Hindmarsh-Rose type. The values of these parame-

ters are determined numerically. For example, syn  

is chosen as a central value in the middle of bursts 

over a given period. Figure 2 represents the values 

of parameters syn  and synV  on time series and a 2-

dimensional projection of phase portrait. The pa-

rameter syn  is the synaptical threshold, on the 

scale time series (a) and on the phase portrait pro-

jected on the plane (b). So the value of the mem-

brane potential beyond which the synapse is acti-

vable. It is usually chosen “in the middle” of 

spikes. The parameters  
ex

synV  and  
in

synV  are the “re-

versal potential”. The value of 
ex

Vsyn  (resp. 
in

synV ) is 

bigger (resp. smaller) than the maximal value (resp. 

minimal) of action potential and is used in the 

modeling of excitatory synapses (resp. inhibitory). 

 

Figure 2. The parameter syn  is the synaptical threshold, on the scale time series (a) and on the phase 

portrait projected on the plane (b) 

In recent years, there are a lot of studies concerning 

to the synchronization; however, they are just stud-

ied for the linear coupling, while the connections 

between neurons made by chemical synapse is ma-

jor in neural network. Therefore, it is really useful 

to research about this problem. In other words, the 

rapid chemical excitatory synapses are interested, 

so the parameters are fixed as follows throughout 
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this paper, according to the articles (Belykh et al., 

2005; Corson, 2009).  

10, 2, 0, 25.Vsyn syn = = = −  

A neural network describes a population of physi-

cally interconnected nerve cells. Communication 

between cells is mainly due to electrochemical 

processes. This article focuses on analyzing the 

behavior of a set of neurons connected with a given 

topology by chemical signals. Thus, the complex 

system based on a network of interactions between 

neurons is considered in which each network node 

is modeled by a PDE of FHN type. The sufficient 

conditions to obtain the synchronization in network 

are found, and the minimal value of coupling 

strength to get the synchronization is investigated 

by numerical experiments, that gives an insight 

into the influence of neurons on minimal coupling 

strength. The numerical simulations show that 

when the number of nodes in graph grows, the 

network becomes easier to synchronize. 

2. SYNCHRONIZATION OF A COMPLETE 

NETWORK OF N SYSTEMS OF 

REACTION-DIFFUSION ON FITZHUGH-

NAGUMO TYPE WITH NONLINEAR 

COUPLING  

In this article, the synchronization is investigated in 

complete network which means that each node 

connects to all other nodes of the network (Ambro-

sio & Aziz-Alaoui, 2012, 2013). For example, Fig-

ure 3 shows the complete graphs from 3 to 10 

nodes. In this study, each node represents a neuron 

modeled by a system of reaction-diffusion equa-

tions on FHN type and each edge represents a syn-

aptic connection modeled by a coupling function. 

Definition 1. Let ( , ), 1, 2, ...,S u v i ni i i= =  and 

( , , ..., )1 2S S S Sn=  be a network. We say that S  is 

synchronous if 

( )
1

lim 0.2 21 1( ) ( )1

n
u u v vi ii iL Lt i

−
 − + − =+ + →+ =

 

Figure 3. Complete graphs from 3 to 10 nodes 

A system of n "neurons" (1) bi-directionally coupled by the chemical synapses, based on FHN, is given as 

follows: 

                  

( )
( )

1, 1, 2, ..., ,1 exp( ( ))

g u Vn n syni
u f u v d uuit i i ii k k i i nu synk

v au bv cit i i


 

−
= − +  −

=  =+ − −

= − +







           (4)    

where, ng  is the coupling strength between iu  and ju . 

Theorem 1. Suppose that 

 inf ( , ), 1, 2, ..., , , 0 , , , 1, 2, ...,N u x t i n x t d d i j nu ui i j
= =   = =  
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And  
1 exp( ( ))

,
1

M N syn
gn

n

 + − −


−

 
 

 

where 

( )
3 ( ) 1

sup ,
1, !

k
f u k

M x
ku B x k

−
=
= 

B is a com-

pact interval including u and 
( ) ( )kf u  is the kth 

derivative of f with respect to u . Then the network 

(4) synchronizes in the sense of Definition 1. 

Proof. Let 

( )1 2 2
( ) ( ) ( ) .1 122

n
t a u u dx v v dxi i

i
 = − + − 

=  

 
  

    

By deriving the function ( )t , there is the follow-

ing 

( )
( )( ) ( )( )1 1 1 12

( )
( ) ( ) ( )1 1 1 112 1, 1 exp( ( ))

( )1
( ) (12 1 exp( ( ))

nd t
a u u u u v v v v dxi it i itt tidt

g u Vn n n syni
a u u f u v d u f u v d uu ui i i iii k k i u synk

g u Vn n syn
v v a ui

l u synl



 

 


= − − + − −
= 

−
 = − − +  − − + − 
= =  + − −

−
+ + −
= + − −

  

 
 
 





( )) ( )1 1

( )
( ) ( ) ( )1 1 112 1, 1 exp( ( ))

( )1 2
( )12 1 exp( ( ))

( )
( ) ( ) ( )1 1

1 exp( (

u b v v dxi i

g u Vn n n syni
a u u f u d u f u d uu ui i iii k k i u synk

g u Vn n syn
b v v dxi

l u synl

g u Vn syni
a u u f u f ui i

 

 



− − −

−
 = − +  − −  −
= =  + − −

−
+ − −
= + − −

−
 − − −

+ −



 
 
 


 



2 1, ))

( )1 2
( )12 1 exp( ( ))

( )1
( ) ( ) ( )1 12 1, 1 exp( ( ))

1 1
( )1 2 1 exp( ( )) 1 ex

n n

i k k i u synk

g u Vn n syn
b v v dxi

l u synl

n n g u un i
a u u f u f ui i

i k k i u synk

n
g u Vn syn

l u synl



 

 

 

 
= =  −

−
+ − −
= + − −

−
  − − −
= =  + − −

+ − −
= + − − +

 
 
 


 



 
 
 

2
( )11, p( ( ))

( )1
( ) ( ) ( )1 12 1, 1 exp( ( ))

1 1 2
( ) ( ) .1 1

1 exp( ( )) 1 exp( ( ))1

n
b v v dxi

k k i u synk

n n g u un i
a u u f u f ui i

i k k i u synk

g u V b v v dxn syn i
u usyn syni

 

 

   

 − −
=  − −

−
  − − −
= =  + − −

+ − − − −
+ − − + − −

 
    

  

 
 
 

 
    

  

 

Since we are interested in the rapid chemical excit-

atory synapses, so  
, , 01

0, , 0.1

u V x tsyn

u V x tsyn

    

−    
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Note that: 

− If 1iu u , then 0 ( )( ) 0,1 1 1u u g u u u Vn syni i−   − −   and 

1 1
.

1 exp( ( )) 1 exp( ( ))1u usyn syni   


+ − − + − −
 

Thus 

1 1
( )( ) 0.1 1

1 exp( ( )) 1 exp( ( ))1

g u u u Vn syni
u usyn syni   

− − − 
+ − − + − −

 
  
 

−    If  1iu u , then 

1 1 10 ( )( ) 0,i n i synu u g u u u V−   − −   

and 

1 1
.

1 exp( ( )) 1 exp( ( ))1u usyn syni   


+ − − + − −
 

Thus, 

1 1
( )( ) 0.1 1

1 exp( ( )) 1 exp( ( ))1

g u u u Vn syni
u usyn syni   

− − − 
+ − − + − −

 
  
 

 

It means that in any cases, there is always the inequality 

1 1
( )( ) 0.1 1

1 exp( ( )) 1 exp( ( ))1

g u u u Vn syni
u usyn syni   

− − − 
+ − − + − −

 
  
 

Therefore, 

( )
3 ( )( ) 2 1 21

( ) '( ) ( ) ( )1 1 1 12 2 1,! 1 exp( ( ))

2 2
( ) ( ) .1 12 1, 1 exp( ( ))

k
n nf u gd t k n

a u u f u u u b v v dxi i i
i k k k idt k u synk

n n gn
a u u M b v v dxi i

i k k i u synk

 

 

 −
   − + − − − −
= = =  + − −

  − − − −
= =  + − −

  
   
   

  
   
   

 

If  inf ( , ), 1, 2, ..., , , 0 , , , 1, 2, ...,N u x t i n x t d d i j nu ui i j
= =   = =  and 

1 exp( ( ))
,

1

M N syn
gn

n

 + − −


−

 
 

then 

( 1)
0.

1, 1 exp( ( )) 1 exp( ( ))

n g n gn n
M M

k k i u Nsyn synk
   

−
−  − 

=  + − − + − −
 

Finally, there is always another constant 0  , 

such that 

( )
( ) ( ) (0) ,

d t t
t t e

dt




 −
 −       



Can Tho University Journal of Science   Vol. 13, No. 2 (2021): 43-51 

49 

where, 

( 1)2
min , 2 .

1 exp( ( ))

n gn
M b

N syn


  

−
= −

+ − −

  
  
    

 

Thus, there is the synchronization if the coupling 

strength is verified such that 

1 exp( ( ))
.

1

M N syn
gn

n

 + − −


−

 
 

 

If f is cubic, there is the following corollary. 

Corollary 1. Suppose that f is a cubic function, 
3 2

( ) ,3 2 1 0f u m u m u m u m= + + + where  

3 2 1 0, , ,m m m m  are constants with 3 0m   and if 

2
1 2

(1 exp( ( ))),1
1 3 3

m
g m Nn syn

n m
  − + − −

−

 
  
 

the 

network ( )( , ), ( , ), ..., ( , )1 1 2 2S u v u v u vn n=  syn-

chronizes then in the sense of Definition 1. 

3. NUMERICAL SIMULATIONS 

In the following, the paper shows the numerical 

results obtained by integrating the system (4) 

where 
3

3, ( ) 3n f u u u= = − + , and with the follow-

ing parameter values: 

1, 0.001, 0, 0.1, 0.05.a b c du= = = = =  The inte-

gration of system was realized by using C++, on  

       0; 0; 200 0;100 0;100 .T  =    

Figure 4 illustrates the phenomenon of synchroni-

zation. The simulations show that the system syn-

chronizes from the value 0.0253g = . In the figures 

(a), (b), (f), (g), (k), (l), (p), (q), we represented the 

phase portraits ( )1 1 2 2 1 2( , , ), ( , , )u x x t u x x t  and 

( )2 1 2 3 1 2( , , ), ( , , )u x x t u x x t  for  0;t T  and for 

all ( , )1 2x x  . It is observed (figure (p) and (q)) 

that for 0.0253g = , 1 1 2 2 1 2( , , ) ( , , )u x x t u x x t  

and ( , , ) ( , , )2 1 2 3 1 2u x x t u x x t  for all  0;t T  

and for all ( , )1 2x x  . In the figures (c), (d), (e), 

(h), (i), (j), (m), (n), (o), (r), (s), (t), they show the 

isovalues of ( , ,190), 1, 2, 31 2u x x ii = . The results 

show that for 0.0253g = , the obtained patterns  are 

"identical". 

 

Figure 4. Synchronization of a complete network of three nonlinearly coupled "neurons" 

The synchronization occurs for 0.0253g = . Before  

synchronization, for 0.013g = : the figure (a) repre-

sents the temporal dynamic  of 2u with respect to 

1u , for all ( , )1 2x x   ;  the figure (b) represents 

the temporal dynamic  of 3u  with respect to 2u ; 

the figure (c) represents the isovalues of 

( , ,190)1 1 2u x x ; similarly the figures (d) and (e) 

represent the isovalues of  ( , ,190)2 1 2u x x  and 

( , ,190)3 1 2u x x ; the similar simulations are repro-

duced  for 0.0153g =  (figures (f), (g), (h), (i), (j)), 
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0.0233g =  (figures (k), (l), (m), (n), (o)) and 

0.0253g =  (figures (p), (q), (r), (s), (t)).  For the 

value 0.0253g = , there is the synchronization of 

three “neurons" 

The following research focuses on the minimal 

values of coupling strength ng  to observe a phe-

nomenon of synchronization between n subsystems 

modeling the function of  neuron network. 

 From the above result, in the case of three nonlin-

early coupled neurons, for the coupling strength 

over or equal to 0.0253g = , these neurons have a 

synchronous behavior (Figure 4). By doing similar-

ly for the complete networks of nonlinearly identi-

cal coupled neurons, the values of coupling 

strength according to the number of neurons n  are 

reported in Table 1. 

Table 1. The minimal coupling strength necessary to observe the synchronization of n nonlinearly 

coupled neurons 

n    2 3 4 5 6 

gn    0.042 0.025 0.017 0.014 0.012 

n  7 8 9 10 11 12 13 

gn  0.01 0.0094 0.009 0.0082 0.0078 0.0076 0.0072 

n  14 15 16 17 18 19 20 

gn  0.0069 0.0068 0.0065 0.0063 0.0062 0.0061 0.006 

Following these numerical experiments, it is easy 

to see that the coupling strength required for ob-

serving the synchronization of n neurons depends 

on the number of neurons. Indeed, the points in 

Figure 5 represent the coupling strength of syn-

chronization according to the number of neurons in 

complete network, and the red curve represents the 

representative one 

0.038
0.004,

1
gn

n
= +

−
 

where, n is the number of neurons in network. 

Thus, the coupling strength necessary to obtain the 

synchronization of n neurons follows this law. 

 

Figure 5. The evolution of the coupling strength  

ng  for which the synchronization of n  neurons 

takes place according to the number n  nonline-

arly coupled neurons in complete network and 

it follows the law  
0.038
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n
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4. CONCLUSIONS 

This study gave the sufficient condition on the 

coupling strength to achieve the synchronization in 

complete network of n coupled systems of reac-

tion-diffusion on Fitzhugh-Nagumo type. From 

Theorem 1, there is the result 

1 exp( ( ))

1

M N syn
gn

n

 + − −


−

 
 

 which shows that 

the bigger the value of n is, the smaller the ng is. 

Numerically, it is seen that the synchronization is 

stable when the coupling strength exceeded to cer-

tain threshold and depends on the number of "neu-

rons" in graphs. The bigger the number of "neu-

rons" is, the easier the phenomenon of synchroni-

zation will be obtained. Then, a compromise be-

tween the theoretical and numerical results can be 

reached. In addition, it is necessary to conduct fur-

ther studies on the different synchronization re-

gimes in free network coupled by chemical syn-

apse. 
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