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Unmanned Aerial Vehicles (UAVs) have recently gained popularity due to 

their simplicity and effectiveness in traffic monitoring and potential for 

rapid delivery, and rescue support. Moreover, UAVs have been employed 

as a supporting machine in data collection for object detection tasks, in 

particular vehicle detection tasks in object recognition. Although vehicle 

identification is a tough problem, many of its challenges have recently been 

overcome by two-stage approaches such as Faster R-CNN, one of the most 

successful vehicle detectors. However, many critical problems still remain, 

such as partial occlusion, object truncation, object multi-angle rotation, 

etc. In this paper, we combine the Generic RoI Extractor (GroIE) method 

with Dynamic R-CNN and Side-aware Boundary Localization (SABL) for 

both testing and evaluation on a challenging dataset XDUAV. Overall, 

4344 images in the XDUAV dataset, divided into 3 subsets: 3485 training 

images, 869 testing images and 869 validating images were used. These 

consisted of six object classes: 33841 “car”; 2690 “bus”; 2848 “truck”; 

173 “tanker”; 6656 “motor” and 2024 “bicycle”. With the ResNet-101 

backbone, our approach showed competitive results compared with the 

original GRoIE method, surpassed by 1.2% on mAP score and by about 

2% on most classes AP scores, except for the class 'tanker'. 
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1. INTRODUCTION 

The introduction and potential of Unmanned Aerial 

Vehicles (UAVs) have sparked a surge in the object 

detection research field, particularly in aerial image 

detection. There are a large volume images or videos 

captured by drone detection supplied as UAV 

datasets every year, which poses numerous 

challenges for  object detection. Some of the most 

crucial problems that can be listed are 

unrecognizable objects due to trees or building 

obstruction, confusion between objects, or the 

unbalanced number of instances in different classes. 

These difficulties decrease the quality of object 

detectors significantly. 

However, recent studies that have addressed drone 

detection enhance the “vision” of the computer to 

recognize and detect objects effectively. For two-

stage methods, one of the approaches to improve the 

robustness and accuracy of detectors is to increase 

the quality of Regions of Interest (RoI). Moreover, 

most drone detection problems are instance 

segmentation, where the output is a set of 

rectangular bounding boxes representing the 

localization and classification of each object 

sample. In addition to RoI improvement, the 

improvement of the bounding box regressor also 

helps overcome the challenges of UAV detection. 

Therefore, many state-of-the-art modules propose 
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enhanced RoI modules or enhanced bounding-box 

schemes, such as Cascade R-CNN (Cai et al., 2018), 

and VistrongerDET (Junfeng et al., 2021). 

This paper investigates and evaluates the 

combination of applying GRoIE method, Dynamic 

R-CNN, and Side-aware Boundary Localization 

with different backbones on the XDUAV dataset.  

2. RELATED WORKS 

Two-stage method: With the huge 

accomplishments of the R-CNN family, two-stage 

modules have grown in popularity. Object detection 

and object recognition are the two fundamental 

responsibilities of two-stage detectors. Specifically, 

R-CNN (Girshick et al., 2014) module proposes 

regions of interest within the Selective Search 

scheme at the beginning, and thereafter the support 

vector machine (SVM) classifies these proposal 

regions. After R-CNN, the author of the R-CNN 

method continued to develop the Fast R-CNN 

(Girshickt et al., 2015) inspired by Spatial Pyramid 

Pooling Network (SPPNet) (He et al., 2015). Instead 

of the Selective Search at the beginning, Fast R-

CNN integrated a convolution network for all input 

images. Although the idea of Fast R-CNN is based 

on SPPNet, this module differs from the multi-level 

spatial pyramid pooling layer-SPPNet in utilizing 

the RoI Pooling as a single-level SPP layer. In 

addition, the bounding box regressor within Fast R-

CNN was adjusted according to the outputs of the 

softmax and linear layers, which improved the 

model's speed and surpassed the SPPNet. 

Continuing the great success of R-CNN and Fast R-

CNN, Faster R-CNN (Ren et al., 2015) continues to 

show outstanding results in object detection. Faster 

R-CNN stands out better than its predecessor with 

the Region Proposal Network (RPN). RPN produces 

regions of interest from feature maps convolved by 

a convolution network. The output of RPN is 

divided into two components: binary object 

classification, which classifies objects from the 

background and bounding box regression, which 

determines the confident regions of objects; 

therefore, RPN comprises two loss functions.  

Moreover, for the image segmentation task, an 

extension of Faster R-CNN called Mask R-CNN 

(He et al., 2017) was proposed. The overview of 

image segmentation is that a module will split 

digital images into many image segments, which 

can reduce image information to something more 

relevant and easier to study. In addition, there are 

two kinds of image segmentation: semantic 

segmentation and instance segmentation. 

Specifically, in semantic segmentation, each pixel is 

distributed into a set. In fact, semantic segmentation 

determines or classifies objects into only one class 

at the pixel level. For instance, segmentation is the 

object determination that separates explicit objects. 

In conclusion, Mask R-CNN is introduced to solve 

image segmentation tasks with object masks as 

output features. 

Backbones: Besides the significant improvement of 

the two-stage module, backbone architecture 

received enormous upgrade from the basic 

convolutional network. To have deep training with 

the convolutional neural network, a residual 

network (ResNet) (He et al., 2016) was built to solve 

this problem. Before ResNet, there was a 

challenging problem in deep learning, called 

vanishing gradient. With the help of “Skip 

Connections” between residual blocks, ResNet 

developed a successful deep training model. 

Although ResNet brought many colorful results in 

object detection and became one of the most 

effective backbones for models, for a variety of 

different datasets, there were still a large number of 

hyper-parameters that need adjusting. Thus, 

ResNeXt was introduced by Xie et al. (2017) as an 

upgrade to ResNet, which reduced the number of 

required hyperparameters from ResNet thanks to the 

new dimension called “cardinality”. Cardinality 

presents the complexity of transformations. In 

addition, another approach based on ResNet entitled  

ResNeSt (Zhang et al., 2020b) was demonstrated to 

extract more information about cross-channel that 

ResNet could not achieve. Inspired by ResNeXt, 

ResNeSt also integrated cardinality within its 

structure. The difference was the combination of 

Attention of Squeez and Excitation Net together to 

formulate a Split-Attention model, which helped 

boost the interdependencies of channels without 

additional computational cost.  

3. METHODOLOGY 

3.1. Experimental Object Detection Methods 

3.1.1. GRoIE 

Generic RoI Extractor (Rossi et al., 2021), also 

called GRoIE, is an improvement on the existing 

RoI extractors that use only one (the best) layer from 

FPN. The GRoIE approach overcomes the 

constraint of standard RoI extractors by leveraging 

all FPN layers since PANet is intuitively based 

research with each layer retaining valuable 

information (Lin et al.,2018) Additionally, the 

GRoIE method can be applied in every two-stage 
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architecture, which performs object detection or 

instance segmentation.  

There are four primary parts that correspond to the 

four modules: RoI pooling, pre-processing, 

aggregation, and post-processing. The RoI pooler 

module, RoI Align (He et al.,2017), is utilized in the 

first module to pool from the region formed by the 

RPN. The target of this module is to obtain a fixed-

size RoI. The pre-processing module and the 

aggregating module then turn these features into a 

single FPN by summation. Finally, the post-

processing module is utilized to obtain global 

features and omit redundant information. 

 

Figure  1. Generic RoI Extraction framework  

(1) RoI Pooler. (2) Preprocessing. (3) Aggregation 

function. (4) Post-processing (Rossi et al., 2021) 

3.1.2. Dynamic R-CNN 

 

Figure  2. The overall pipeline of the proposed 

Dynamic R-CNN  

(Zhang et al., 2020a) 

Zhang et al. (2020a) introduced Dynamic R-CNN as 

a two-stage detector which helps achieve high-

quality object detection. There are two main 

enhancements in Dynamic RCNN compared to its 

predecessor: Dynamic Label Assignment (DLA) 

and Dynamic SmoothL1 Loss (DSL). Based on the 

standard proposal classification method in Faster R-

CNN, Dynamic Label Assignment deploys a 

dynamic IoU threshold instead, which can be 

formulated as follows:   

𝑙𝑎𝑏𝑒𝑙 = {
1, 𝑖𝑓 max 𝐼𝑜𝑈(𝑏, 𝐺) ≥ 𝑇𝑛𝑜𝑤

0, 𝑖𝑓 max 𝐼𝑜𝑈(𝑏, 𝐺) < 𝑇𝑛𝑜𝑤
 

The Dynamic IoU threshold allows for teh gradual 

increase in the IoU threshold to achieve the highest 

possible IoU threshold, which lets the module 

achieve a high-quality object detection level. In 

addition, increasing IoU directly at the beginning 

can vanish positive samples. Another enhancement 

of Dynamic R-CNN is in the SmoothL1 Loss, the 

authors proposed to use hyper-parameter 𝛽 in a 

changeable way, which means that 𝛽 will be 

transformed to 𝛽𝑛𝑜𝑤 which is adjusted automatically 

in every iteration just like the updated mechanism of 

𝑇𝑛𝑜𝑤. However, the difference between the adoption 

of 𝛽𝑛𝑜𝑤 and 𝑇𝑛𝑜𝑤 is that 𝛽𝑛𝑜𝑤 receives the median 

value in each batch instead of the mean value one 

like 𝑇𝑛𝑜𝑤. 

3.1.3. Side-Aware Boundary Localization 

 

Figure  3. The pipeline of Side-Aware Boundary 

Localization (SABL) for the two-stage detector  

(Wang et al.,2020) 

Side-aware Boundary Localization (SABL) (Wang 

et al., 2020) is a method that is an enhancement on 

the standard bounding box regression branch to 

resolve the existing displacements with large 

variance problems. SABL can be integrated into 

every one-stage or two-stage detection model. 

Moreover, in SABL, (Wang et al., (2020proposed a 

new object localization scheme that has three main 

parts in the framework: side-aware feature 

extraction, boundary localization with bucketing 

and bucketing-guided rescoring. 

To extract side-aware features, from the features of 

𝑘 × 𝑘 RoI maps, providing side-aware features as 

𝐹𝑙𝑒𝑓𝑡 , 𝐹𝑟𝑖𝑔ℎ𝑡 , 𝐹𝑡𝑜𝑝 and 𝐹𝑑𝑜𝑤𝑛. These features are 

utilized to obtain boundaries at each side of the 

bounding box, which are nearest the ground-truth 

scale respectively. In the final step, rescoring these 

bounding boxes occurs, to obtain the bounding 

boxes that have high classification confidence and 

accurate localization. 
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3.2. Experimental Loss Functions 

3.2.1. Cross-Entropy Loss 

Overall, Cross-Entropy loss, which is based on the 

theory of entropy, is a metric or a loss function used 

for evaluating the robustness of the classification 

model. Specifically, Cross-Entropy loss defines the 

distance of differences between two probability 

distributions of the classification model and the 

predicted distribution, the lower of cross-entropy 

loss, the better the model demonstrates. The Cross-

Entropy loss can be demonstrated in the formula as: 

𝐿𝐶𝐸 = − ∑ 𝑦𝑖 ln(𝑝𝑖)

𝑛

𝑖=1

 

where 𝑛 stands for the number of classes, 𝑦𝑖 is the 

label (1 for object, 0 otherwise) and 𝑝𝑖 is the 

probability of the 𝑖𝑡ℎ class. 

3.2.2. Focal Loss 

Focal Loss (LIN et al.,2020) is a loss function 

improved from Cross-Entropy Loss (CE) that 

assigns more weights to difficult objects or 

misclassified samples and reduces the weight of 

easy examples to reduce the risk of the imbalance 

problem. The formula of focal-loss function is 

demonstrated as: 

𝐿𝐹𝐿 = − ∑ 𝑦𝑖(1 − 𝑝𝑖)
𝛾

𝑛

𝑖

ln(𝑝𝑖) 

The difference between Focal-Loss and Cross-

Entropy loss is the appearance of (1 − 𝑝𝑖)
𝛾, hich 

affects both loss function and gradient descent. 

With (1 − 𝑝𝑖)
𝛾, the easily classified examples, 

which usually has 𝑝𝑖 close to 1, will have less 

influence on the loss, while the focus on difficult 

samples is improved. 

3.3. The hybrid approach of combining GroIE 

with Dynamic R-CNN and SABL 

To enhance the evaluation of object detection tasks 

in aerial images, a hybrid model combining the 

GRoIE and Side-Aware Boundary Localization 

modules is presented so as to increase object 

detection performance in aerial images. After that, 

the hybrid model is trained via a Dynamic strategy 

(Dynamic R-CNN).  

Instead of using the RoI Pooling operation to extract 

regions of interest from only one feature layer of the 

Feature Pyramid Network, the GRoIE module was 

employed to take advantages of RoI features from 

all FPN layers, leading to better performance. With 

extracted RoI features, the SABL mechanism 

handles the regression task, which predicts the exact 

coordinates where the objects localize on an image. 

SABL was designed to regress the bounding boxes' 

offsets via boundary features (left, right, top, down) 

of RoI features, which can be effective for objects 

which various sizes in aerial images.  

Finally, the dynamic strategy was applied to 

effectively train the Region Proposal Network by 

adjusting the IoU threshold to select the highest-

quality background and foreground samples. This 

adjustment led to a better RPN network, proposing 

more effective regions of interest. 

By default, ResNet-101 was used as the backbone 

network to extract features of input images. 

However, the intensive experiments wereconducted 

on two backbones: ResNeXt-101 and ResNeSt-101, 

to analyze and find the best suitable for the proposed 

hybrid model to detect objects in aerial images. 

Training the Region Proposal Network used Cross-

Entropy and Focal loss functions, the effectiveness 

of which was evaluated on the hybrid model. The 

pipeline of the hybrid model is demonstrated in 

Figure 4. 

 

Figure  4. The pipeline of GRoIE combined with Dynamic RCNN and SABL 
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4. EXPERIMENT RESULTS  

4.1. XDUAV dataset 

XDUAV (Xie et al., 2018) was chosen as the 

benchmark for experiments. This dataset contains 

4344 images include of 3485 training images, 869 

testing images and 869 validating images, which 

were captured by quadcopter DJI Phantom 2 in a 

part of the city and countryside areas of Xi’an, 

China. The XDUAV dataset contains six classes, 

namely: “car”, “bus”, “truck”, “tanker”, “motor” 

and “bicycle”. The class “car” has the most 

occurrence. The number of frequencies of each 

object class in the dataset is shown in Table 1.  

Images have a resolution of 1920x1080. In the 

XDUAV dataset, the high number of small vehicles 

brings some of the most crucial problems such as 

occlusion, truncation and multiple changes in object 

orientation angle. Some example illustrations of the 

XDUAV dataset are shown in Figure 5. 

4.2. Implementation Detail 

The experiment was implemented on Google Colab 

Pro’s environment. It performs on Nvidia's Tesla K8 

GPU with 12GB of GDDR5 VRAM, Intel Xeon 

Processor with 2 cores @2.20GHz and 13 GB 

RAM, and the default configuration is provided by 

MMDetection framework 2.10.0. Experiments were 

mainly conducted on three backbone architectures: 

ResNet-101, ResNeXt-101 and ResNeSt-101 for 

training the GRoIE combined with Dynamic R-

CNN and SABL in 24 epochs. Other methods with 

the same backbones were also trained on the same 

dataset for comparison with our approach. 

4.3. Evaluation 

The main metrics for evaluation of the approaches 

on the XDUAV dataset are AP scores.  

Specifically, AP score calculation is performed on 

many different levels of IoU threshold which range 

from 50% to 95% with intermittent steps of 5%.  

Furthermore, AP50 and AP75 are calculated 

corresponding with the high thresholds of 50% and 

75%. 

Table 1. The frequency of each object class within the XDUAV dataset 

XDUAV 

Dataset 

Category Car Bus Truck Motor Bicycle Tanker 

Train 20108 1681 1608 4005 1193 110 

Test 6956 573 550 1378 426 35 

Val 6777 594 532 1273 405 28 

Total 33841 2690 2848 6656 2024 173 

 

Figure  5. Sample images from the XDUAV dataset 
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4.4. Results Analysis 

Firstly, the demonstration of the GRoIE method was 

divided into two versions: (1) using Cross-Entropy 

algorithm (CE) as Cross-Entropy loss in bounding 

box function on ResNet-50 and (2) using Focal-Loss 

(FL). The purpose was to compare the 

compatibilities of two loss functions on the 

XDUAV dataset. As the experimental result shows 

in Table 2, using Cross-Entropy brought higher 

scores in all classes of the dataset, as well as higher 

mAP scores than Focal-Loss. Specifically, the result 

of mAP for CE was 70%, which was 1.2 times 

higher than using FL. Moreover, the AP scores of all 

object classes in the dataset also improved by 1% 

when using CE compared to using FL. Intuitively, it 

is shown that Focal-Loss was not suitable for two-

stage models, which is correct in this case due to the 

fact that our approach is an integration of Faster R-

CNN. Figure 6, shows the comparison between the 

Cross-Entropy loss and the Focal-Loss. 

In the second experiment, comparing our 

experimental approach and Faster R-CNN with 

GRoIE as RoI extractor on the same backbone, 

ResNet-101. Table 3 highlights that our approach 

achieved higher mAP and mAP75 by 1% compared 

with the default configuration of Faster R-CNN Our 

approached increased the mAP scores significantly 

from 82% to 86% for class “bus” and from 52% to 

55% for class “motor”. 

 However, the mAP scores of class “tanker” and 

“bicycle” decreased slightly by 1%. This was due to 

the adjustment of the IoU threshold in Dynamic R-

CNN, with the high IoU threshold, the number of 

regions of interest was minimized, which let the 

minority of class such as “tanker” or ”bicycle” 

showing decreased detection. Generally, our 

approach showed an  improved result in which the 

mAP scores reached 71% compared to the 70% 

obtained from default faster R-CNN with GRoIE. 

The visualization in figure 7 shows the increase of 

our approach’s result compared to “Faster R-CNN + 

GRoIE” method. 

Finally, as shown in Table 4, three different 

backbones including ResNet-101, ResNeXt-101, 

ResNeSt-101 were integrated into our approach. 

Overall, 4, the highest mAP score belonged to the 

backbone ResNeSt-101, at 72%. In addition, the 

mAP50 and mAP75 scores of ResNeSt-101 

experiment have similar results to others at 93% and 

84% respectively, except for the mAP75 scores in 

ResNet-101 at just only 83%. However, the AP 

scores of class “tanker” in ResNeSt-101 task were 

lowered by 1% than ResNeXt-101 experiment. This 

can be explained by the face that the ResNeSt 

architecture does not effectively support classes 

which have a lack of data. However, with backbone 

ResNeSt-101, other classes were slightly improved. 

The experiment is visualized in the form of  

Figure 8. 

Table 2. The result of GRoIE method in two styles of Cross-Entropy loss: using Cross-Entropy 

algorithm (CE) or Focal Loss (FL) 

Loss 

function 

AP 
mAP mAP50 mAP75 

car truck bus motor bicycle tanker 

FL 0.79 0.80 0.80 0.49 0.37 0.23 0.58 0.79 0.67 

CE 0.80 0.81 0.82 0.55 0.46 0.46 0.70 0.93 0.82 

Table 3. The result between our approach and Faster RCNN+GRoIE at the same of epoch and backbone 

Method Loss function 
AP 

mAP mAP50 mAP75 
car truck bus motor bicycle tanker 

FasterRCNN+GRoIE ResNet-101 0.80 0.82 0.82 0.52 0.48 0.76 0.70 0.93 0.82 

Our approach ResNet-101 0.82 0.83 0.86 0.55 0.47 0.75 0.71 0.93 0.83 

Table 4. The result of three backbone experiment on our approach at the same of epoch. 

Loss function 
AP 

mAP mAP50 mAP75 
car truck bus motor bicycle tanker 

ResNet-101 0.82 0.83 0.85 0.55 0.47 0.74 0.71 0.93 0.83 

ResNeXt-101 0.82 0.83 0.85 0.54 0.50 0.76 0.72 0.93 0.84 

ResNeSt-101 0.83 0.83 0.85 0.56 0.50 0.75 0.72 0.93 0.84 
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Cross-entropy experiment Focal Loss experiment 

Figure  6. Visualization of the differences between Cross-Entropy experiment and Focal Loss 

experiment. On the left corner of Cross-Entropy experiment, the car was defined exactly, while it was 

undetected in the Focal Loss experiment 

 

Our approach Faster R-CNN + GRoIE 

Figure  7. Visualization of the differences between our approach and faster R-CNN with GRoIE. The 

orange truck at the below of image had an AP score at 0.94 in our approach, while it was only 0.42 in 

Faster R-CNN with GRoIE 

 

ResNeSt-101 ResNeXt-101 
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ResNet-101 

Figure  8. Visualization of the differences between three backbones: ResNet-101, ResNeXt-101 and 

ResNeSt-101 

5. CONCLUSION 

In this experiment, a significant improvement in the 

combination is anticipated through the implemented 

approach. Following rigorous testing and 

evaluation, it was discovered that with ResNeSt-101 

as the foundation, the mAP score reached 72%, and 

the mAP50 and mAP75 improved as much as 

ResNeXt-101. Nevertheless, in addition to 

improving AP results in other classes, tanker AP 

scores decreased slightly from 76% to 75% when 

compared to ResNeXt-101.  

The quality of detection findings will be improved 

in the future. 
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