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The hit problem, set up by F. Peterson, finds a minimal set of generators 

for the polynomial algebra  𝑃(𝑠) = 𝔽2[𝑥1, 𝑥2, … , 𝑥𝑠], as a module over the 

mod-2 Steenrod algebra. We study the extended hit problem for the 

cohomology of the classifying space 𝐵𝐸𝑠 over field 𝔽3, 𝑃(𝑠) =

𝐻∗𝐵(ℝ𝑃∞)𝑠 = 𝐸(𝑥1, 𝑥2, … , 𝑥𝑠)⨂𝔽𝑝[𝑦1, 𝑦2, … , 𝑦𝑠], with 𝑠 = 3 at degrees d ≤

10.  Keywords 
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1. INTRODUCTION 

Let 𝑝 be a prime number and 𝐸𝑠 be the 𝑠-dimension 

𝔽𝑝-vector space. The cohomology of the classifying 

space 𝐵𝐸𝑠 over the field 𝔽𝑝 is defined by  

𝑃(𝑠) = 𝐻∗𝐵𝐸𝑠 = 𝐸(𝑥1, 𝑥2, … , 𝑥𝑠)⨂𝔽𝑝[𝑦1, 𝑦2, … , 𝑦𝑠], 

as a graded left module over the mod p Steenrod 

algebra 𝒜𝑝. The mod p Steenrod algebra 𝒜𝑝 acts by 

the composition of linear operators on 𝑃(𝑠) and the 

action of the Steenrod power 𝒫𝑖, (𝑖 ≥ 0) and the 

Bockstein operation 𝛽 is determined by the Cartan 

formula and its elementary properties (Steenrod, 

1962). 

Finding a minimal set of generators of 𝑃(𝑠) was 

initiated by Peterson (1987). This problem is called 

the hit problem. 𝒜+ denotes the augmentation ideal 

in 𝒜. The quotient of the left 𝒜𝑝-module 𝑃(𝑠) by 

the hit elements in 𝒜+𝑃(𝑠) is denoted by 𝑄𝑃(𝑠) =
𝑃(𝑠)/𝒜+𝑃(𝑠) = 𝔽𝑝 ⊗𝒜𝑝

𝑃(𝑠), which is the set of 

all elements 𝑓, called hit element, in 𝑃(𝑠) 

represented in the form 

𝑓 = ∑ 𝛾𝑖𝛽
𝜀1𝒫𝑖𝛽𝜀2(𝑓𝑖)𝑖≥0 , 

where 𝑓𝑖 ∈ 𝑃𝑑−[2(𝑝−1)𝑖+𝜀1+𝜀2](𝑠), 𝛾𝑖 ∈ 𝔽𝑝, 𝜀1, 𝜀2 ∈
{0,1}. In other words, we want to find a basis of the 

𝔽𝑝-vector space 𝑄𝑃(𝑠).  

Immediately after being suggested by Peterson 

(1987, 1989), the hit problem was studied by 

numerous authors such as Wood (1989); Singer 

(1989); and Priddy (1990). The vector space 𝑄𝑃(𝑠) 

over field 𝔽2 was explicitly calculated by Peterson 

(1987) for 𝑠 = 1, 2, by Kameko (1990) for 𝑠 = 3. 

The case 𝑠 = 4 has been treated by Kameko (2003) 

and Sum (2007). Sum (2014) also explicitly 

calculated the hit problem of 5 variables at some 

generic degrees. 

Many respectable results on the hit problem have 

been studied by numerous authors over the field 𝔽2 

for over three decades (Singer, 1989, 1991; Wood, 

1989, 1992, 2000; Boardman, 1993; Hung & 

Peterson, 1995, 1998; Minami, 1999; Giambalvo & 

Peterson, 2001; Hung and Nam, 2001a, 2001b; 

Janfada & Wood, 2002; Bruner et al., 2005; Hung, 
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2005; Ha, 2007; Sum, 2007, 2013, 2014, 2023; 

Mothebe, 2013; Phuc, 2020, 2022, 2023; Tin, 

2022a, 2022b). Meanwhile, little is known about the 

hit problem on the field 𝔽𝑝, where 𝑝 is an odd prime. 

With an odd prime 𝑝, Crossley (1996, 1999) 

calculated the dimensions of 𝑄𝑃(𝑠) at some generic 

degrees for the case 𝑠 = 1, and 𝑠 = 2. In this paper, 

the author determines the hit elements of 𝑃(3) with 

𝑠 = 3 at degrees 𝑑 ≤ 10. 

The paper is organized as follows. Section 2 

provides preliminary results of the hit problem and 

Steenrod algebra. We calculate in Section 3 the 

actions of the admissible basis of the Steenrod 

algebra 𝒜3 on the elements in 𝑃(3) used to check 

whether or not these elements are hit. Finally, 

Section 4 discusses the achieved results and 

provides some open problems for further research. 

2. PRELIMINARIES 

In this section, we present some basic results about 

Steenrod algebra studied by Steenrod (1962) and 

Minami (1999) for the case of an odd prime 𝑝 with 

more specific results for the case 𝑝 = 3. 

2.1. Steenrod algebra over the field 𝔽𝟑 

Let 𝔽3 be a field including 3 elements {0,1,2} and 

𝑋 be a topological space over the field 𝔽3. For all 

integers 𝑖 ≥ 0 and 𝑛 ≥ 0, the Steenrod power is a 

homomorphism defined by 

𝒫𝑖: 𝐻𝑛(𝑋, 𝔽3) → 𝐻𝑛+4𝑖(𝑋, 𝔽3). 

The homomorphism 𝛽: 𝐻𝑛(𝑋, ℤ3) → 𝐻𝑛+1(𝑋, ℤ3) 

is called the Bock-stein coboundary operator 

associated with the short exact coefficient sequence 

0 → ℤ3 → ℤ32 → ℤ3 → 0. 

We define the mod 3 Steenrod algebra 𝒜3 to be the 

graded associative algebra generated by the 

elements 𝒫𝑖 of degree 4𝑖 and 𝛽 of degree 1, subject 

to 𝛽2=0, 𝒫0 = 1, and the Adem relations  

𝒫𝑖𝒫𝑗 = ∑ (−1)𝑖+𝑡[𝑖/3]
𝑡=0 (

2(𝑗 − 𝑡) − 1
𝑖 − 3𝑡

) 𝒫𝑖+𝑗−𝑡𝒫𝑡, 

for 𝑖 < 3𝑗, and 

𝒫𝑖𝛽𝒫𝑗 = ∑(−1)𝑖+𝑡

[𝑖/3]

𝑡=0

(
2(𝑗 − 𝑡)

𝑖 − 3𝑡
) 𝛽𝒫𝑖+𝑗−𝑡𝒫𝑡  

− ∑ (−1)𝑖−1+𝑡[(𝑖−1)/3]
𝑡=0 (

2(𝑗 − 𝑡) − 1
𝑖 − 3𝑡 − 1

) 𝒫𝑖+𝑗−𝑡𝛽𝒫𝑡, 

for 𝑖 ≤ 3𝑗. 

Let (ℝ𝑃∞)3 be a 3-dimensional 𝔽3-infinite real 

projective space. It is well-known that the mod 3 

cohomology of the classifying space 𝐵(ℝ𝑃∞)3 is 

given by 

𝑃(3) = 𝐻∗𝐵(ℝ𝑃∞)3 =

𝐸(𝑥1, 𝑥2, 𝑥3)⨂𝔽3[𝑦1 , 𝑦2, 𝑦3], 

where 𝐸(𝑥1, 𝑥2, 𝑥3) is a notation for the exterior 

algebra over 𝔽3 generated by variables 𝑥1, 𝑥2, 𝑥3 for 

degrees 1 and 𝔽3[𝑦1, 𝑦2, 𝑦3] is a notation for the 

polynomial algebra over 𝔽3 generated by variables 

𝑦1, 𝑦2, 𝑦3 for degrees 2.  

Then, 

𝑃(3) = 𝑆𝑝{𝑥1
𝜀1𝑦1

𝑖1𝑥2
𝜀2𝑦2

𝑖2𝑥3
𝜀3𝑦3

𝑖3 , 𝜀𝑗 ∈ {0,1}, 𝑖𝑗 ≥ 0}, 

is a module over the mod 3 Steenrod algebra 𝒜3. 

The action of 𝒜3 on 𝑃(3)  is explicitly given by  

𝒫𝑖(𝑦𝑗) = {

𝑦𝑗 , 𝑖 = 0

𝑦𝑗
3, 𝑖 = 1

0, 𝑖 > 1

. 

The Cartan formula is 

𝒫𝑘(𝑦𝑖𝑦𝑗) = ∑ 𝒫𝑘−𝑡(𝑦𝑖)𝒫𝑡(𝑦𝑗)𝑘
𝑡=0 , 

and 𝛽(𝑥𝑖𝑦𝑗) = 𝛽(𝑥𝑖)𝑦𝑗 + (−1)|𝑥𝑖|𝑥𝑖𝛽(𝑦𝑗). 

Moreover,  

1) 𝒫𝑖(𝑥𝑗) = {
𝑥𝑗 , 𝑖 = 0

0, 𝑖 > 0
, 

2) 𝒫𝑖(𝑦𝑗
𝑘) = (

𝑘
𝑖

) 𝑦𝑗
𝑘+2𝑖, 

3) 𝒫𝑖 (𝑦𝑗
3𝑘

) = {

𝑦𝑗
3𝑘

, 𝑖 = 0

𝑦𝑗
3𝑘+1

, 𝑖 = 3𝑘

0, 𝑖 ≠ 0 𝑜𝑟 3𝑘

, 

4) 𝛽(𝑥𝑖) = 𝑦𝑖, and  𝛽(𝑦𝑗) = 0. 

The admissible basis of degrees 𝑑 ≤ 10 of the mod 

3 Steenrod algebra 𝒜3: 𝒫0 (degree 0); 𝛽 (degree 1); 

𝒫1 (degree 4); 𝛽𝒫1, 𝒫1𝛽 (degree 5); 𝛽𝒫1𝛽 (degree 

6); 𝒫2 (degree 8); 𝛽𝒫2, 𝒫2𝛽 (degree 9); 𝛽𝒫2𝛽 

(degree 10). 

2.2. The hit problem 

Definition 2.1 Let 𝑃𝑑(3) be the vector space of 

homogeneous polynomials of degree 𝑑 
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𝑃𝑑(3) = 𝑆𝑝 {∏ 𝑥
𝑗

𝜀𝑗
𝑦

𝑗

𝑖𝑗

3

𝑗=1

, 𝜀𝑗

∈ {0,1}, ∑(𝜀𝑗 + 2𝑖𝑗) =

3

𝑗=1

𝑑}. 

Then, 𝑃𝑑(3) is a subspace of 𝑃(3). Since 𝑃(3) is 

graded by integers 𝑑 ≥ 0, therefore  

𝑃(3) = ∑ 𝑃𝑑(3).

𝑑≥0

 

Denote by 𝑄𝑃𝑑(3) the subspace of 𝑄𝑃(3) 

comprising all the classes represented by the 

elements in 𝑃𝑑(3).  

Definition 2.2 A homogeneous polynomial 𝑓 ∈
𝑃𝑑(3) in 𝒜-module 𝑃(𝑠) is hit if it satisfies a hit 

equation 

𝑓 = ∑ 𝛾𝑖𝛽
𝜀1𝒫𝑖

𝑖>0 𝛽𝜀2(𝑓𝑖),                  (1) 

where the homogeneous elements 𝑓𝑖 in 𝑃(𝑠) have 

gradings strictly less than 𝑑 − [2(𝑝 − 1)𝑖 + 𝜀1 +
𝜀2], denoted by  𝑓𝑖 ∈ 𝑃𝑑−[4𝑖+𝜀1+𝜀2] (3), 𝛾𝑖 ∈ 𝔽3, 

𝜀𝑗 ∈ {0,1}. 

Remark. The decomposition of 𝑓 in (1) is not 

unique. 

3. RESULTS AND DISCUSSIONS  

3.1. The action of an admissible monomials of 

degrees  𝒅 ≤ 𝟏𝟎 in 𝓐𝟑 on 𝑷𝟑 

For all 𝑓 ∈ 𝑃(3), 𝑓 has the form 

𝑓 = 𝑥1
𝜀1𝑦1

𝑖1𝑥2
𝜀2𝑦2

𝑖2𝑥3
𝜀3𝑦3

𝑖3 , 𝜀𝑗 ∈ {0,1}, 𝑖𝑗 ≥ 0. 

Since all the elements in the admissible basis of 𝒜3 

have the form 𝛽𝜖1𝒫𝑖1𝛽𝜖2𝒫𝑖2 ⋯ 𝛽𝜖𝑠𝒫𝑖𝑠 , where 𝜖𝑗 ∈

{0,1}, 𝑖𝑗 ≥ 3𝑖𝑗+1 + 𝜖𝑗. We only need to calculate the 

action of 𝛽 and 𝒫𝑖 on the elements 𝑓 of 𝑃(3). 

By direct calculation, we have the following results   

𝛽(𝑓) = 𝛽(𝑥1
𝜀1)𝑦1

𝑖1𝑥2
𝜀2𝑦2

𝑖2𝑥3
𝜀3𝑦3

𝑖3  

+(−1)𝜀1𝑥1
𝜀1𝑦1

𝑖1𝛽(𝑥2
𝜀2)𝑦2

𝑖2𝑥3
𝜀3𝑦3

𝑖3  

                  +(−1)𝜀1+𝜀2𝑥1
𝜀1𝑦1

𝑖1𝑥2
𝜀2𝑦2

𝑖2𝛽(𝑥3
𝜀3)𝑦3

𝑖3 , 

where 𝛽 (𝑥
𝑗

𝜀𝑗
) = {

𝑦𝑗 , 𝜀𝑗 = 1

0, 𝜀𝑗 = 0
, 𝑗 = 1,2,3. 

𝒫𝑖(𝑓) =

∑ 𝛼𝑖𝑥1
𝜀1𝑦1

𝑖1+2𝑘1𝑥2
𝜀2𝑦2

𝑖2+2𝑘2𝑥3
𝜀3𝑦3

𝑖3+2𝑘3
𝑘1+𝑘2+𝑘3=𝑖 , 

where 𝛼𝑖 = (
𝑖1

𝑘1
) (

𝑖2

𝑘2
) (

𝑖3

𝑘3
) mod 3. 

3.2. Hit elements of 𝑷(𝟑) at degrees 𝒅 ≤ 𝟏𝟎 

For all 𝑓 ∈ 𝑃𝑑(3), 𝑓 has the form 

𝑓 = 𝑥1
𝜀1𝑦1

𝑖1𝑥2
𝜀2𝑦2

𝑖2𝑥3
𝜀3𝑦3

𝑖3 , 

where 𝜀𝑗 ∈ {0,1}, 𝑖𝑗 ≥ 0, ∑ (𝜀𝑗 + 2𝑖𝑗) =3
𝑗=1 𝑑. 

Because deg𝑥𝑖 = 1 and deg𝑦𝑖 = 2, we have that 

 if 𝑑 is odd, (𝜀1, 𝜀2, 𝜀3) can only be a permutation of 
(1,0,0) or (1,1,1), or if 𝑑 is even, (𝜀1, 𝜀2, 𝜀3) can 

only be a permutation of (0,0,0) or (1,1,0), 

and (𝑖1, 𝑖2, 𝑖3) can only be a permutation of triples 

that satisfy 𝑖1 + 𝑖2 + 𝑖3 = [𝑑 − (𝜀1 + 𝜀2 + 𝜀3)]/2. 

Then, the number of generators of 𝑃𝑑(3) is 

calculated as in table 1 

Table 1. The number of elements of 𝑷𝒅(𝟑) 

Degree 𝑑 

Number of 

elements in 

𝑃𝑑(3) 

Degree 𝑑 

Number of 

elements in 

𝑃𝑑(3) 

1 3 6 28 

2 6 7 36 

3 10 8 45 

4 15 9 55 

5 21 10 66 

We consider the following cases.  

3.2.1. The case 𝑑 = 1 

𝑃1(3) = 𝑆𝑝{𝑥1, 𝑥2, 𝑥3}. 

All three elements 𝑥1, 𝑥2, 𝑥3 are not hit in 𝑃(3). 

So dim𝑄𝑃1(3) = 3. 

3.2.2. The case 𝑑 = 2 

𝑃2(3) = 𝑆𝑝{𝑥1𝑥2, 𝑥1𝑥3, 𝑥2𝑥3, 𝑦1, 𝑦2, 𝑦3}. 

We get 𝑦𝑖 = 𝛽(𝑥𝑖) so 𝑦𝑖  is hit, and 𝑥𝑖𝑥𝑗 is not hit in 

𝑃(3). So dim𝑄𝑃2(3) = 3. 

3.2.3. The case 𝑑 = 3 

The 𝑃3(3) is generated by elements of the following 

form 

1) 𝑥𝑖𝑦𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 3, 

2) 𝑦𝑖𝑥𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3)𝑥1𝑥2𝑥3. 
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Because 𝛽(𝑥𝑖𝑥𝑗) = 𝑦𝑖𝑥𝑗 + 2𝑥𝑖𝑦𝑗, (1 ≤ 𝑖 < 𝑗 ≤ 3),  

and 𝛽(𝑦𝑖) = 0, (1 ≤ 𝑖 ≤ 3), all elements in 𝑃(3) 

are not hit. So dim𝑄𝑃3(3) = 10. 

3.2.4. The case 𝑑 = 4 

The 𝑃4(3) is generated by elements of the following 

form 

1) 𝑦𝑖
2, 1 ≤ 𝑖 ≤ 3, 

2) 𝑦𝑖𝑦𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3) 𝑥𝑖𝑦𝑗𝑥𝑘, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 3, 

4) 𝑥𝑖𝑥𝑗𝑦𝑘, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ≤ 3, 

5) 𝑦1𝑥2𝑥3. 

Since 

𝑦𝑖
2 = 𝛽(𝑥𝑖𝑦𝑖), 𝑦𝑖𝑦𝑗 = 𝛽(𝑥𝑖𝑦𝑗), 

𝛽(𝑥1𝑥2𝑥3) = 𝑦1𝑥2𝑥3 + 𝑥1𝑦2𝑥3 + 𝑥1𝑥2𝑦3, 

so elements 𝑦𝑖
2, 𝑦𝑖𝑦𝑗 are hit and elements 𝑥𝑖𝑦𝑗𝑥𝑘,  

𝑥𝑖𝑥𝑗𝑦𝑘, 𝑦𝑖𝑥𝑗𝑥𝑘 are not hit in 𝑃(3). Then, 

dim𝑄𝑃4(3) = 9. 

3.2.5. The case 𝑑 = 5 

The 𝑃5(3) is generated by elements of the following 

form  

1) 𝑥𝑖𝑦𝑗
2, 1 ≤ 𝑖 ≤ 𝑗 ≤ 3, 

2) 𝑦𝑖
2𝑥𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3) 𝑥𝑖𝑦𝑗𝑦𝑘, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 3, 

4) 𝑦𝑖𝑥𝑗𝑦𝑘, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ≤ 3, 

5) 𝑦1𝑦2𝑥3, 

6) 𝑥1𝑦1𝑥2𝑥3, 𝑥1𝑥2𝑦2𝑥3, 𝑥1𝑥2𝑥3𝑦3. 

For 𝑓 ∈ 𝑃5(3), 𝑓 is hit if and only if 𝑓 can be 

expressed as the sum of 𝛽(𝑔) and 𝒫1(ℎ), where 𝑔 ∈
𝑃4(3), ℎ ∈ 𝑃1(3).  When we act on 𝒫1 and 𝛽 

respectively on the elements of 𝑃1(3) and 𝑃4(3)), 

we have 

𝒫1(𝑥𝑗) = 0, 

𝛽(𝑦𝑖
2) = 𝛽(𝑦𝑖𝑦𝑗) = 0, 

𝛽(𝑥𝑖𝑦𝑗𝑥𝑘) = 𝑦𝑖𝑦𝑗𝑥𝑘 + 2𝑥𝑖𝑦𝑗𝑦𝑘 , 

𝛽(𝑥𝑖𝑥𝑗𝑦𝑘) = 𝑦𝑖𝑥𝑗𝑦𝑘 + 2𝑥𝑖𝑦𝑗𝑦𝑘, 

𝛽(𝑦𝑖𝑥𝑗𝑥𝑘) = 𝑦𝑖𝑦𝑗𝑥𝑘 + 2𝑦𝑖𝑥𝑗𝑦𝑘, 

All element of 𝑃5(3) are not hit in 𝑃(3). 

So dim𝑄𝑃5(3) = 21 

3.2.6. The case 𝑑 = 6 

The 𝑃6(3) is generated by elements of the following 

form 

1) 𝑦𝑖
3, 1 ≤ 𝑖 ≤ 3, 

2) 𝑦𝑖
2𝑦𝑗, 𝑦𝑖𝑦𝑗

2, 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3) 𝑦1𝑦2𝑦3,  

4) 𝑥𝑖𝑥𝑗𝑦𝑘
2, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ≤ 3, 

5) 𝑥𝑖𝑦𝑗
2𝑥𝑘, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 3, 

6) 𝑦1
2𝑥2𝑥3, 

7) 𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙 , 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 𝑙 ≤ 3, 

8) 𝑥1𝑥2𝑦2𝑦3, 𝑥1𝑦1𝑦2𝑥3, 𝑦1𝑥2𝑦2𝑥3, 𝑦1𝑥2𝑥3𝑦3. 

For 𝑓 ∈ 𝑃6(3), 𝑓 is hit if and only if 𝑓 can be 

expressed as the sum of 𝛽(𝑓1), 𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 

and 𝛽𝒫1(𝑓4), where 𝑓1 ∈ 𝑃5(3);  𝑓2 ∈ 𝑃2(3); 𝑓3, 

 𝑓4 ∈ 𝑃1(3). 

We get  

𝑦𝑖
3 = 𝒫1(𝑦𝑖), 𝑦𝑖𝑦𝑗

2 = 𝛽(𝑥𝑖𝑦𝑗
2), 𝑦𝑖

2𝑦𝑗 = 𝛽(𝑦𝑖
2𝑥𝑗), 

𝑦1𝑦2𝑦3 = 𝛽(𝑦1𝑦2𝑥3), 

𝛽(𝑥1𝑦1𝑥2𝑥3) = 𝑦1
2𝑥2𝑥3 + 2𝑥1𝑦1𝑦2𝑥3 + 𝑥1𝑦1𝑥2𝑦3, 

𝛽(𝑥1𝑥2𝑦2𝑥3) = 𝑦1𝑥2𝑦2𝑥3 + 𝑥1𝑦2
2𝑥3 + 2𝑥1𝑥2𝑦2𝑦3, 

𝛽(𝑥1𝑥2𝑥3𝑦3) = 𝑦1𝑥2𝑥3𝑦3 + 𝑥1𝑦2𝑥3𝑦3 + 2𝑥1𝑥2𝑦3
2, 

𝒫1(𝑥𝑖𝑥𝑗) = 0, 𝛽𝒫1(𝑥𝑖) = 0, 𝒫1𝛽(𝑥𝑖) = 𝑦𝑖
3. 

Therefore, 𝑦𝑖
3, 𝑦𝑖𝑦𝑗

2, 𝑦𝑖
2𝑦𝑗, 𝑦1𝑦2𝑦3 are hit in 𝑃(3), 

others are not hit. So dim𝑄𝑃6(3) = 18. 

3.2.7. The case 𝑑 = 7 

The 𝑃7(3) is generated by elements of the following 

form 

1) 𝑥𝑖𝑦𝑗
3, 1 ≤ 𝑖 ≤ 𝑗 ≤ 3, 

2) 𝑦𝑖
3𝑥𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3) 𝑥𝑖𝑦𝑗
2𝑦𝑘, 𝑥𝑖𝑦𝑗𝑦𝑘

2, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 3, 

4) 𝑦𝑖
2𝑥𝑗𝑦𝑘, 𝑦𝑖𝑥𝑗𝑦𝑘

2, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ≤ 3, 

5) 𝑦1
2𝑦2𝑥3, 𝑦1𝑦2

2𝑥3,  

6) 𝑥1𝑦1𝑦2𝑦3, 𝑦1𝑥2𝑦2𝑦3, 𝑦1𝑦2𝑥3𝑦3, 

7) 𝑥1𝑦1
2𝑥2𝑥3, 𝑥1𝑥2𝑦2

2𝑥3, 𝑥1𝑥2𝑥3𝑦3
2, 

8) 𝑥1𝑦1𝑥2𝑦2𝑥3, 𝑥1𝑥2𝑦2𝑥3𝑦3, 𝑥1𝑦1𝑥2𝑥3𝑦3. 

For 𝑓 ∈ 𝑃7(3), 𝑓 is hit if and only if 𝑓 can be 

expressed as the sum of 𝛽(𝑓1), 𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 

𝛽𝒫1(𝑓4), and 𝛽𝒫1𝛽(𝑓5) where 𝑓1 ∈ 𝑃6(3),  𝑓2 ∈
𝑃3(3), 𝑓3,  𝑓4 ∈ 𝑃2(3), 𝑓5 ∈ 𝑃1(3). 

The elements 𝑥𝑖𝑦𝑗
3, 𝑦𝑖

3𝑥𝑗 are hit as  
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𝑥𝑖𝑦𝑗
3 = 𝒫1(𝑥𝑖𝑦𝑗), 𝑦𝑖

3𝑥𝑗 = 𝒫1(𝑦𝑖𝑥𝑗). 

Moreover, we get 

𝛽𝒫1𝛽(𝑥𝑖) = 0, 

𝛽𝒫1(𝑥𝑖𝑥𝑗) = 𝛽𝒫1(𝑦𝑖) = 𝒫1𝛽(𝑦𝑖) = 0, 

𝒫1𝛽(𝑥𝑖𝑥𝑗) = 𝑦𝑖
3𝑥𝑗 + 2𝑥𝑖𝑦𝑗

3, 

𝛽𝒫1𝛽(𝑥𝑖) = 0,  𝒫1(𝑥1𝑥2𝑥3) = 0, 

𝛽(𝑦𝑖
3) = 𝛽(𝑦𝑖

2𝑦𝑗) = 𝛽(𝑦𝑖𝑦𝑗
2) = 𝛽(𝑦𝑖𝑦𝑗𝑦𝑘) = 0, 

𝛽(𝑥𝑖𝑥𝑗𝑦𝑘
2) = 𝑦𝑖𝑥𝑗𝑦𝑘

2 + 2𝑥𝑖𝑦𝑗𝑦𝑘
2, 

𝛽(𝑥𝑖𝑦𝑗
2𝑥𝑘) = 𝑦𝑖𝑦𝑗

2𝑥𝑘 + 2𝑥𝑖𝑦𝑗
2𝑦𝑘, 

𝛽(𝑦1
2𝑥2𝑥3) = 𝑦1

2𝑦2𝑥3 + 2𝑦1
2𝑥2𝑦3, 

𝛽(𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙) = 𝑦𝑖𝑦𝑗𝑥𝑘𝑦𝑙 + 2𝑥𝑖𝑦𝑗𝑦𝑘𝑦𝑙 , 

𝛽(𝑥1𝑥2𝑦2𝑦3) = 𝑦1𝑥2𝑦2𝑦3 + 2𝑥1𝑦2
2𝑦3, 

𝛽(𝑥1𝑦1𝑦2𝑥3) = 𝑦1
2𝑦2𝑥3 + 2𝑥1𝑦1𝑦2𝑦3, 

𝛽(𝑦1𝑥2𝑦2𝑥3) = 𝑦1𝑦2
2𝑥3 + 2𝑦1𝑥2𝑦2𝑦3, 

𝛽(𝑦1𝑥2𝑥3𝑦3) = 𝑦1𝑦2𝑥3𝑦3 + 2𝑦1𝑥2𝑦3
2. 

The aforementioned calculations show that the other 

elements are not hit. So dim𝑄𝑃7(3) = 27. 

3.2.8. The case 𝑑 = 8 

The generators of 𝑃8(3) have the following form 

1) 𝑦𝑖
4, 1 ≤ 𝑖 ≤ 3, 

2) 𝑦𝑖
3𝑦𝑗, 𝑦𝑖𝑦𝑗

3, 𝑦𝑖
2𝑦𝑗

2, 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3) 𝑦1
2𝑦2𝑦3, 𝑦1𝑦2

2𝑦3, 𝑦1𝑦2𝑦3
2, 

4) 𝑥𝑖𝑦𝑗
3𝑥𝑘, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 3, 

5) 𝑥𝑖𝑥𝑗𝑦𝑘
3,  1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ≤ 3, 

6) 𝑦1
3𝑥2𝑥3, 

7) 𝑥𝑖𝑦𝑗
2𝑥𝑘𝑦𝑙, 𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙

2, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 𝑙 ≤ 3, 

8) 𝑥1𝑦1
2𝑦2𝑥3, 𝑥1𝑦1𝑦2

2𝑥3, 𝑥1𝑥2𝑦2
2𝑦3, 𝑥1𝑥2𝑦2𝑦3

2, 

 𝑦1𝑥2𝑦2
2𝑥3, 𝑦1𝑥2𝑥3𝑦3

2, 𝑦1
2𝑥2𝑦2𝑥3, 𝑦1

2𝑥2𝑥3𝑦3, 

9) 𝑥1𝑦1𝑥2𝑦2𝑦3, 𝑦1𝑥2𝑦2𝑥3𝑦3, 𝑥1𝑦1𝑦2𝑥3𝑦3. 

We get 

𝑦𝑖
4 = 2𝒫1(𝑦𝑖

2), 

𝑦𝑖𝑦𝑗
3 = 𝛽(𝑥𝑖𝑦𝑗

3) = 𝛽𝒫1(𝑥𝑖𝑦𝑗), 

𝑦𝑖
3𝑦𝑗 = 𝛽(𝑦𝑖

3𝑥𝑗) = 𝛽𝒫1(𝑦𝑖𝑥𝑗), 

𝑦𝑖
2𝑦𝑗

2 = 𝛽(𝑦𝑖
2𝑥𝑗𝑦𝑗), 

𝑦1
2𝑦2𝑦3 = 𝛽(𝑦1

2𝑥2𝑦3) = 𝛽(𝑥1𝑦1𝑦2𝑦3), 

𝑦1𝑦2
2𝑦3 = 𝛽(𝑥1𝑦2

2𝑦3) = 𝛽(𝑦1𝑥2𝑦2𝑦3), 

𝑦1𝑦2𝑦3
2 = 𝛽(𝑥1𝑦2𝑦3

2) = 𝛽(𝑦1𝑦2𝑥3𝑦3), 

𝑥𝑖𝑥𝑗𝑦𝑘
3 = 𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘), 𝑥𝑖𝑦𝑗

3𝑥𝑘 = 𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘), 

𝑦1
3𝑥2𝑥3 = 𝒫1(𝑦1𝑥2𝑥3). 

That shows these elements are hit. 

For 𝑓 ∈ 𝑃8(3),  𝑓 is hit if and only if 𝑓 can be 

expressed as the sum of 𝛽(𝑓1), 𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 

𝛽𝒫1(𝑓4), and 𝛽𝒫1𝛽(𝑓5), where 𝑓1 ∈ 𝑃7(3); 𝑓2 ∈
𝑃4(3); 𝑓3, 𝑓4 ∈ 𝑃3(3); 𝑓5 ∈ 𝑃2(3). The others are 

not hit because 

𝛽𝒫1𝛽(𝑥𝑖𝑥𝑗) = 𝑦𝑖
3𝑦𝑗 + 2𝑦𝑖𝑦𝑗

3,  𝛽𝒫1𝛽(𝑦𝑖) = 0, 

𝒫1𝛽(𝑥𝑖𝑦𝑗) = 𝒫1𝛽(𝑦𝑖𝑥𝑗) = 𝑦𝑖
3𝑦𝑗 + 2𝑦𝑖𝑦𝑗

3, 

𝒫1𝛽(𝑥1𝑥2𝑥3) = 𝑦1
3𝑥2𝑥3 + 𝑥1𝑦2

3𝑥3 + 𝑥1𝑥2𝑦3
3, 

𝒫1(𝑦𝑖𝑦𝑗) = 𝑦𝑖
3𝑦𝑗 + 𝑦𝑖𝑦𝑗

3, 

𝛽(𝑥1𝑦1
2𝑥2𝑥3) = 𝑦1

3𝑥2𝑥3 + 2𝑥1𝑦1
2𝑦2𝑥3 +

𝑥1𝑦1
2𝑥2𝑦3, 

𝛽(𝑥1𝑥2𝑦2
2𝑥3) = 𝑦1𝑥2𝑦2

2𝑥3 + 2𝑥1𝑦2
3𝑥3 +

𝑥1𝑥2𝑦2
2𝑦3, 

𝛽(𝑥1𝑥2𝑥3𝑦3
2) = 𝑦1𝑥2𝑥3𝑦3

2 + 2𝑥1𝑦2𝑥3𝑦3
2 +

𝑥1𝑥2𝑦3
3, 

𝛽(𝑥1𝑦1𝑥2𝑦2𝑥3) = 𝑦1
2𝑥2𝑦2𝑥3 + 2𝑥1𝑦1𝑦2

2𝑥3 +
𝑥1𝑦1𝑥2𝑦2𝑦3, 

𝛽(𝑥1𝑥2𝑦2𝑥3𝑦3) = 𝑦1𝑥2𝑦2𝑥3𝑦3 + 2𝑥1𝑦2
2𝑥3𝑦3 +

𝑥1𝑥2𝑦2𝑦3
2, 

𝛽(𝑥1𝑦1𝑥2𝑥3𝑦3) = 𝑦1
2𝑥2𝑥3𝑦3 + 2𝑥1𝑦1𝑦2𝑥3𝑦3

+ 𝑥1𝑦1𝑥2𝑦3
2. 

So dim𝑄𝑃8(3) = 21. 

3.2.9. The case 𝑑 = 9 

The generators of 𝑃9(3) have the following form 

1) 𝑥𝑖𝑦𝑗
4, 1 ≤ 𝑖 ≤ 𝑗 ≤ 3, 

2) 𝑦𝑖
4𝑥𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 3, 

3) 𝑥𝑖𝑦𝑗
3𝑦𝑘, 𝑥𝑖𝑦𝑗𝑦𝑘

3, 𝑥𝑖𝑦𝑗
2𝑦𝑘

2, 1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 3, 

4) 𝑦𝑖
3𝑥𝑗𝑦𝑘, 𝑦𝑖𝑥𝑗𝑦𝑘

3, 𝑦𝑖
2𝑥𝑗𝑦𝑘

2, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 ≤ 3, 

5) 𝑦1
3𝑦2𝑥3, 𝑦1𝑦2

3𝑥3, 𝑦1
2𝑦2

2𝑥3, 

6) 𝑥1𝑦1𝑦2𝑦3
2, 𝑦1𝑥2𝑦2𝑦3

2, 𝑦1𝑦2𝑥3𝑦3
2, 𝑥1𝑦1𝑦2

2𝑦3, 

𝑦1𝑥2𝑦2
2𝑦3, 𝑦1𝑦2

2𝑥3𝑦3, 𝑥1𝑦1
2𝑦2𝑦3, 𝑦1

2𝑥2𝑦2𝑦3, 

𝑦1
2𝑦2𝑥3𝑦3, 𝑥1𝑦1

3𝑥2𝑥3, 𝑥1𝑥2𝑦2
3𝑥3, 𝑥1𝑥2𝑥3𝑦3

3, 

𝑥1𝑦1
2𝑥2𝑦2𝑥3, 𝑥1𝑥2𝑦2

2𝑥3𝑦3, 𝑥1𝑦1𝑥2𝑥3𝑦3
2, 

𝑥1𝑦1𝑥2𝑦2
2𝑥3, 𝑥1𝑥2𝑦2𝑥3𝑦3

2, 𝑥1𝑦1
2𝑥2𝑥3𝑦3, 

𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3. 
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For 𝑓 ∈ 𝑃9(3), 𝑓 is hit if and only if 𝑓 can be 

expressed as the sum of 𝛽(𝑓1), 𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 

𝛽𝒫1(𝑓4), 𝛽𝒫1𝛽(𝑓5),  𝒫2(𝑓6),  𝒫2𝛽(𝑓7), 𝛽𝒫2(𝑓8), 

where 𝑓1 ∈ 𝑃8(3),  𝑓2 ∈ 𝑃5(3), 𝑓3,  𝑓4 ∈ 𝑃4(3), 

𝑓5 ∈ 𝑃3(3),  𝑓6 ∈ 𝑃1(3). 

We get 

𝑦𝑖
4𝑥𝑗 = 2𝒫1(𝑦𝑖

2𝑥𝑗),  𝑥𝑖𝑦𝑗
4 = 2𝒫1(𝑥𝑖𝑦𝑗

2), 

𝒫1(𝑥1𝑦1𝑥2𝑥3) = 𝑥1𝑦1
3𝑥2𝑥3, 

𝒫1(𝑥1𝑥2𝑦2𝑥3) = 𝑥1𝑥2𝑦2
3𝑥3, 

𝒫1(𝑥1𝑥2𝑥3𝑦3) = 𝑥1𝑥2𝑥3𝑦3
3, 

𝑦1𝑦2
3𝑥3 = 𝒫1𝛽(𝑥1𝑥2𝑦3) + 2𝛽𝒫1(𝑥1𝑥2𝑦3) 

+𝛽𝒫1(𝑦1𝑥2𝑥3) + 2𝛽𝒫1(𝑥1𝑦2𝑥3) + 2𝒫1(𝑦1𝑦2𝑥3), 

𝑦1
3𝑦2𝑥3  = 2𝒫1𝛽(𝑥1𝑥2𝑦3) + 𝛽𝒫1(𝑥1𝑥2𝑦3) 

+2𝛽𝒫1(𝑦1𝑥2𝑥3) + 𝛽𝒫1(𝑥1𝑦2𝑥3) + 2𝒫1(𝑦1𝑦2𝑥3), 

𝑥𝑖𝑦𝑗𝑦𝑘
3  = 𝒫1𝛽(𝑦𝑖𝑥𝑗𝑥𝑘) + 2𝛽𝒫1(𝑦𝑖𝑥𝑗𝑥𝑘) 

+𝛽𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘) + 2𝛽𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘) + 2𝒫1(𝑥𝑖𝑦𝑗𝑦𝑘), 

𝑥𝑖𝑦𝑗
3𝑦𝑘  = 2𝒫1𝛽(𝑦𝑖𝑥𝑗𝑥𝑘) + 𝛽𝒫1(𝑦𝑖𝑥𝑗𝑥𝑘) 

+2𝛽𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘) + 𝛽𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘) + 2𝒫1(𝑥𝑖𝑦𝑗𝑦𝑘), 

𝑦𝑖
3𝑥𝑗𝑦𝑘  = 2𝒫1𝛽(𝑥𝑖𝑦𝑗𝑥𝑘) + 𝛽𝒫1(𝑦𝑖𝑥𝑗𝑥𝑘) 

+𝛽𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘) + 𝛽𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘) + 2𝒫1(𝑥𝑖𝑦𝑗𝑦𝑘), 

𝑦𝑖𝑥𝑗𝑦𝑘
3  = 𝒫1𝛽(𝑥𝑖𝑦𝑗𝑥𝑘) + 2𝛽𝒫1(𝑦𝑖𝑥𝑗𝑥𝑘) 

+2𝛽𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘) + 2𝛽𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘) + 2𝒫1(𝑥𝑖𝑦𝑗𝑦𝑘). 

This proves that elements  

𝑥𝑖𝑦𝑗
4, 𝑦𝑖

4𝑥𝑗 , 𝑥𝑖𝑦𝑗
3𝑦𝑘, 𝑦𝑖

3𝑥𝑗𝑦𝑘 , 𝑦1
3𝑦2𝑥3, 𝑥𝑖𝑦𝑗𝑦𝑘

3, 

𝑦𝑖𝑥𝑗𝑦𝑘
3, 

𝑦1𝑦2
3𝑥3, 𝑥1𝑦1

3𝑥2𝑥3, 𝑥1𝑥2𝑦2
3𝑥3, 𝑥1𝑥2𝑥3𝑦3

3 are hit. 

The action of the admissible basis of 𝒜 on the 

elements of 𝑃𝑑(3), with degrees 𝑑 = 1, 3, 4, 5, 8, is 

calculated as follows. 

With  𝑓1 ∈ 𝑃8(3), if 𝑓1 contains no elements 𝑥𝑖 then 

𝛽(𝑓1) = 0, and 

𝛽(𝑥1𝑦2
2𝑥3𝑦3) = 𝑦1𝑦2

2𝑥3𝑦3 + 2𝑥1𝑦2
2𝑦3

2, 

𝛽(𝑥1𝑦1
2𝑦2𝑥3) = 𝑦1

3𝑦2𝑥3 + 2𝑥1𝑦1
2𝑦2𝑦3, 

𝛽(𝑥1𝑦1𝑦2
2𝑥3) = 𝑦1

2𝑦2
2𝑥3 + 2𝑥1𝑦1𝑦2

2𝑦3, 

𝛽(𝑥1𝑥2𝑦2
2𝑦3) = 𝑦1𝑥2𝑦2

2𝑦3 + 2𝑥1𝑦2
3𝑦3, 

𝛽(𝑥1𝑥2𝑦2𝑦3
2) = 𝑦1𝑥2𝑦2𝑦3

2 + 2𝑥1𝑦2
2𝑦3

2, 

𝛽(𝑦1𝑥2𝑦2
2𝑥3) = 𝑦1𝑦2

3𝑥3 + 2𝑦1𝑥2𝑦2
2𝑦3, 

𝛽(𝑦1𝑥2𝑥3𝑦3
2) = 𝑦1𝑦2𝑥3𝑦3

2 + 2𝑦1𝑥2𝑦3
3, 

𝛽(𝑦1
2𝑥2𝑦2𝑥3) = 𝑦1

2𝑦2
2𝑥3 + 2𝑦1

2𝑥2𝑦2𝑦3, 

𝛽(𝑦1
2𝑥2𝑥3𝑦3) = 𝑦1

2𝑦2𝑥3𝑦3 + 2𝑦1
2𝑥2𝑦3

2, 

𝛽(𝑥1𝑦1𝑥2𝑦3
2) = 𝑦1

2𝑥2𝑦3
2 + 2𝑥1𝑦1𝑦2𝑦3

2, 

𝛽(𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙
2) = 𝑦𝑖𝑦𝑗𝑥𝑘𝑦𝑙

2 + 2𝑥𝑖𝑦𝑗𝑦𝑘𝑦𝑙
2, 

𝛽(𝑥1𝑦1𝑥2𝑦2𝑦3) = 𝑦1
2𝑥2𝑦2𝑦3 + 2𝑥1𝑦1𝑦2

2𝑦3, 

𝛽(𝑦1𝑥2𝑦2𝑥3𝑦3) = 𝑦1𝑦2
2𝑥3𝑦3 + 2𝑦1𝑥2𝑦2𝑦3

2, 

𝛽(𝑥1𝑦1𝑦2𝑥3𝑦3) = 𝑦1
2𝑦2𝑥3𝑦3 + 2𝑥1 𝑦1𝑦2𝑦3

2. 

With 𝑓2 ∈ 𝑃5(3), we get 

𝒫1(𝑥𝑖𝑦𝑗𝑦𝑘) = 𝑥𝑖𝑦𝑗
3𝑦𝑘 + 𝑥𝑖𝑦𝑗𝑦𝑘

3, 

𝒫1(𝑦𝑖𝑥𝑗𝑦𝑘) = 𝑦𝑖
3𝑥𝑗𝑦𝑘 + 𝑦𝑖𝑥𝑗𝑦𝑘

3, 

𝒫1(𝑦𝑖𝑦𝑗𝑥𝑘) = 𝑦𝑖
3𝑦𝑗𝑥𝑘 + 𝑦𝑖𝑦𝑗

3𝑥𝑘 . 

With 𝑓3, 𝑓4 ∈ 𝑃4(3), we get 

𝒫1𝛽(𝑦𝑖
2) = 𝒫1𝛽(𝑦𝑖𝑦𝑗) = 0, 

𝒫1𝛽(𝑥𝑖𝑥𝑗𝑦𝑘) = 𝑦𝑖
3𝑥𝑗𝑦𝑘 + 𝑦𝑖𝑥𝑗𝑦𝑘

3 + 2𝑥𝑖𝑦𝑗
3𝑦𝑘 +

2𝑥𝑖𝑦𝑗𝑦𝑘
3, 

𝒫1𝛽(𝑥𝑖𝑦𝑗𝑥𝑘) = 𝑦𝑖
3𝑦𝑗𝑥𝑘 + 𝑦𝑖𝑦𝑗

3𝑥𝑘 + 2𝑥𝑖𝑦𝑗
3𝑦𝑘 +

2𝑥𝑖𝑦𝑗𝑦𝑘
3, 

𝒫1𝛽(𝑦𝑖𝑥𝑗𝑥𝑘) = 𝑦𝑖
3𝑦𝑗𝑥𝑘 + 𝑦𝑖𝑦𝑗

3𝑥𝑘 + 2𝑦𝑖
3𝑥𝑗𝑦𝑘 +

2𝑦𝑖𝑥𝑗𝑦𝑘
3, 

𝛽𝒫1(𝑦𝑖
2) = 𝛽𝒫1(𝑦𝑖𝑦𝑗) = 0, 

𝛽𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘) = 𝑦𝑖𝑥𝑗𝑦𝑘
3 + 2𝑥𝑖𝑦𝑗𝑦𝑘

3, 

𝛽𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘) = 𝑦𝑖𝑦𝑗
3𝑥𝑘 + 2𝑥𝑖𝑦𝑗

3𝑦𝑘, 

𝛽𝒫1(𝑦𝑖𝑥𝑗𝑥𝑘) = 𝑦𝑖
3𝑦𝑗𝑥𝑘 + 2𝑦𝑖

3𝑥𝑗𝑦𝑘 . 

With  𝑓5 ∈ 𝑃3(3), we get 

𝛽𝒫1𝛽(𝑥𝑖𝑦𝑗) = 𝛽𝒫1𝛽(𝑦𝑖𝑥𝑗) = 0, 

𝛽𝒫1𝛽(𝑥1𝑥2𝑥3) = 𝑦𝑖
3𝑦𝑗𝑥𝑘 + 2𝑦𝑖

3𝑥𝑗𝑦𝑘 + 2𝑦𝑖𝑦𝑗
3𝑥𝑘

+ 𝑥𝑖𝑦𝑗
3𝑦𝑘 + 𝑦𝑖𝑥𝑗𝑦𝑘

3 + 2𝑥𝑖𝑦𝑗𝑦𝑘
3. 

With 𝑓6 ∈ 𝑃1(3), we get 𝒫2(𝑥𝑖) = 0.   

The above results show that the elements 

𝑥1𝑦1
2𝑥2𝑦2𝑥3, 𝑥1𝑥2𝑦2

2𝑥3𝑦3, 𝑥1𝑦1𝑥2𝑥3𝑦3
2, 

𝑥1𝑦1𝑥2𝑦2
2𝑥3, 𝑥1𝑥2𝑦2𝑥3𝑦3

2, 𝑥1𝑦1
2𝑥2𝑥3𝑦3, 

𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3 do not appear in the action of 

admissible monomials in 𝒜 on 𝑃(3). Hence, these 

elements cannot be expressed as the sum of 𝛽(𝑓1), 

𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 𝛽𝒫1(𝑓4), 
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𝛽𝒫1𝛽(𝑓5), 𝒫2(𝑓6), 𝒫2𝛽(𝑓7), 𝛽𝒫2(𝑓8) that mean 

they are not hit. 

Moreover, elements containing 𝑦𝑖
2 appear only in 

𝛽(𝑓1),  𝑓1 ∈ 𝑃8(3) but 

𝛽(𝑦1𝑥2𝑦2𝑥3𝑦3) = 𝛽(𝑥1𝑦2
2𝑥3𝑦3) + 2𝛽(𝑥1𝑥2𝑦2𝑦3

2), 

𝛽(𝑥1𝑦1𝑥2𝑦2𝑦3) = 𝛽(𝑥1𝑦1𝑦2
2𝑥3) + 2𝛽(𝑦1

2𝑥2𝑦2𝑥3), 

𝛽(𝑥1𝑦1𝑦2𝑥3𝑦3) = 𝛽(𝑦1
2𝑥2𝑥3𝑦3) + 𝛽(𝑥1𝑦1𝑥2𝑦3

2), 

𝛽𝒫1𝛽(𝑥1𝑥2𝑥3) = 𝛽𝒫1(𝑦𝑖𝑥𝑗𝑥𝑘) + 2𝛽𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘)

+ 𝛽𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘). 

So dim𝑄𝑃9(3) = 25. 

3.2.10. The case 𝑑 = 10 

The  𝑃10(3) is generated by elements of the 

following form 

1)  𝑦1
𝑖1𝑦2

𝑖2𝑦3
𝑖3 ,   𝑖1, 𝑖2, 𝑖3 ≥ 0  and 𝑖1 + 𝑖2 + 𝑖3 = 5, 

2)  𝑥𝑖𝑦𝑗
4𝑥𝑘, 𝑥𝑖𝑥𝑗𝑦𝑘

4,  1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 3, 

3)  𝑦1
4𝑥2𝑥3, 

4)  𝑥𝑖𝑦𝑗
3𝑥𝑘𝑦𝑙 , 𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙

3, 𝑥𝑖𝑦𝑗
2𝑥𝑘𝑦𝑙

2, 1 ≤ 𝑖 ≤ 𝑗 <

𝑘 ≤ 𝑙 ≤ 3, 

5)  𝑥1𝑦1
3𝑦2𝑥3, 𝑥1𝑦1𝑦2

3𝑥3, 𝑥1𝑥2𝑦2
3𝑦3, 𝑥1𝑥2𝑦2𝑦3

3, 

𝑦1𝑥2𝑦2
3𝑥3, 𝑦1

3𝑥2𝑦2𝑥3, 𝑦1𝑥2𝑥3𝑦3
3, 𝑦1

3𝑥2𝑥3𝑦3, 

6)  𝑥1𝑦1
2𝑦2

2𝑥3, 𝑥1𝑥2𝑦2
2𝑦3

2, 𝑦1
2𝑥2𝑦2

2𝑥3, 𝑦1
2𝑥2𝑥3𝑦3

2, 

7)  𝑥1𝑦1
2𝑥2𝑦2𝑦3, 𝑥1𝑦1𝑥2𝑦2

2𝑦3, 𝑥1𝑦1𝑥2𝑦2𝑦3
2, 

𝑦1
2𝑥2𝑦2𝑥3𝑦3, 𝑦1𝑥2𝑦2

2𝑥3𝑦3, 𝑦1𝑥2𝑦2𝑥3𝑦3
2, 

𝑥1𝑦1
2𝑦2𝑥3𝑦3, 

𝑥1𝑦1𝑦2
2𝑥3𝑦3, 𝑥1𝑦1𝑦2𝑥3𝑦3

2. 

Direct computations show that elements of forms 1, 

2, and 3 are both hit.  

The form 1: (𝑖1, 𝑖2, 𝑖3) includes cases and their 

permutations, respectively (5,0,0), (4,1,0), (3,2,0), 

(2,2,1), (1,1,3) 

𝑦𝑖
5 = 𝛽(𝑥𝑖𝑦𝑖

4), 𝑦𝑖
4𝑦𝑗 = 𝛽(𝑦𝑖

4𝑥𝑗) = 2𝛽𝒫1(𝑦𝑖
2𝑥𝑗), 

𝑦𝑖𝑦𝑗
4 = 𝛽(𝑥𝑖𝑦𝑗

4) = 2𝛽𝒫1(𝑥𝑖𝑦𝑗
2), 

𝑦𝑖
3𝑦𝑗

2 = 𝛽(𝑥𝑖𝑦𝑖
2𝑦𝑗

2), 𝑦𝑖
2𝑦𝑗

3 = 𝛽(𝑦𝑖
2𝑦𝑗

2𝑥𝑗), 

𝑦1
2𝑦2

2𝑦3 = 𝛽(𝑦1
2𝑦2

2𝑥3) = 𝛽(𝑥1𝑦1𝑦2
2𝑦3) = 𝛽(𝑦1

2𝑥2𝑦2𝑦3), 

𝑦1
2𝑦2𝑦3

2 = 𝛽(𝑦1
2𝑥2𝑦3

2) = 𝛽(𝑥1𝑦1𝑦2𝑦3
2) = 𝛽(𝑦1

2𝑦2𝑥3𝑦3), 

𝑦1𝑦2
2𝑦3

2 = 𝛽(𝑥1𝑦2
2𝑦3

2) = 𝛽(𝑦1𝑥2𝑦2𝑦3
2) = 𝛽(𝑦1𝑦2

2𝑥3𝑦3), 

𝑦1𝑦2𝑦3
3 = 𝛽(𝑥1𝑦2𝑦3

3) = 𝛽(𝑦1𝑦2𝑥3𝑦3
2), 

𝑦1𝑦2
3𝑦3 = 𝛽(𝑥1𝑦2

3𝑦3) = 𝛽(𝑦1𝑥2𝑦2
2𝑦3), 

𝑦1
3𝑦2𝑦3 = 𝛽(𝑦1

3𝑦2𝑥3) = 𝛽(𝑥1𝑦1
2𝑦2𝑦3). 

The form 2 & 3: 

𝑥𝑖𝑦𝑗
4𝑥𝑘 = 2𝒫1(𝑥𝑖𝑦𝑗

2𝑥𝑘), 

𝑦1
4𝑥2𝑥3 = 2𝒫1(𝑦1

2𝑥2𝑥3), 

𝑥𝑖𝑥𝑗𝑦𝑘
4 = 2𝒫1(𝑥𝑖𝑥𝑗𝑦𝑘

2). 

For 𝑓 ∈ 𝑃10(3), 𝑓 is hit if and only if 𝑓 can be 

expressed as the sum of 𝛽(𝑓1), 𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 

𝛽𝒫1(𝑓4), 𝛽𝒫1𝛽(𝑓5),  𝒫2(𝑓6),  𝒫2𝛽(𝑓7), 𝛽𝒫2(𝑓8) 

where 𝑓1 ∈ 𝑃9(3);  𝑓2 ∈ 𝑃6(3); 𝑓3, 𝑓4 ∈ 𝑃5(3); 𝑓5 ∈
𝑃4(3); 𝑓6 ∈ 𝑃2(3); 𝑓7, 𝑓8 ∈ 𝑃1(3). 

The other actions of 𝒜 on 𝑃10(3) 

𝛽(𝑥1𝑦1
3𝑥2𝑥3) = 𝑦1

4𝑥2𝑥3 + 2𝑥1𝑦1
3𝑦2𝑥3 +

𝑥1𝑦1
3𝑥2𝑦3, 

𝛽(𝑥1𝑥2𝑦2
3𝑥3) = 𝑦1𝑥2𝑦2

3𝑥3 + 2𝑥1𝑦2
4𝑥3 +

𝑥1𝑥2𝑦2
3𝑦3, 

𝛽(𝑥1𝑥2𝑥3𝑦3
3) = 𝑦1𝑥2𝑥3𝑦3

3 + 2𝑥1𝑦2𝑥3𝑦3
3 +

𝑥1𝑥2𝑦3
4, 

𝛽(𝑥1𝑦1
2𝑥2𝑦2𝑥3) 

= 𝑦1
3𝑥2𝑦2𝑥3 + 2𝑥1𝑦1

2𝑦2
2𝑥3 + 𝑥1𝑦1

2𝑥2𝑦2𝑦3, 

𝛽(𝑥1𝑥2𝑦2
2𝑥3𝑦3) 

= 𝑦1𝑥2𝑦2
2𝑥3𝑦3 + 2𝑥1𝑦2

3𝑥3𝑦3 + 𝑥1𝑥2𝑦2
2𝑦3

2, 

𝛽(𝑥1𝑦1𝑥2𝑥3𝑦3
2) 

= 𝑦1
2𝑥2𝑥3𝑦3

2 + 2𝑥1𝑦1𝑦2𝑥3𝑦3
2 + 𝑥1𝑦1𝑥2𝑦3

3, 

𝛽(𝑥1𝑦1𝑥2𝑦2
2𝑥3) 

= 𝑦1
2𝑥2𝑦2

2𝑥3 + 2𝑥1𝑦1𝑦2
3𝑥3 + 𝑥1𝑦1𝑥2𝑦2

2𝑦3, 

𝛽(𝑥1𝑥2𝑦2𝑥3𝑦3
2) 

= 𝑦1𝑥2𝑦2𝑥3𝑦3
2 + 2𝑥1𝑦2

2𝑥3𝑦3
2 + 𝑥1𝑥2𝑦2𝑦3

3, 

𝛽(𝑥1𝑦1
2𝑥2𝑥3𝑦3) 

= 𝑦1
3𝑥2𝑥3𝑦3 + 2𝑥1𝑦1

2𝑦2𝑥3𝑦3 + 𝑥1𝑦1
2𝑥2𝑦3

2, 

𝛽(𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3) 

= 𝑦1
2𝑥2𝑦2𝑥3𝑦3 + 𝑥1𝑦1𝑦2

2𝑥3𝑦3 + 𝑥1𝑦1𝑥2𝑦2𝑦3
2, 

𝒫1(𝑦𝑖
3) = 0, 

𝒫1(𝑦𝑖
2𝑦𝑗) = 2𝑦𝑖

4𝑦𝑗 + 𝑦𝑖
2𝑦𝑗

3, 

𝒫1(𝑦𝑖𝑦𝑗
2) = 𝑦𝑖

3𝑦𝑗
2 + 2𝑦𝑖𝑦𝑗

4, 

𝒫1(𝑦𝑖𝑦𝑗𝑦𝑘) = 𝑦𝑖
3𝑦𝑗𝑦𝑘 + 𝑦𝑖𝑦𝑗

3𝑦𝑘 + 𝑦𝑖𝑦𝑗𝑦𝑘
3, 

𝒫1(𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙) = 𝑥𝑖𝑦𝑗
3𝑥𝑘𝑦𝑙 + 𝑥𝑖𝑦𝑗𝑥𝑘𝑦𝑙

3, 

𝒫1(𝑥1𝑥2𝑦2𝑦3) = 𝑥1𝑥2𝑦2
3𝑦3 + 𝑥1𝑥2𝑦2𝑦3

3, 

𝒫1( 𝑥1𝑦1𝑦2𝑥3) = 𝑥1𝑦1
3𝑦2𝑥3 + 𝑥1𝑦1𝑦2

3𝑥3, 
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𝒫1(𝑦1𝑥2𝑦2𝑥3) = 𝑦1
3𝑥2𝑦2𝑥3 + 𝑦1𝑥2𝑦2

3𝑥3, 

𝒫1(𝑦1𝑥2𝑥3𝑦3) = 𝑦1
3𝑥2𝑥3𝑦3 + 𝑦1𝑥2𝑥3𝑦3

3, 

𝒫1𝛽(𝑥𝑖𝑦𝑗
2) = 𝑦𝑖

3𝑦𝑗
2 + 2𝑦𝑖𝑦𝑗

4, 

𝒫1𝛽(𝑦𝑖
2𝑥𝑗) = 2𝑦𝑖

4𝑦𝑗 + 𝑦𝑖
2𝑦𝑗

3, 

𝒫1𝛽(𝑥𝑖𝑦𝑗𝑦𝑘) = 𝒫1𝛽(𝑦𝑖𝑦𝑗𝑥𝑘) = 𝒫1𝛽(𝑦𝑖𝑥𝑗𝑦𝑘) 

= 𝑦𝑖
3𝑦𝑗𝑦𝑘 + 𝑦𝑖𝑦𝑗

3𝑦𝑘 + 𝑦𝑖𝑦𝑗𝑦𝑘
3, 

𝒫1𝛽(𝑥1𝑦1𝑥2𝑥3) = 2𝑦1
4𝑥2𝑥3 + 2𝑥1𝑦1

3𝑦2𝑥3 

+2𝑥1𝑦1𝑦2
3𝑥3 + 𝑥1𝑦1

3𝑥2𝑦3 + 𝑥1𝑦1𝑥2𝑦3
3, 

𝒫1𝛽(𝑥1𝑥2𝑦2𝑥3) = 𝑦1
3𝑥2𝑦2𝑥3 + 𝑦1𝑥2𝑦2

3𝑥3 

+2𝑥1𝑦2
4𝑥3 + 2𝑥1𝑥2𝑦2

3𝑦3 + 2𝑥1𝑥2𝑦2𝑦3
3, 

𝒫1𝛽(𝑥1𝑥2𝑥3𝑦3) = 𝑦1
3𝑥2𝑥3𝑦3 + 𝑦1𝑥2𝑥3𝑦3

3 

+2𝑥1𝑦2
3𝑥3𝑦3 + 2𝑥1𝑦2𝑥3𝑦3

3 + 2𝑥1𝑥2𝑦3
4, 

𝛽𝒫1(𝑥𝑖𝑦𝑗𝑦𝑘) = 𝑦𝑖𝑦𝑗
3𝑦𝑘 + 𝑦𝑖𝑦𝑗𝑦𝑘

3, 

𝛽𝒫1(𝑦𝑖𝑦𝑗𝑥𝑘) = 𝑦𝑖
3𝑦𝑗𝑦𝑘 + 𝑦𝑖𝑦𝑗

3𝑦𝑘 , 

𝛽𝒫1(𝑦𝑖𝑥𝑗𝑦𝑘) = 𝑦𝑖
3𝑦𝑗𝑦𝑘 + 𝑦𝑖𝑦𝑗𝑦𝑘

3, 

𝛽𝒫1(𝑥1𝑦1𝑥2𝑥3) = 𝛽(𝑥1𝑦1
3𝑥2𝑥3), 

𝛽𝒫1(𝑥1𝑥2𝑦2𝑥3) = 𝛽(𝑥1𝑥2𝑦2
3𝑥3), 

𝛽𝒫1(𝑥1𝑥2𝑥3𝑦3) = 𝛽(𝑥1𝑥2𝑥3𝑦3
3), 

𝛽𝒫1𝛽(𝑦𝑖
2) = 0, 𝛽𝒫1𝛽(𝑦𝑖𝑦𝑗) = 0, 

𝛽𝒫1𝛽(𝑥𝑖𝑥𝑗𝑦𝑘) = 𝑦𝑖
3𝑦𝑗𝑦𝑘 + 2𝑦𝑖𝑦𝑗

3𝑦𝑘, 

𝛽𝒫1𝛽(𝑥𝑖𝑦𝑗𝑥𝑘) = 𝑦𝑖
3𝑦𝑗𝑦𝑘 + 2𝑦𝑖𝑦𝑗𝑦𝑘

3, 

𝛽𝒫1𝛽(𝑦𝑖𝑥𝑗𝑥𝑘) = 𝑦𝑖𝑦𝑗
3𝑦𝑘 + 2𝑦𝑖𝑦𝑗𝑦𝑘

3, 

𝒫2(𝑥𝑖𝑥𝑗) = 𝒫2(𝑦𝑖) = 0, 

𝛽𝒫2(𝑥𝑖) = 𝒫2𝛽(𝑥𝑖) = 0. 

The form 4 & 5:  From the above calculation results, 

we see that the elements in the form 4 & 5 cannot be 

the sum of the elements 𝛽(𝑓1), 𝒫1(𝑓2), 𝒫1𝛽(𝑓3), 

𝛽𝒫1(𝑓4), 𝒫1𝛽(𝑓5),  𝒫2(𝑓6), 𝒫2𝛽(𝑓7), 𝛽𝒫2(𝑓8), 

where 𝑓1 ∈ 𝑃9(3);  𝑓2 ∈ 𝑃6(3);  𝑓3, 𝑓4 ∈ 𝑃5(3); 

𝑓5 ∈ 𝑃4(3); 𝑓6 ∈ 𝑃2(3);  𝑓7,  𝑓8 ∈ 𝑃1(3).  In other 

words, these elements are not hit. 

For example:  

Element 𝑥𝑖𝑦𝑗
2𝑥𝑘𝑦𝑙

2 appears only in 𝛽(𝑥1𝑥2𝑦2𝑥3𝑦3
2) 

or 𝛽(𝑥1𝑦1
2𝑥2𝑥3𝑦3) corresponding to different 

(𝑖, 𝑗, 𝑘, 𝑙) tuples (1 ≤ 𝑖 ≤ 𝑗 < 𝑘 ≤ 𝑙 ≤ 3). 

Element 𝑥1𝑦1
2𝑦2

2𝑥3 appears only in 𝛽(𝑥1𝑦1
2𝑥2𝑦2𝑥3). 

Element 𝑥1𝑥2𝑦2
2𝑦3

2 appears only in 𝛽(𝑥1𝑥2𝑦2
2𝑥3𝑦3). 

Element 𝑦1
2𝑥2𝑦2

2𝑥3 appears only in 𝛽(𝑥1𝑦1𝑥2𝑦2
2𝑥3). 

Element 𝑦1
2𝑥2𝑥3𝑦3

2 appears only in 𝛽(𝑥1𝑦1𝑥2𝑥3𝑦3
2). 

That proves these elements are not hit. 

The form 6 & 7: In view of the above calculation 

results, we see that these elements in the form 6 & 7 

appear exactly once in the effects of  𝛽  on the 

elements 𝑥1𝑦1
2𝑥2𝑦2𝑥3, 𝑥1𝑥2𝑦2

2𝑥3𝑦3, 𝑥1𝑦1𝑥2𝑥3𝑦3
2, 

𝑥1𝑦1𝑥2𝑦2
2𝑥3, 𝑥1𝑥2𝑦2𝑥3𝑦3

2, 𝑥1𝑦1
2𝑥2𝑥3𝑦3, 

𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3. This means that these elements are 

not hit. So dim𝑄𝑃10(3) = 36. 

4. CONCLUSION 

Determining the hit element by direct computation 

is a quite complicated approach, so this study is only 

for explicitly calculating a few small cases 𝑑 to 

visualize the early picture of 𝑄𝑃𝑑(3). For general 

cases, other efficient tools are needed to reduce the 

computational costs. This is for the author’s 

research directions in the future. 
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