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Similarity join over multiple time series is an interesting task of data 

mining. This task aims at identifying couples of similar subsequences from 

multiple time series and the two subsequences might have any length and 

be at any position in the time series. However, the task is extremely 

challenging since the computational time to search for couples of similar 

subsequences from two time series is very large. Moreover, the task needs 

to normalize two subsequences before conducting a distance measure on 

the normalized subsequences to consider the similar degree of the original 

subsequences. To address the problem, this paper proposes a method of 

similarity join over two time series under Dynamic Time Warping (DTW), 

supporting z-score normalization. The proposed method utilizes both a 

suite of state-of-the-art techniques for computing the DTW distance and a 

technique of incremental z-score normalization to reduce the 

computational costs. The method employs multithreading to improve 

runtime performance. If similar subsequences from two time series may not 

pair up because they are too far apart, the method might use a sliding 

window to constrain a scope for coupling similar subsequences. The 

experiments on the proposed method show that the method could return 

similar subsequences quickly and incur no false dismissals. 

Keywords 

Data normalization, Dynamic 
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1. INTRODUCTION 

Similarity join or subsequence join over multiple 

time series is a major task in time-series data 

mining, which aims at identifying couples of similar 

subsequences from the time series under a certain 

measure. There are numerous methods of similarity 

join over multiple time series under the Euclidean 

distance (Lian & Chen, 2009; Chatzigeorgakidis et 

al., 2018; Yeh et al., 2018; Zhu et al., 2018; Wang 

et al., 2019; Yeh et al., 2022), or the Dynamic Time 

Warping (DTW) distance (Chen et al., 2009; Lin & 

McCool, 2010; Vinh & Anh, 2016), or the Fréchet 

distance (Ding et al., 2008), or Pearson’s correlation 

coefficient (Mueen et al., 2014; Mollah et al., 2021).  

It is noteworthy that the task is very complicated 

because two similar subsequences constituting a 

combinable couple might have any length, and be at 

any position in the time series. A naïve process to 

conduct the task would consider all couples of 

subsequences from the time series to evaluate the 

similar degree of each two subsequences under a 

predefined distance measure, thereby incurring huge 

computational costs. In addition, to obtain accurate 

results, the distance measure should be conducted 

on normalized subsequences rather than their 

original ones. However, the operation of data 

normalization incurs additional computational costs 

to the task. 

The problem of similarity join over multiple time 

series takes place in a wide spectrum of applications 

including analysing stocks (Lian & Chen, 2009), 

identifying spatial proximity and time series 

similarity over geolocated time series 

(Chatzigeorgakidis et al., 2018), synthesizing 
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motion (Ding et al., 2008; Chen et al., 2009), and 

searching for similarly fluctuant patterns in 

exchange rates (Mueen et al., 2014). This evidence 

shows that the intricate problem is extremely 

interesting, drawing much attention from 

researchers specializing in data mining on time 

series. For this reason, many research studies (Ding 

et al., 2008; Chen et al., 2009; Lian & Chen, 2009; 

Lin & McCool, 2010; Mueen et al., 2014; Vinh & 

Anh, 2016; Chatzigeorgakidis et al., 2018; Yeh et 

al., 2018; Zhu et al., 2018; Wang et al., 2019; 

Mollah et al., 2021; Yeh et al., 2022) have been 

investigating solutions to the problem. 

In time-series data mining, the DTW distance 

(Berndt & Clifford, 1994) is suitable for matching 

two time series representing multimedia data such 

as audio and video. For this reason, DTW is often 

used in applications involving multimedia data 

processing, such as speech processing and gait 

recognition although the distance measure is of high 

time complexity. As for the data normalization of 

time series, there are two types for the operation: 

min-max and z-score. The latter is preferred in data 

mining on time series since z-score normalization 

preserves the shape of a normalized sequence more 

closely that of the original sequence. 

After referring to the research studies (Ding et al., 

2008; Chen et al., 2009; Lian & Chen, 2009; Lin & 

McCool, 2010; Mueen et al., 2014; Vinh & Anh, 

2016; Chatzigeorgakidis et al., 2018; Yeh et al., 

2018; Zhu et al., 2018; Wang et al., 2019; Mollah et 

al., 2021; Yeh et al., 2022), we note that so far, no 

methods of similarity join over multiple time series 

under DTW, supporting z-score normalization have 

been introduced yet. It is likely that due to the huge 

computational costs deriving from computing both 

the DTW distance and z-score normalization, the 

researchers used other ways to solve the problem of 

similarity join over multiple time series at 

computational costs of rationality and 

inexpensiveness. Motivated by the above 

observation, this paper proposes a method of 

similarity join over two time series under DTW, 

supporting z-score normalization. The requirements 

for the proposed method are no false dismissals and 

quick responses to inquiries of the similarity join. 

The experimental evaluation of the method is drawn 

from experiments on the method with real time 

series. Concretely, the method is evaluated in terms 

of accuracy and execution time. 

The main contribution in this paper is a novel 

method of similarity join over multiple time series 

under DTW, supporting z-score normalization. The 

proposed method employs the following 

accelerative techniques:  

(i). A suite of state-of-the-art techniques for 

computing the DTW distance and a technique 

of incremental z-score normalization to 

decrease computational costs, and 

(ii). Multithreading to subdivide the process 

performing the similarity join into many threads 

executing this task simultaneously, thereby 

shortening execution time, and  

(iii).  A sliding window to constrain a scope for 

coupling similar subsequences from two time 

series, thereby reducing the number of the 

DTW distance calculations. 

The rest of the paper is organized as follows. Section 

2 provides notations and definitions necessary for 

the problem. Section 3 presents supporting 

techniques for the proposed method. Section 4 

proposes the method. Section 5 gives an overview 

of the experimental evaluation. Finally, Section 6 

provides conclusion and future work directions. 

2. NOTATIONS AND DEFINITIONS 

The problem of similarity join over multiple time 

series is formally posed under the following 

definitions. 

Definition 1. (Time series) Time series X is a series 

of real values collected in chronological order. For 

simplicity, X = {x1, x2,…, xn} for i = 1…n and 𝑥𝑖 ∈
ℝ; hence, |X| = n. Besides, xi is regarded as the data 

point ith of X. 

A subsequence C of X is a chronologically ordered 

subset of X. That means C={xp, xp + 1,…, xq} for 1 ≤ 

p and q ≤ n. For the sake of simplicity, let 𝑋𝑝
𝑞
 denote 

{xp, xp + 1,…, xq}; therefore, 𝐶 = 𝑋𝑝
𝑞
. After 𝑋𝑝

𝑞
 is 

normalized, we have its normalized time series; that 

is 𝑁𝑋𝑝
𝑞

= {𝑥𝑝̅̅ ̅, 𝑥𝑝+1̅̅ ̅̅ ̅̅ , … , 𝑥𝑞̅̅ ̅} where 𝑥𝑖̅ is the 

normalized data point of xi, and i = p…q. 

Table 1 depicts some notations, which are derived 

from two time series X and Y, necessary for the next 

definitions. 

Definition 2. (Similarity join over multiple time 

series) Given a distance threshold 𝜀 = 𝛼 ×
ℓ(𝑙𝑋𝑎𝑏, 𝑙𝑌𝑝𝑞), the problem of similarity join over 

multiple time series is to search for all the couples 

of subsequences (𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) such that 

𝑑𝑖𝑠𝑡(𝑁𝑋𝑎
𝑏 , 𝑁𝑌𝑝

𝑞
) ≤ 𝜀. If the inequality is satisfied, 

(𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) is a cross-similar couple. 
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Table 1.  Notations 

Notation Meaning 

minLength 

𝑋𝑎
𝑏, 𝑋𝑐

𝑑  

𝑌𝑝
𝑞

, 𝑌𝑢
𝑣  

lXab 

lXcd 

lYpq  

lYuv 

𝑁𝑋𝑎
𝑏 , 𝑁𝑌𝑝

𝑞
 

dist(x, y) 

α 

ℓ(𝑙𝑥 , 𝑙𝑦) 

The minimum length of interested subsequences 

Two subsequences of X 

Two subsequences of Y 

The length of 𝑋𝑎
𝑏, i.e., 𝑙𝑋𝑎𝑏 = |𝑋𝑎

𝑏| =  𝑏 − 𝑎 + 1  

The length of 𝑋𝑐
𝑑, i.e., 𝑙𝑋𝑐𝑑 = |𝑋𝑐

𝑑| =  𝑑 − 𝑐 + 1  

The length of 𝑌𝑝
𝑞
, i.e., 𝑙𝑌𝑝𝑞 = |𝑌𝑝

𝑞
| =  𝑞 − 𝑝 + 1 

The length of 𝑌𝑢
𝑣 , i.e., 𝑙𝑌𝑢𝑣 = |𝑌𝑢

𝑣| =  𝑣 − 𝑢 + 1 

The normalized time series of 𝑋𝑎
𝑏, and 𝑌𝑝

𝑞
, respectively 

A function measures the distance between two subsequences x and y 

A tuning parameter 

A function justifies that the similarity evaluation of two subsequences x and y, is 

significantly depended on their lengths, i.e., lx and ly 

Definition 3. (Overlap elimination) The problem of 

similarity join over multiple time series should 

eliminate cross-similar couples which overlap 

enormously together not to have trivial results. 

Two time-series subsequences overlap enormously 

together if they share a large portion of the common 

data points. Let β denote a ratio of enormous 

overlap, 0 < β ≤ 1. Assume that (𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) and (𝑋𝑐

𝑑, 

𝑌𝑢
𝑣) are two cross-similar couples. 𝑋𝑎

𝑏 and 𝑋𝑐
𝑑 

overlap enormously if they share at least ⌈𝛽 × 𝑙𝑋𝑎𝑏⌉ 
data points of 𝑋𝑎

𝑏 or ⌈𝛽 × 𝑙𝑋𝑐𝑑⌉ data points of 𝑋𝑐
𝑑. If 

𝑋𝑎
𝑏 and 𝑋𝑐

𝑑 overlap enormously, and 𝑌𝑝
𝑞
 and 𝑌𝑢

𝑣  does 

the same, the two cross-similar couples overlap 

enormously together. To obtain meaningful results, 

we must rule out one of the two couples in 

accordance with the following rules.  

1. The first couple is removed if lXab + lYpq < lXcd + 

lYuv; otherwise, the second one is eliminated. The 

couple pruned off is regarded as a trivial result. 

2. If lXab + lYpq = lXcd + lYuv, we check 

𝑑𝑖𝑠𝑡(𝑁𝑋𝑎
𝑏 , 𝑁𝑌𝑝

𝑞
) < 𝑑𝑖𝑠𝑡(𝑁𝑋𝑐

𝑑, 𝑁𝑌𝑢
𝑣). If the 

inequality is satisfied, (𝑋𝑐
𝑑, 𝑌𝑢

𝑣) is removed, and 

vice versa. In these ways, i.e., Rules 1 and 2, we 

can find out one cross-similar couple whose total 

length is largest or normalized subsequences are 

closer.  

3. A frequent case of the enormous overlap is that 

(𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) covers (𝑋𝑐

𝑑, 𝑌𝑢
𝑣) entirely; that is 𝑋𝑎

𝑏 ⊇

𝑋𝑐
𝑑 and 𝑌𝑝

𝑞
⊇ 𝑌𝑢

𝑣 . Accordingly, the second couple 

is eliminated. 

3. SUPPORTING TECHNIQUES 

The proposed method employs three techniques  

to improve runtime performance: UCR-DTW 

(Rakthanmanon et al., 2012)  to check the similarity 

of two time series under DTW, incremental z-score 

normalization (Giao & Anh, 2016), and multithreading. 

3.1. UCR-DTW 

Dynamic Time Warping (DTW) is a pervasive 

distance measure for two time series. The distance 

measure may map one data point of a time series to 

many data points of another to search for a minimum 

distance. In this way, the sum of distances of such 

couples of data points is minimum and is the DTW 

distance between two time series. It is obvious that 

DTW outperforms the Euclidean measure in terms 

of capability of detecting the similarity of two time 

series despite having a phase difference between 

them. Furthermore, DTW can work over two time 

series of different lengths. DTW is very suitable for 

multimedia data, such as text, voice signal, and 

video. Yet, DTW is of high time complexity, O(n2). 

UCR-DTW is a suite of state-of-the-art techniques 

to compute the DTW distance between two time 

series. UCR-DTW could alleviate the high time 

complexity of DTW using the Sakoe-Chiba band 

with a width of w to constrain the scope for mapping 

from one data point of a time series to many data 

points of another in the course of searching for a 

minimum distance. This is suitable for reality 

because one data point of a time series may hardly 

map to one data point, which is too far, of another. 

Moreover, UCR-DTW employs cheap-to-compute 

lower bounding functions to help relieve the high 

computational cost of DTW. The lower bounding 

functions enable UCR-DTW to prune off the 

dissimilar time series early. The evidence is proven 

as follows. Let LB(C, Q) be a lower-bound function 

of two time series C and Q, and DTW(C, Q) be the 

DTW distance between the two time series, we have 

LB(C, Q) ≤ DTW(C, Q). Given ε be a distance 
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threshold, if LB(C, Q) > ε is satisfied, C is certainly 

dissimilar to Q due to DTW(C, Q) > ε.  

The lower bounding functions in UCR-DTW are 

LB_Kim (Kim & Park, 2001) of the time complexity 

O(1), LB_Keogh (Keogh & Ratanamahatana, 2004) of 

O(n), and reversed LB_Keogh of O(n). The lower 

bounding functions are arranged in UCR-DTW such 

that front lower bounding functions of lower time 

complexities eliminate most couples of dissimilar 

time series. If the three lower bounding functions 

cannot filter out couples of dissimilar time series, 

the direct DTW computation will be performed to 

confirm whether the time-series couples are similar. 

Since UCR-DTW employs the above speedup 

techniques in the conjunctive manner, computing 

DTW is of early abandoning. As a result, the 

computational time of DTW using UCR-DTW is 

reduced dramatically.   

UCR-DTW needs to build the envelope of a time 

series so that LB_Keogh in UCR-DTW can operate. 

The envelope of time series X comprises two time 

series U and L standing for upper and lower bounds 

of X. Given the Sakoe-Chiba band whose width is 

w, the data points of U and L are computed as below. 

ui = max(xi – w : xi + w)  

li = min(xi – w : xi + w).  

Note that UCR-DTW uses the one-pass method of 

Lemire (Lemire, 2009) to construct the envelop of 

a time series. 

3.2. Incremental z-score normalization 

The technique of incremental z-score normalization 

is presented as follows. 

Z-score normalization maps a value x of time series 

X = {x1, x2, …, xn} to xnorm by computing 

𝑥norm =
𝑥 − 𝜇

𝜎
 

where 

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

      and  

𝜎2 =
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

− 𝜇2. 

Let define 
 

𝑥̂ = ∑ 𝑥𝑖
2.

𝑛

𝑖=1

 

Equation (4) can be expressed as  

𝜎2 =
𝑥̂

𝑛
− 𝜇2. 

Henceforth we regard 𝜇 and 𝜎 as z-score 

coefficients of time series. 

Assume that X slides forward, thereby causing X = 

{x2, x3, …, xn+1}. The new z-score coefficient 𝜇new 

of X is computed as below. 

𝜇new = 𝜇 +
𝑥𝑛+1 − 𝑥1

𝑛
 and 

  𝑥̂new = 𝑥̂ + 𝑥𝑛+1
2 − 𝑥1

2. 

𝜎new is then derived from (4) and (7). 

𝜎new
2 =

𝑥̂new

𝑛
− 𝜇new

2 . 

In this way, we do not need to compute the new z-

score coefficients of X from scratch. Thanks to this 

incremental computation, the time complexity of z-

score normalization declines from O(n) to O(1) 
when X slides forward step by step with each data 

point. 

3.3. Multithreading 

Multithreading is the ability of computing systems 

to handle simultaneously many tasks of a job 

executed by a process. To fulfil this ability, the 

process must create multiple threads of concurrent 

execution and each execution thread takes charge of 

a task. After all execution threads have completed, 

their results are aggregated to return the ultimate 

results for the process.  

It is worth noting that multithreading can be easily 

implemented in state-of-the-art processors and 

programming languages. Yet, to employ the 

advantages, the tasks should be less dependent on 

one another, and their loads should be distributed 

evenly to optimize the performance of processors. 

Furthermore, the number of execution threads must 

be approximate to that of threads of processors. For 

example, CPU AMD Ryzen 3 3250U has 2 cores 

and 4 threads so the number of execution threads of 

a program using multithreading should be 

approximate 4. If the number of execution threads is 

slightly larger than that of threads of processors, the 

program could perform a little faster, but not 

significantly. If there are too many execution 

threads, the program will work slower because the 

computing system needs to spend more time 

switching between the contexts of the execution 

threads. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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The problem of similarity join over time series 

might be subdivided into many execution threads. 

Each execution thread searches for cross-similar 

couples within a range of lengths. These ranges of 

lengths are separate and predefined by data analysts. 

4. PROPOSED METHOD 

Given minLength, α, and ℓ(𝑙𝑥 , 𝑙𝑦) described in 

Table 1, w being the width of the Sakoe-Chiba band, 

and β being the ratio of enormous overlap, the 

proposed method of similarity join over multiple 

time series under DTW is illustrated by Algorithm 

SJ-DTW. 

There are some things to explain Algorithm SJ-

DTW as follows. 

− In the beginning, the total data points of X and Y, 

n and m, are retrieved at Lines 1 and 2, respectively. 

The length region of the subsequences of X and Y, 

which are valid for the task of similarity join, is from 

minLength to maxLength. In the algorithm, 

maxLength is the minimum value of n and m. Note 

that maxLength might be an arbitrary value from 

minLength to min(n, m). The smaller maxLength is, 

the faster the task of similarity join performs 

because the number of searches done by UCR-DTW 

at Line 17 is fewer. 

Algorithm SJ-DTW(X and Y are two time series)     

1.  n ← |X| 

2.  m ← |Y| 

3.  maxLength ← min(n, m) 

4.  Compute the z-score coefficients, 𝜇 and 𝜎, of 𝑋1
𝑚𝑖𝑛𝐿𝑒𝑛𝑡ℎ and 𝑌1

𝑚𝑖𝑛𝐿𝑒𝑛𝑡ℎ 

5.  Construct the envelopes of X and Y 

6.  for len ← minLength to maxLength do 

7.     if len > minLength then 

8.         Update 𝜇 and 𝜎 of 𝑋1
𝑙𝑒𝑛 and 𝑌1

𝑙𝑒𝑛 incrementally 

9.     for i ← 1 to n – len + 1 do 

10.       if i > 2 then 

11.           Update 𝜇 and 𝜎 of 𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 incrementally 

12.       𝑁𝑋𝑖
𝑖+ 𝑙𝑒𝑛 –1 ← Normalize 𝑋𝑖

𝑖 + 𝑙𝑒𝑛 – 1 using 𝜇 and 𝜎 

13.       Sort the indices of data points of 𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 based on the absolute 

values of data points of 𝑁𝑋𝑖
𝑖+ 𝑙𝑒𝑛 –1 

14.       for j ← 1 to m – len + 1 do 

15.           if j > 2 then 

16.               Update 𝜇 and 𝜎 of 𝑌𝑗
𝑗+ 𝑙𝑒𝑛 –1

 incrementally 

17.           if UCR-DTW(𝑁𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1, 𝑁𝑌𝑗

𝑗 + 𝑙𝑒𝑛 – 1
) ≤ α × ℓ(𝑙𝑥, 𝑙𝑦) then 

18.               if couple (𝑋𝑖
𝑖 +  𝑙𝑒𝑛 – 1, 𝑌𝑗

𝑗 + 𝑙𝑒𝑛 – 1
)  does not overlap enormously with 

cross-similar couples found beforehand then 

19.                  (𝑋𝑖
𝑖+ 𝑙𝑒𝑛 –1, 𝑌𝑗

𝑗+ 𝑙𝑒𝑛 –1
 ) is a cross-similar couple        

− The z-score coefficients of the first 

subsequences of X and Y are computed at Line 4. 

Henceforth, the z-score coefficients of the 

subsequent subsequences of X and Y are updated 

incrementally at Lines 8, 11, and 16 to ease the 

computational costs of z-score normalization. 

− Using the width w of the Sakoe-Chiba band, the 

algorithm constructs the envelopes of X and Y at 

Line 5 because LB_Keogh and reversed LB_Keogh, the 

two lower bounding functions used in UCR-DTW, 

need them to work. The lower bounding functions 

work with the descending order of  the absolute 

values of data points of  𝑁𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 rather than the 

original order of the data points of the normalized 

subsequence so the absolute values are sorted and 

then the indices of data points after sorting are 

recorded at Line 13. LB_Keogh and reversed LB_Keogh 

work with such order of the data points of the 

normalized subsequence in order to accelerate 

UCR-DTW. 

− At Line 17, 𝑁𝑌𝑗
𝑗 + 𝑙𝑒𝑛 – 1

 is computed on the fly 

in performing UCR-DTW along with the z-score 
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coefficients of 𝑌𝑗
𝑗+ 𝑙𝑒𝑛 –1

 computed incrementally 

at Line 16. Moreover, because UCR-DTW works 

only with two time series of the same length, the 

function ℓ(𝑙𝑥 , 𝑙𝑦) has 𝑙𝑥 =  𝑙𝑦 = 𝑙𝑒𝑛. 

− β is used to check whether two couples overlap 

enormously together at Line 18. 

− The algorithm is of brute force approach that 

searches for cross-similar couples from all 

subsequences couples deriving from X and Y, not 

incurring false dismissals.  

− Because of the negligible computational cost of 

UCR-DTW, the time complexity of Algorithm SJ-

DTW is O(n3). 

There are two ways to accelerate the proposed 

method: 

1. Multithreading is used to improve the runtime 

performance of the method. Assume that the 

computing system can create k execution threads 

to handle simultaneously similarity join over two 

time series X and Y. The length region 

[minLength, maxLength] is subdivided into k 

separate subregion. The size of each subregion is 

𝑒 = ⌈
𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ−𝑚𝑖𝑛𝑙𝑒𝑛𝑔𝑡ℎ+1

𝑘
⌉ and the final 

subregion might be less than e elements. 

Execution thread i takes charges of the subregion 

of [minlengthi, maxlengthi]. Therefore, Lines 6 

and 7 of Algorithm SJ-DTW for execution thread 

i changes as below. 

6.for len ← minLengthi to maxLengthi 

do 

7.   if len > minLengthi then 

Such k execution threads can theoretically speed 

up the method to k times. 

2. It is worth noting that in fact a subsequence 

𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 could hardly similarly join with a 

subsequence 𝑌𝑗
𝑗 + 𝑙𝑒𝑛 – 1

 where the two 

subsequences are too far apart. That means if 

(𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1, 𝑌𝑗

𝑗 + 𝑙𝑒𝑛 – 1
) is a cross-similar couple, 

then we have |i – j| ≤ r where r is the 

predetermined half width of a window which 

constrains possibility to couple two similar 

subsequences deriving from X and Y. Therefore, 

for each value of i at Line 9, there is a 

constraining window in Y so that 𝑌𝑗
𝑗+ 𝑙𝑒𝑛 –1

 slides 

within this window. Line 14 manifests the 

constraining window as follows. 

14.       for j ← max(1, i – r) to 

min(m – len + 1, i + r)  do 

As a result, the number of invoking UCR-DTW 

at Line 17 slumps significantly. 

5. EXPERIMENTAL EVALUATION 

The section represents experiments on the proposed 

method to empirically evaluate the method in terms 

of accuracy and execution time. The experiments 

were carried out with a PC of Intel Core i7 6600U, 

and 16GB RAM. Note that the CPU has 2 cores and 

4 threads. The method was implemented in 

Microsoft C#. 

The parameters are set in the proposed method as 

follows. The width of the Sakoe-Chiba band in 

UCR-DTW is w = 5. The ratio of enormous overlap 

is β = 0.9. With respect to the distance threshold, 

𝜀 = ℓ(𝑙𝑥 , 𝑙𝑦) ×  𝛼, we use ℓ(𝑙𝑥 , 𝑙𝑦) = √
𝑙𝑥+𝑙𝑦

2
=

√𝑙𝑥. Regarding α and minLength, they are 

specifically determined for each experiment to reply 

to practical inquiries and be suitable for the concise 

visualization of cross-similar couples. Moreover, let 

(i : j) denote a subsequence from index ith to index 

jth of a time series to clarify the presentation of the 

experiments. 

The experiments on the proposed method are 

conducted with two pairs of real time series. The 

first is two time series of exchange rates, and the 

second is two time series of biosignal. These time-

series datasets may be downloaded from (Giao, 

Time-series datasets, 2022). 

5.1. Exchange rates of Australian Dollar (AUD) 

and Canadian Dollar (CAD) against United 

States Dollar (USD) 

The two time series, the monthly exchange rates of 

USD/AUD and USD/CAD from January 1971 to 

June 2023, are collected from (Pele, 2023). Each 

time series has 530 data points. The tuning 

parameter α is 0.1 in the experiment. The inquiry, 

which is posed here for similarity join over 

USD/AUD and USD/CAD, is to search for similar 

fluctuations of the two exchange rates which happen 

during periods lasting at least one year, i.e., 

minLength = 12. After the experiment has finished, 

the primary results are obtained as follows. There 

are 4 cross-similar couples; however, there is one 

case in which two cross-similar couples enormously 

overlap together. The trivial couple in this case is 

thus eliminated. 
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Table 2.  Details of the resulting couples 

Couple 
USD/AUD USD/CAD 

Length ED DTW ε 
Subsequence Start End Subsequence Start End 

1 (122:153) Feb-81 Sep-83 (145:176) Jan-83 Aug-85 32 0.967 0.564 0.566 

2 (363:417) Mar-01 Sep-05 (180:234) Dec-85 Jun-90 55 1.347 0.741 0.742 

3 (378:395) Jun-02 Nov-03 (378:395) Jun-02 Nov-03 18 0.707 0.415 0.424 

Table 2 reveals the details of the three resulting 

couples identified by the proposed method. For the 

first cross-similar couple, the table indicates that the 

monthly exchange rates of USD/AUD from 

February 1981 to September 1983 and those of 

USD/CAD from January 1983 to August 1985 

fluctuated nearly the same. The period of the event 

lasted 32 months. The DTW distance of the two 

normalized subsequences, which are (122:153) and 

(145:176), corresponding to the period is less than 

the distance threshold ε, i.e., 0.564 < 0.1 × √32 ≈
0.566. However, if the Euclidean distance (ED) is 

used, the couple is not cross similar because of 0.967 

> 0.566. The two remaining cross-similar couples 

are reasoned likewise. The result of the experiment 

also implies that if similarity join over USD/AUD 

and USD/CAD with minLength = 12 and 𝜀 =

0.1 × √𝑙𝑥 is conducted under ED, no cross-similar 

couples are found.   

Figure 1 illustrates the two time series and the 

similar subsequences detected by the proposed 

method. It is difficult to view the cross-similar 

couples because their subsequences have different 

altitudes and often occur at different positions. 

Figure 2 enables viewers to see the three cross-

similar couples more clearly after their 

subsequences are normalized. Note that the period 

of the first subsequence (363:417) of the second 

couple covers completely that of the first 

subsequence (378:395) of the third couple; 

however, the period of the second subsequence 

(180:234) of the second couple are entirely separate 

from that of the second subsequence (378:395) of 

the third couple. The two cross-similar couples are 

thus not trivial. In addition, the two subsequences of 

the third couple take place during the same period 

so the lines showing their normalized subsequences 

coincide as in Figure 2.  

 
Figure 2. Cross-similar couples after the normalization 

      

      

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                       

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                                

                        

                                

                       

                        

                        

                        

                        

                        

  

  

  

 

 

 

  

  

                        

  

  

 

 

 

                    
            

                    
            

        

                

 
Figure 1. Visualization of USD/AUD and USD/CAD and their similar subsequences 
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Figure 3 shows the execution times of the proposed 

method using k execution threads, where k is from 1 

to 10. For k = 1, the method works in the 

conventional fashion, i.e., single threading. When 

the method utilizes multithreading, i.e., k = 2, its 

runtime performance is improved dramatically. 

Since then, its runtime performance has a gradual 

improvement until k = 6. The runtime performance 

of the method has a tendency of a slight decline in 

case of k > 6. It is worth noting that every execution 

of the method with a specific value of k from 1 to 10 

makes 79,250,570 calls to UCR-DTW and returns 

the resulting couples, as in Table 2. 

Table 3.  Details of the resulting couples 

Couple 
infraredwave wirewave 

Length ED DTW ε 
Subsequence Subsequence 

1 (418:979) (425:986) 562 6.893 4.711 4.741 

2 (2,549:3,058) (2,560:3,069) 510 5.967 4.516 4.517 

3 (2,637:3,207) (2,646:3,216) 571 6.619 4.774 4.780 

5.2. Time series of biosignal 

The experiment works with the two time series, 

infraredwave and wirewave signals, from 

(Weigend, 2016). Each time series has 4,096 data 

points. In addition, the testbed for the experiment 

uses α = 0.2, and minLength = 500. 

In the beginning, the proposed method is 

implemented in the conventional fashion, i.e., k = 1. 

After the execution has finished, three resulting 

couples are detected and detailed in Table 3. We 

consider couple 1. The DTW distance of the two 

normalized subsequences is less than ε, i.e., 

4.711 < 0.2 × √562 ≈ 4.741; however, they are 

dissimilar in case ED is used due to 6.893 > 4.741. 

It is important to note that couple 2 overlaps couple 

3; yet they overlap not too much. Their overlap ratio 

is less than β = 0.9. The consequence of the 

experiment also implies that if similarity join over 

infraredwave and wirewave accompanied with 

minLength = 500 and 𝜀 = 0.2 × √𝑙𝑥  is performed 

under ED, no cross-similar couples are found. 

 
Figure 4. Visualization of infraredwave and wirewave and their similar subsequences 

    

    

    

    

    

   

   

   

   

                                                             

                                                                                            

 

Figure 3. Execution times of the proposed method 
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Figure 5. Cross-similar couples after the normalization 

 

Figure 4 illustrates the two time series, infraredwave 

and wirewave, and their similar subsequences 

identified by the proposed method. The 

subsequences of these couples are normalized and 

then shown in Figure 5 to highlight their similarity. 

The proposed method is also implemented using 

multithreading with various numbers of execution 

threads. Note that all these executions of the method 

using multithreading return the resulting couples as 

the same as those obtained by the execution of the 

method using single threading. Each execution of 

the method makes 15,519,622,195 calls to UCR-

DTW and handle 34,585 cases of enormous 

overlaps, thereby processing a huge bulk of load. 

Hence, besides multithreading, another accelerative 

technique should be used. 

Table 4.  Execution times of the proposed method 

in various sceneries 

#Execution 

thread 

(k) 

No 

constraining 

windows 

(d.h:m:s) 

Constraining 

window with r = 15 

(h:m:s) 

1 2.05:02:23 3:08:34 

2 1.18:02:19 2:03:00 

3 1.09:12:35 1:43:23 

4 1.05:27:53 1:32:45 

5 1.03:55:56 1:25:24 

6 1.03:04:02 1:25:01 

7 1.02:17:24 1:24:46 

8 1.02:25:26 1:24:46 

9 1.01:32:30 1:24:43 

10 1.01:31:27 1:24:32 

We use a constraining window with r =15 to reduce 

the number of UCR-DTW calls and this setting still 

enables the proposed method to return the resulting 

couples as in Table 3. The width of the constraining 

window is thus 2 × r + 1 = 31. The method using the 

constraining window invokes UCR-DTW 

199,738,933 times and handles 34,585 cases of 

enormous overlaps. Therefore, the constraining 

window and no constraining windows give the same 

number of enormous overlaps; however, the number 

of UCR-DTW calls in case of using the constraining 

window decreases by 99%. The workload of the 

method using the constraining window decreases 

dramatically, so the method returns results faster. 

Table 4 indicates the execution times of the 

proposed method in various sceneries. These 

sceneries are the method using single threading or 

multithreading, without constraining windows or 

using the constraining window with r = 15. The 

table shows that in case of single threading and no 

constraining windows, the execution time of the 

method is extremely huge, exceeding 2 days. Using 

multithreading and no constraining windows also 

speeds up the method; however, the execution times 

of the method are still over 1 day. If the method 

takes advantage of a constraining window with r = 

15, its execution times shortens significantly, about 

several hours. 

Figure 6 presents the speedups of the proposed 

method in various sceneries. The method using the 

constraining window with r = 15 has extremely 

good runtime performance. Notice that this happens 

for both similarity join over infraredwave and 

wirewave. When this task is conducted over other 

time-series pairs, we need to scrutinize the value of 

r to prevent false dismissals. For example, if the 

constraining window with r = 15 takes effect in the 

experiment presented in Subsection 5.1, the method 

will miss out couples 1 and 2 (see Table 2). Figure 

6 also reveals that the runtime performance of the 

method is negligibly enhanced in case of k > 6. It is 

noteworthy that the experiment is performed with 

the CPU of 4 threads, so the optimal value of k might 

be greater than 6 when the experiment is conducted 

with CPUs of many more threads. 
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Figure 6. Speedups of the proposed method in various sceneries 

6. CONCLUSION AND FUTURE WORK 

This paper has proposed a method of similarity join 

over multiple time series under DTW, supporting z-

score normalization. The manifestation of the 

method is Algorithm SJ-DTW searching for cross-

similar couples from all couples of subsequences of 

two time series. For this reason, the method does not 

get false dismissals. To accelerate the similarity 

join, the algorithm uses UCR-DTW for computing 

the DTW distance between two subsequences from 

the time series to check the property of cross 

similarity. Since UCR-DTW works with normalized 

subsequences and various lower bounding 

functions, a working environment suitable for UCR-

DTW needs establishing carefully. The algorithm 

facilitates data normalization by the technique of 

incremental z-score normalization and constructs 

the two envelopes of the time series once before 

scanning the two time series to search for cross-

similar couples. 

The proposed method employs multithreading to 

improve runtime performance. Each execution 

thread conducts similarity join on a length subregion 

which is separate with others. These execution 

threads work concurrently. In addition, regarding 

each case study of time series, the method might 

impose a constraining window on possibility of 

coupling two subsequences due to cross similarity, 

thereby having a fewer number of UCR-DTW calls. 

As a result, using a constraining window enables the 

method to enhance runtime performance. 

Combining these accelerative techniques makes the 

method return cross-similar couples quickly. The 

experimental evaluation of the method proves its 

effectiveness and efficiency in handling similarity 

join over multiple time series under DTW. 

In future work, we plan to enhance the runtime 

performance of the proposed method using GPU. 
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