
CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

1

DOI:10.22144/ctujoisd.2023.029

Similarity join over multiple time series under Dynamic Time Warping

Bui Cong Giao*

Faculty of Electronics and Telecommunications, Saigon University, Ho Chi Minh City, Viet Nam

*Corresponding author (bcgiao@sgu.edu.vn)

Article info. ABSTRACT

Received 11 Jul 2023

Revised 10 Sep 2023

Accepted 23 Sep 2023

Similarity join over multiple time series is an interesting task of data

mining. This task aims at identifying couples of similar subsequences from

multiple time series and the two subsequences might have any length and

be at any position in the time series. However, the task is extremely

challenging since the computational time to search for couples of similar

subsequences from two time series is very large. Moreover, the task needs

to normalize two subsequences before conducting a distance measure on

the normalized subsequences to consider the similar degree of the original

subsequences. To address the problem, this paper proposes a method of

similarity join over two time series under Dynamic Time Warping (DTW),

supporting z-score normalization. The proposed method utilizes both a

suite of state-of-the-art techniques for computing the DTW distance and a

technique of incremental z-score normalization to reduce the

computational costs. The method employs multithreading to improve

runtime performance. If similar subsequences from two time series may not

pair up because they are too far apart, the method might use a sliding

window to constrain a scope for coupling similar subsequences. The

experiments on the proposed method show that the method could return

similar subsequences quickly and incur no false dismissals.

Keywords

Data normalization, Dynamic

Time Warping, similarity join

1. INTRODUCTION

Similarity join or subsequence join over multiple

time series is a major task in time-series data

mining, which aims at identifying couples of similar

subsequences from the time series under a certain

measure. There are numerous methods of similarity

join over multiple time series under the Euclidean

distance (Lian & Chen, 2009; Chatzigeorgakidis et

al., 2018; Yeh et al., 2018; Zhu et al., 2018; Wang

et al., 2019; Yeh et al., 2022), or the Dynamic Time

Warping (DTW) distance (Chen et al., 2009; Lin &

McCool, 2010; Vinh & Anh, 2016), or the Fréchet

distance (Ding et al., 2008), or Pearson’s correlation

coefficient (Mueen et al., 2014; Mollah et al., 2021).

It is noteworthy that the task is very complicated

because two similar subsequences constituting a

combinable couple might have any length, and be at

any position in the time series. A naïve process to

conduct the task would consider all couples of

subsequences from the time series to evaluate the

similar degree of each two subsequences under a

predefined distance measure, thereby incurring huge

computational costs. In addition, to obtain accurate

results, the distance measure should be conducted

on normalized subsequences rather than their

original ones. However, the operation of data

normalization incurs additional computational costs

to the task.

The problem of similarity join over multiple time

series takes place in a wide spectrum of applications

including analysing stocks (Lian & Chen, 2009),

identifying spatial proximity and time series

similarity over geolocated time series

(Chatzigeorgakidis et al., 2018), synthesizing

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

2

motion (Ding et al., 2008; Chen et al., 2009), and

searching for similarly fluctuant patterns in

exchange rates (Mueen et al., 2014). This evidence

shows that the intricate problem is extremely

interesting, drawing much attention from

researchers specializing in data mining on time

series. For this reason, many research studies (Ding

et al., 2008; Chen et al., 2009; Lian & Chen, 2009;

Lin & McCool, 2010; Mueen et al., 2014; Vinh &

Anh, 2016; Chatzigeorgakidis et al., 2018; Yeh et

al., 2018; Zhu et al., 2018; Wang et al., 2019;

Mollah et al., 2021; Yeh et al., 2022) have been

investigating solutions to the problem.

In time-series data mining, the DTW distance

(Berndt & Clifford, 1994) is suitable for matching

two time series representing multimedia data such

as audio and video. For this reason, DTW is often

used in applications involving multimedia data

processing, such as speech processing and gait

recognition although the distance measure is of high

time complexity. As for the data normalization of

time series, there are two types for the operation:

min-max and z-score. The latter is preferred in data

mining on time series since z-score normalization

preserves the shape of a normalized sequence more

closely that of the original sequence.

After referring to the research studies (Ding et al.,

2008; Chen et al., 2009; Lian & Chen, 2009; Lin &

McCool, 2010; Mueen et al., 2014; Vinh & Anh,

2016; Chatzigeorgakidis et al., 2018; Yeh et al.,

2018; Zhu et al., 2018; Wang et al., 2019; Mollah et

al., 2021; Yeh et al., 2022), we note that so far, no

methods of similarity join over multiple time series

under DTW, supporting z-score normalization have

been introduced yet. It is likely that due to the huge

computational costs deriving from computing both

the DTW distance and z-score normalization, the

researchers used other ways to solve the problem of

similarity join over multiple time series at

computational costs of rationality and

inexpensiveness. Motivated by the above

observation, this paper proposes a method of

similarity join over two time series under DTW,

supporting z-score normalization. The requirements

for the proposed method are no false dismissals and

quick responses to inquiries of the similarity join.

The experimental evaluation of the method is drawn

from experiments on the method with real time

series. Concretely, the method is evaluated in terms

of accuracy and execution time.

The main contribution in this paper is a novel

method of similarity join over multiple time series

under DTW, supporting z-score normalization. The

proposed method employs the following

accelerative techniques:

(i). A suite of state-of-the-art techniques for

computing the DTW distance and a technique

of incremental z-score normalization to

decrease computational costs, and

(ii). Multithreading to subdivide the process

performing the similarity join into many threads

executing this task simultaneously, thereby

shortening execution time, and

(iii). A sliding window to constrain a scope for

coupling similar subsequences from two time

series, thereby reducing the number of the

DTW distance calculations.

The rest of the paper is organized as follows. Section

2 provides notations and definitions necessary for

the problem. Section 3 presents supporting

techniques for the proposed method. Section 4

proposes the method. Section 5 gives an overview

of the experimental evaluation. Finally, Section 6

provides conclusion and future work directions.

2. NOTATIONS AND DEFINITIONS

The problem of similarity join over multiple time

series is formally posed under the following

definitions.

Definition 1. (Time series) Time series X is a series

of real values collected in chronological order. For

simplicity, X = {x1, x2,…, xn} for i = 1…n and 𝑥𝑖 ∈
ℝ; hence, |X| = n. Besides, xi is regarded as the data

point ith of X.

A subsequence C of X is a chronologically ordered

subset of X. That means C={xp, xp + 1,…, xq} for 1 ≤

p and q ≤ n. For the sake of simplicity, let 𝑋𝑝
𝑞
 denote

{xp, xp + 1,…, xq}; therefore, 𝐶 = 𝑋𝑝
𝑞
. After 𝑋𝑝

𝑞
 is

normalized, we have its normalized time series; that

is 𝑁𝑋𝑝
𝑞

= {𝑥𝑝̅̅ ̅, 𝑥𝑝+1̅̅ ̅̅ ̅̅ , … , 𝑥𝑞̅̅ ̅} where 𝑥𝑖̅ is the

normalized data point of xi, and i = p…q.

Table 1 depicts some notations, which are derived

from two time series X and Y, necessary for the next

definitions.

Definition 2. (Similarity join over multiple time

series) Given a distance threshold 𝜀 = 𝛼 ×
ℓ(𝑙𝑋𝑎𝑏, 𝑙𝑌𝑝𝑞), the problem of similarity join over

multiple time series is to search for all the couples

of subsequences (𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) such that

𝑑𝑖𝑠𝑡(𝑁𝑋𝑎
𝑏 , 𝑁𝑌𝑝

𝑞
) ≤ 𝜀. If the inequality is satisfied,

(𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) is a cross-similar couple.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

3

Table 1. Notations

Notation Meaning

minLength

𝑋𝑎
𝑏, 𝑋𝑐

𝑑

𝑌𝑝
𝑞

, 𝑌𝑢
𝑣

lXab

lXcd

lYpq

lYuv

𝑁𝑋𝑎
𝑏 , 𝑁𝑌𝑝

𝑞

dist(x, y)

α

ℓ(𝑙𝑥 , 𝑙𝑦)

The minimum length of interested subsequences

Two subsequences of X

Two subsequences of Y

The length of 𝑋𝑎
𝑏, i.e., 𝑙𝑋𝑎𝑏 = |𝑋𝑎

𝑏| = 𝑏 − 𝑎 + 1

The length of 𝑋𝑐
𝑑, i.e., 𝑙𝑋𝑐𝑑 = |𝑋𝑐

𝑑| = 𝑑 − 𝑐 + 1

The length of 𝑌𝑝
𝑞
, i.e., 𝑙𝑌𝑝𝑞 = |𝑌𝑝

𝑞
| = 𝑞 − 𝑝 + 1

The length of 𝑌𝑢
𝑣 , i.e., 𝑙𝑌𝑢𝑣 = |𝑌𝑢

𝑣| = 𝑣 − 𝑢 + 1

The normalized time series of 𝑋𝑎
𝑏, and 𝑌𝑝

𝑞
, respectively

A function measures the distance between two subsequences x and y

A tuning parameter

A function justifies that the similarity evaluation of two subsequences x and y, is

significantly depended on their lengths, i.e., lx and ly

Definition 3. (Overlap elimination) The problem of

similarity join over multiple time series should

eliminate cross-similar couples which overlap

enormously together not to have trivial results.

Two time-series subsequences overlap enormously

together if they share a large portion of the common

data points. Let β denote a ratio of enormous

overlap, 0 < β ≤ 1. Assume that (𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) and (𝑋𝑐

𝑑,

𝑌𝑢
𝑣) are two cross-similar couples. 𝑋𝑎

𝑏 and 𝑋𝑐
𝑑

overlap enormously if they share at least ⌈𝛽 × 𝑙𝑋𝑎𝑏⌉
data points of 𝑋𝑎

𝑏 or ⌈𝛽 × 𝑙𝑋𝑐𝑑⌉ data points of 𝑋𝑐
𝑑. If

𝑋𝑎
𝑏 and 𝑋𝑐

𝑑 overlap enormously, and 𝑌𝑝
𝑞
 and 𝑌𝑢

𝑣 does

the same, the two cross-similar couples overlap

enormously together. To obtain meaningful results,

we must rule out one of the two couples in

accordance with the following rules.

1. The first couple is removed if lXab + lYpq < lXcd +

lYuv; otherwise, the second one is eliminated. The

couple pruned off is regarded as a trivial result.

2. If lXab + lYpq = lXcd + lYuv, we check

𝑑𝑖𝑠𝑡(𝑁𝑋𝑎
𝑏 , 𝑁𝑌𝑝

𝑞
) < 𝑑𝑖𝑠𝑡(𝑁𝑋𝑐

𝑑, 𝑁𝑌𝑢
𝑣). If the

inequality is satisfied, (𝑋𝑐
𝑑, 𝑌𝑢

𝑣) is removed, and

vice versa. In these ways, i.e., Rules 1 and 2, we

can find out one cross-similar couple whose total

length is largest or normalized subsequences are

closer.

3. A frequent case of the enormous overlap is that

(𝑋𝑎
𝑏, 𝑌𝑝

𝑞
) covers (𝑋𝑐

𝑑, 𝑌𝑢
𝑣) entirely; that is 𝑋𝑎

𝑏 ⊇

𝑋𝑐
𝑑 and 𝑌𝑝

𝑞
⊇ 𝑌𝑢

𝑣 . Accordingly, the second couple

is eliminated.

3. SUPPORTING TECHNIQUES

The proposed method employs three techniques

to improve runtime performance: UCR-DTW

(Rakthanmanon et al., 2012) to check the similarity

of two time series under DTW, incremental z-score

normalization (Giao & Anh, 2016), and multithreading.

3.1. UCR-DTW

Dynamic Time Warping (DTW) is a pervasive

distance measure for two time series. The distance

measure may map one data point of a time series to

many data points of another to search for a minimum

distance. In this way, the sum of distances of such

couples of data points is minimum and is the DTW

distance between two time series. It is obvious that

DTW outperforms the Euclidean measure in terms

of capability of detecting the similarity of two time

series despite having a phase difference between

them. Furthermore, DTW can work over two time

series of different lengths. DTW is very suitable for

multimedia data, such as text, voice signal, and

video. Yet, DTW is of high time complexity, O(n2).

UCR-DTW is a suite of state-of-the-art techniques

to compute the DTW distance between two time

series. UCR-DTW could alleviate the high time

complexity of DTW using the Sakoe-Chiba band

with a width of w to constrain the scope for mapping

from one data point of a time series to many data

points of another in the course of searching for a

minimum distance. This is suitable for reality

because one data point of a time series may hardly

map to one data point, which is too far, of another.

Moreover, UCR-DTW employs cheap-to-compute

lower bounding functions to help relieve the high

computational cost of DTW. The lower bounding

functions enable UCR-DTW to prune off the

dissimilar time series early. The evidence is proven

as follows. Let LB(C, Q) be a lower-bound function

of two time series C and Q, and DTW(C, Q) be the

DTW distance between the two time series, we have

LB(C, Q) ≤ DTW(C, Q). Given ε be a distance

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

4

threshold, if LB(C, Q) > ε is satisfied, C is certainly

dissimilar to Q due to DTW(C, Q) > ε.

The lower bounding functions in UCR-DTW are

LB_Kim (Kim & Park, 2001) of the time complexity

O(1), LB_Keogh (Keogh & Ratanamahatana, 2004) of

O(n), and reversed LB_Keogh of O(n). The lower

bounding functions are arranged in UCR-DTW such

that front lower bounding functions of lower time

complexities eliminate most couples of dissimilar

time series. If the three lower bounding functions

cannot filter out couples of dissimilar time series,

the direct DTW computation will be performed to

confirm whether the time-series couples are similar.

Since UCR-DTW employs the above speedup

techniques in the conjunctive manner, computing

DTW is of early abandoning. As a result, the

computational time of DTW using UCR-DTW is

reduced dramatically.

UCR-DTW needs to build the envelope of a time

series so that LB_Keogh in UCR-DTW can operate.

The envelope of time series X comprises two time

series U and L standing for upper and lower bounds

of X. Given the Sakoe-Chiba band whose width is

w, the data points of U and L are computed as below.

ui = max(xi – w : xi + w)

li = min(xi – w : xi + w).

Note that UCR-DTW uses the one-pass method of

Lemire (Lemire, 2009) to construct the envelop of

a time series.

3.2. Incremental z-score normalization

The technique of incremental z-score normalization

is presented as follows.

Z-score normalization maps a value x of time series

X = {x1, x2, …, xn} to xnorm by computing

𝑥norm =
𝑥 − 𝜇

𝜎

where

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 and

𝜎2 =
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

− 𝜇2.

Let define

𝑥̂ = ∑ 𝑥𝑖
2.

𝑛

𝑖=1

Equation (4) can be expressed as

𝜎2 =
𝑥̂

𝑛
− 𝜇2.

Henceforth we regard 𝜇 and 𝜎 as z-score

coefficients of time series.

Assume that X slides forward, thereby causing X =

{x2, x3, …, xn+1}. The new z-score coefficient 𝜇new

of X is computed as below.

𝜇new = 𝜇 +
𝑥𝑛+1 − 𝑥1

𝑛
 and

 𝑥̂new = 𝑥̂ + 𝑥𝑛+1
2 − 𝑥1

2.

𝜎new is then derived from (4) and (7).

𝜎new
2 =

𝑥̂new

𝑛
− 𝜇new

2 .

In this way, we do not need to compute the new z-

score coefficients of X from scratch. Thanks to this

incremental computation, the time complexity of z-

score normalization declines from O(n) to O(1)
when X slides forward step by step with each data

point.

3.3. Multithreading

Multithreading is the ability of computing systems

to handle simultaneously many tasks of a job

executed by a process. To fulfil this ability, the

process must create multiple threads of concurrent

execution and each execution thread takes charge of

a task. After all execution threads have completed,

their results are aggregated to return the ultimate

results for the process.

It is worth noting that multithreading can be easily

implemented in state-of-the-art processors and

programming languages. Yet, to employ the

advantages, the tasks should be less dependent on

one another, and their loads should be distributed

evenly to optimize the performance of processors.

Furthermore, the number of execution threads must

be approximate to that of threads of processors. For

example, CPU AMD Ryzen 3 3250U has 2 cores

and 4 threads so the number of execution threads of

a program using multithreading should be

approximate 4. If the number of execution threads is

slightly larger than that of threads of processors, the

program could perform a little faster, but not

significantly. If there are too many execution

threads, the program will work slower because the

computing system needs to spend more time

switching between the contexts of the execution

threads.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

5

The problem of similarity join over time series

might be subdivided into many execution threads.

Each execution thread searches for cross-similar

couples within a range of lengths. These ranges of

lengths are separate and predefined by data analysts.

4. PROPOSED METHOD

Given minLength, α, and ℓ(𝑙𝑥 , 𝑙𝑦) described in

Table 1, w being the width of the Sakoe-Chiba band,

and β being the ratio of enormous overlap, the

proposed method of similarity join over multiple

time series under DTW is illustrated by Algorithm

SJ-DTW.

There are some things to explain Algorithm SJ-

DTW as follows.

− In the beginning, the total data points of X and Y,

n and m, are retrieved at Lines 1 and 2, respectively.

The length region of the subsequences of X and Y,

which are valid for the task of similarity join, is from

minLength to maxLength. In the algorithm,

maxLength is the minimum value of n and m. Note

that maxLength might be an arbitrary value from

minLength to min(n, m). The smaller maxLength is,

the faster the task of similarity join performs

because the number of searches done by UCR-DTW

at Line 17 is fewer.

Algorithm SJ-DTW(X and Y are two time series)

1. n ← |X|

2. m ← |Y|

3. maxLength ← min(n, m)

4. Compute the z-score coefficients, 𝜇 and 𝜎, of 𝑋1
𝑚𝑖𝑛𝐿𝑒𝑛𝑡ℎ and 𝑌1

𝑚𝑖𝑛𝐿𝑒𝑛𝑡ℎ

5. Construct the envelopes of X and Y

6. for len ← minLength to maxLength do

7. if len > minLength then

8. Update 𝜇 and 𝜎 of 𝑋1
𝑙𝑒𝑛 and 𝑌1

𝑙𝑒𝑛 incrementally

9. for i ← 1 to n – len + 1 do

10. if i > 2 then

11. Update 𝜇 and 𝜎 of 𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 incrementally

12. 𝑁𝑋𝑖
𝑖+ 𝑙𝑒𝑛 –1 ← Normalize 𝑋𝑖

𝑖 + 𝑙𝑒𝑛 – 1 using 𝜇 and 𝜎

13. Sort the indices of data points of 𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 based on the absolute

values of data points of 𝑁𝑋𝑖
𝑖+ 𝑙𝑒𝑛 –1

14. for j ← 1 to m – len + 1 do

15. if j > 2 then

16. Update 𝜇 and 𝜎 of 𝑌𝑗
𝑗+ 𝑙𝑒𝑛 –1

 incrementally

17. if UCR-DTW(𝑁𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1, 𝑁𝑌𝑗

𝑗 + 𝑙𝑒𝑛 – 1
) ≤ α × ℓ(𝑙𝑥, 𝑙𝑦) then

18. if couple (𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1, 𝑌𝑗

𝑗 + 𝑙𝑒𝑛 – 1
) does not overlap enormously with

cross-similar couples found beforehand then

19. (𝑋𝑖
𝑖+ 𝑙𝑒𝑛 –1, 𝑌𝑗

𝑗+ 𝑙𝑒𝑛 –1
) is a cross-similar couple

− The z-score coefficients of the first

subsequences of X and Y are computed at Line 4.

Henceforth, the z-score coefficients of the

subsequent subsequences of X and Y are updated

incrementally at Lines 8, 11, and 16 to ease the

computational costs of z-score normalization.

− Using the width w of the Sakoe-Chiba band, the

algorithm constructs the envelopes of X and Y at

Line 5 because LB_Keogh and reversed LB_Keogh, the

two lower bounding functions used in UCR-DTW,

need them to work. The lower bounding functions

work with the descending order of the absolute

values of data points of 𝑁𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 rather than the

original order of the data points of the normalized

subsequence so the absolute values are sorted and

then the indices of data points after sorting are

recorded at Line 13. LB_Keogh and reversed LB_Keogh

work with such order of the data points of the

normalized subsequence in order to accelerate

UCR-DTW.

− At Line 17, 𝑁𝑌𝑗
𝑗 + 𝑙𝑒𝑛 – 1

 is computed on the fly

in performing UCR-DTW along with the z-score

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

6

coefficients of 𝑌𝑗
𝑗+ 𝑙𝑒𝑛 –1

 computed incrementally

at Line 16. Moreover, because UCR-DTW works

only with two time series of the same length, the

function ℓ(𝑙𝑥 , 𝑙𝑦) has 𝑙𝑥 = 𝑙𝑦 = 𝑙𝑒𝑛.

− β is used to check whether two couples overlap

enormously together at Line 18.

− The algorithm is of brute force approach that

searches for cross-similar couples from all

subsequences couples deriving from X and Y, not

incurring false dismissals.

− Because of the negligible computational cost of

UCR-DTW, the time complexity of Algorithm SJ-

DTW is O(n3).

There are two ways to accelerate the proposed

method:

1. Multithreading is used to improve the runtime

performance of the method. Assume that the

computing system can create k execution threads

to handle simultaneously similarity join over two

time series X and Y. The length region

[minLength, maxLength] is subdivided into k

separate subregion. The size of each subregion is

𝑒 = ⌈
𝑚𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ−𝑚𝑖𝑛𝑙𝑒𝑛𝑔𝑡ℎ+1

𝑘
⌉ and the final

subregion might be less than e elements.

Execution thread i takes charges of the subregion

of [minlengthi, maxlengthi]. Therefore, Lines 6

and 7 of Algorithm SJ-DTW for execution thread

i changes as below.

6.for len ← minLengthi to maxLengthi

do

7. if len > minLengthi then

Such k execution threads can theoretically speed

up the method to k times.

2. It is worth noting that in fact a subsequence

𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1 could hardly similarly join with a

subsequence 𝑌𝑗
𝑗 + 𝑙𝑒𝑛 – 1

 where the two

subsequences are too far apart. That means if

(𝑋𝑖
𝑖 + 𝑙𝑒𝑛 – 1, 𝑌𝑗

𝑗 + 𝑙𝑒𝑛 – 1
) is a cross-similar couple,

then we have |i – j| ≤ r where r is the

predetermined half width of a window which

constrains possibility to couple two similar

subsequences deriving from X and Y. Therefore,

for each value of i at Line 9, there is a

constraining window in Y so that 𝑌𝑗
𝑗+ 𝑙𝑒𝑛 –1

 slides

within this window. Line 14 manifests the

constraining window as follows.

14. for j ← max(1, i – r) to

min(m – len + 1, i + r) do

As a result, the number of invoking UCR-DTW

at Line 17 slumps significantly.

5. EXPERIMENTAL EVALUATION

The section represents experiments on the proposed

method to empirically evaluate the method in terms

of accuracy and execution time. The experiments

were carried out with a PC of Intel Core i7 6600U,

and 16GB RAM. Note that the CPU has 2 cores and

4 threads. The method was implemented in

Microsoft C#.

The parameters are set in the proposed method as

follows. The width of the Sakoe-Chiba band in

UCR-DTW is w = 5. The ratio of enormous overlap

is β = 0.9. With respect to the distance threshold,

𝜀 = ℓ(𝑙𝑥 , 𝑙𝑦) × 𝛼, we use ℓ(𝑙𝑥 , 𝑙𝑦) = √
𝑙𝑥+𝑙𝑦

2
=

√𝑙𝑥. Regarding α and minLength, they are

specifically determined for each experiment to reply

to practical inquiries and be suitable for the concise

visualization of cross-similar couples. Moreover, let

(i : j) denote a subsequence from index ith to index

jth of a time series to clarify the presentation of the

experiments.

The experiments on the proposed method are

conducted with two pairs of real time series. The

first is two time series of exchange rates, and the

second is two time series of biosignal. These time-

series datasets may be downloaded from (Giao,

Time-series datasets, 2022).

5.1. Exchange rates of Australian Dollar (AUD)

and Canadian Dollar (CAD) against United

States Dollar (USD)

The two time series, the monthly exchange rates of

USD/AUD and USD/CAD from January 1971 to

June 2023, are collected from (Pele, 2023). Each

time series has 530 data points. The tuning

parameter α is 0.1 in the experiment. The inquiry,

which is posed here for similarity join over

USD/AUD and USD/CAD, is to search for similar

fluctuations of the two exchange rates which happen

during periods lasting at least one year, i.e.,

minLength = 12. After the experiment has finished,

the primary results are obtained as follows. There

are 4 cross-similar couples; however, there is one

case in which two cross-similar couples enormously

overlap together. The trivial couple in this case is

thus eliminated.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

7

Table 2. Details of the resulting couples

Couple
USD/AUD USD/CAD

Length ED DTW ε
Subsequence Start End Subsequence Start End

1 (122:153) Feb-81 Sep-83 (145:176) Jan-83 Aug-85 32 0.967 0.564 0.566

2 (363:417) Mar-01 Sep-05 (180:234) Dec-85 Jun-90 55 1.347 0.741 0.742

3 (378:395) Jun-02 Nov-03 (378:395) Jun-02 Nov-03 18 0.707 0.415 0.424

Table 2 reveals the details of the three resulting

couples identified by the proposed method. For the

first cross-similar couple, the table indicates that the

monthly exchange rates of USD/AUD from

February 1981 to September 1983 and those of

USD/CAD from January 1983 to August 1985

fluctuated nearly the same. The period of the event

lasted 32 months. The DTW distance of the two

normalized subsequences, which are (122:153) and

(145:176), corresponding to the period is less than

the distance threshold ε, i.e., 0.564 < 0.1 × √32 ≈
0.566. However, if the Euclidean distance (ED) is

used, the couple is not cross similar because of 0.967

> 0.566. The two remaining cross-similar couples

are reasoned likewise. The result of the experiment

also implies that if similarity join over USD/AUD

and USD/CAD with minLength = 12 and 𝜀 =

0.1 × √𝑙𝑥 is conducted under ED, no cross-similar

couples are found.

Figure 1 illustrates the two time series and the

similar subsequences detected by the proposed

method. It is difficult to view the cross-similar

couples because their subsequences have different

altitudes and often occur at different positions.

Figure 2 enables viewers to see the three cross-

similar couples more clearly after their

subsequences are normalized. Note that the period

of the first subsequence (363:417) of the second

couple covers completely that of the first

subsequence (378:395) of the third couple;

however, the period of the second subsequence

(180:234) of the second couple are entirely separate

from that of the second subsequence (378:395) of

the third couple. The two cross-similar couples are

thus not trivial. In addition, the two subsequences of

the third couple take place during the same period

so the lines showing their normalized subsequences

coincide as in Figure 2.

Figure 2. Cross-similar couples after the normalization

Figure 1. Visualization of USD/AUD and USD/CAD and their similar subsequences

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

8

Figure 3 shows the execution times of the proposed

method using k execution threads, where k is from 1

to 10. For k = 1, the method works in the

conventional fashion, i.e., single threading. When

the method utilizes multithreading, i.e., k = 2, its

runtime performance is improved dramatically.

Since then, its runtime performance has a gradual

improvement until k = 6. The runtime performance

of the method has a tendency of a slight decline in

case of k > 6. It is worth noting that every execution

of the method with a specific value of k from 1 to 10

makes 79,250,570 calls to UCR-DTW and returns

the resulting couples, as in Table 2.

Table 3. Details of the resulting couples

Couple
infraredwave wirewave

Length ED DTW ε
Subsequence Subsequence

1 (418:979) (425:986) 562 6.893 4.711 4.741

2 (2,549:3,058) (2,560:3,069) 510 5.967 4.516 4.517

3 (2,637:3,207) (2,646:3,216) 571 6.619 4.774 4.780

5.2. Time series of biosignal

The experiment works with the two time series,

infraredwave and wirewave signals, from

(Weigend, 2016). Each time series has 4,096 data

points. In addition, the testbed for the experiment

uses α = 0.2, and minLength = 500.

In the beginning, the proposed method is

implemented in the conventional fashion, i.e., k = 1.

After the execution has finished, three resulting

couples are detected and detailed in Table 3. We

consider couple 1. The DTW distance of the two

normalized subsequences is less than ε, i.e.,

4.711 < 0.2 × √562 ≈ 4.741; however, they are

dissimilar in case ED is used due to 6.893 > 4.741.

It is important to note that couple 2 overlaps couple

3; yet they overlap not too much. Their overlap ratio

is less than β = 0.9. The consequence of the

experiment also implies that if similarity join over

infraredwave and wirewave accompanied with

minLength = 500 and 𝜀 = 0.2 × √𝑙𝑥 is performed

under ED, no cross-similar couples are found.

Figure 4. Visualization of infraredwave and wirewave and their similar subsequences

Figure 3. Execution times of the proposed method

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

9

Figure 5. Cross-similar couples after the normalization

Figure 4 illustrates the two time series, infraredwave

and wirewave, and their similar subsequences

identified by the proposed method. The

subsequences of these couples are normalized and

then shown in Figure 5 to highlight their similarity.

The proposed method is also implemented using

multithreading with various numbers of execution

threads. Note that all these executions of the method

using multithreading return the resulting couples as

the same as those obtained by the execution of the

method using single threading. Each execution of

the method makes 15,519,622,195 calls to UCR-

DTW and handle 34,585 cases of enormous

overlaps, thereby processing a huge bulk of load.

Hence, besides multithreading, another accelerative

technique should be used.

Table 4. Execution times of the proposed method

in various sceneries

#Execution

thread

(k)

No

constraining

windows

(d.h:m:s)

Constraining

window with r = 15

(h:m:s)

1 2.05:02:23 3:08:34

2 1.18:02:19 2:03:00

3 1.09:12:35 1:43:23

4 1.05:27:53 1:32:45

5 1.03:55:56 1:25:24

6 1.03:04:02 1:25:01

7 1.02:17:24 1:24:46

8 1.02:25:26 1:24:46

9 1.01:32:30 1:24:43

10 1.01:31:27 1:24:32

We use a constraining window with r =15 to reduce

the number of UCR-DTW calls and this setting still

enables the proposed method to return the resulting

couples as in Table 3. The width of the constraining

window is thus 2 × r + 1 = 31. The method using the

constraining window invokes UCR-DTW

199,738,933 times and handles 34,585 cases of

enormous overlaps. Therefore, the constraining

window and no constraining windows give the same

number of enormous overlaps; however, the number

of UCR-DTW calls in case of using the constraining

window decreases by 99%. The workload of the

method using the constraining window decreases

dramatically, so the method returns results faster.

Table 4 indicates the execution times of the

proposed method in various sceneries. These

sceneries are the method using single threading or

multithreading, without constraining windows or

using the constraining window with r = 15. The

table shows that in case of single threading and no

constraining windows, the execution time of the

method is extremely huge, exceeding 2 days. Using

multithreading and no constraining windows also

speeds up the method; however, the execution times

of the method are still over 1 day. If the method

takes advantage of a constraining window with r =

15, its execution times shortens significantly, about

several hours.

Figure 6 presents the speedups of the proposed

method in various sceneries. The method using the

constraining window with r = 15 has extremely

good runtime performance. Notice that this happens

for both similarity join over infraredwave and

wirewave. When this task is conducted over other

time-series pairs, we need to scrutinize the value of

r to prevent false dismissals. For example, if the

constraining window with r = 15 takes effect in the

experiment presented in Subsection 5.1, the method

will miss out couples 1 and 2 (see Table 2). Figure

6 also reveals that the runtime performance of the

method is negligibly enhanced in case of k > 6. It is

noteworthy that the experiment is performed with

the CPU of 4 threads, so the optimal value of k might

be greater than 6 when the experiment is conducted

with CPUs of many more threads.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

10

Figure 6. Speedups of the proposed method in various sceneries

6. CONCLUSION AND FUTURE WORK

This paper has proposed a method of similarity join

over multiple time series under DTW, supporting z-

score normalization. The manifestation of the

method is Algorithm SJ-DTW searching for cross-

similar couples from all couples of subsequences of

two time series. For this reason, the method does not

get false dismissals. To accelerate the similarity

join, the algorithm uses UCR-DTW for computing

the DTW distance between two subsequences from

the time series to check the property of cross

similarity. Since UCR-DTW works with normalized

subsequences and various lower bounding

functions, a working environment suitable for UCR-

DTW needs establishing carefully. The algorithm

facilitates data normalization by the technique of

incremental z-score normalization and constructs

the two envelopes of the time series once before

scanning the two time series to search for cross-

similar couples.

The proposed method employs multithreading to

improve runtime performance. Each execution

thread conducts similarity join on a length subregion

which is separate with others. These execution

threads work concurrently. In addition, regarding

each case study of time series, the method might

impose a constraining window on possibility of

coupling two subsequences due to cross similarity,

thereby having a fewer number of UCR-DTW calls.

As a result, using a constraining window enables the

method to enhance runtime performance.

Combining these accelerative techniques makes the

method return cross-similar couples quickly. The

experimental evaluation of the method proves its

effectiveness and efficiency in handling similarity

join over multiple time series under DTW.

In future work, we plan to enhance the runtime

performance of the proposed method using GPU.

ACKNOWLEDGMENT

This research is funded by Saigon University (SGU)

under grant number CSB2022-47.

REFERENCES

Berndt, D. J., & Clifford, J. (1994). Using Dynamic

Time Warping to find patterns in time series. AAAI-

94 Workshop on Knowledge Discovery in Databases

(pp. 359-370). Seattle, Washington, USA: AAAI

Press. doi:10.5555/3000850.3000887

Chatzigeorgakidis, G., Patroumpas, K., Skoutas, D.,

Athanasiou, S., & Skiadopoulos, S. (2018). Scalable

hybrid similarity join over geolocated time series.

Proceedings of the 26th ACM SIGSPATIAL

International Conference on Advances in

Geographic Information Systems, (pp. 119-128).

Seattle Washington, USA. doi:

10.1145/3274895.3274949

Chen, Y., Chen, G., Chen, K., & Ooi, B. C. (2009).

Efficient processing of warping time series join of

motion capture data. 2009 IEEE 25th International

Conference on Data Engineering (pp. 1048 - 1059).

Shanghai, China: IEEE. doi:10.1109/ICDE.2009.20

Ding, H., Trajcevski, G., & Scheuermann, P. (2008).

Efficient similarity join of large sets of moving

object trajectories. 2008 15th International

Symposium on Temporal Representation and

Reasoning, (pp. 79-87). Montreal, QC, Canada.

doi:10.1109/TIME.2008.25

Giao, B. C. (2022). Time-series datasets.

doi:0.13140/RG.2.2.12512.15360

Giao, B. C., & Anh, D. T. (2016). Similarity search for

numerous patterns over multiple time series streams

under dynamic time warping which supports data

normalization. Vietnam Journal of Computer

Science, 3(3), 181-196. doi:10.1007/s40595-016-

0062-4

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 1-11

11

Keogh, E., & Ratanamahatana, C. A. (2004). Exact

indexing of Dynamic Time Warping. Knowledge and

Information Systems, 7(3), 358-386.

doi:10.1007/s10115-004-0154-9

Kim, S. W., & Park, S. (2001). An index-based approach

for similarity search supporting time warping in

large sequence databases. Proceedings of the 17th

IEEE International Conferenceon Data Engineering,

(pp. 607-614). Heidelberg, Germany.

doi:10.1109/ICDE.2001.914875

Lemire, D. (2009). Faster retrieval with a two-pass

dynamic-time-warping lower bound. Pattern

Recognition, 42(9), 2169-2180.

doi:10.1016/j.patcog.2008.11.030

Lian, X., & Chen, L. (2009). Efficient similarity join

over multiple stream time series. IEEE Transactions

on Knowledge and Data Engineering, 21(11), 1544-

1558. doi:10.1109/TKDE.2009.27

Lin, Y., & McCool, M. D. (2010). Subseries join: A

similarity-based time series match approach. 14th

Pacific-Asia Conference, PAKDD 2010 (pp. 238-

245). Springer Berlin Heidelberg. doi:10.1007/978-

3-642-13657-3_27

Mollah, M., Souza, V., & Mueen, A. (2021). Multi-way

time series join on multi-length patterns. 2021 IEEE

International Conference on Data Mining (ICDM),

(pp. 429-438). Auckland, New Zealand.

doi:10.1109/ICDM51629.2021.00054

Mueen, A., Hossein, H., & Trilce, E. (2014). Time series

join on subsequence correlation. Proceedings of

2014 IEEE International Conference on Data

Mining (pp. 450-459). Shenzhen, China: IEEE.

doi:10.1109/ICDM.2014.52

Pele, L. (2023). Currency converter using official

exchange rates. https://fxtop.com/

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,

Westover, B., Zhu, Q., . . . Keogh, E. (2012).

Searching and mining trillions of time series

subsequences under Dynamic Time Warping.

Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining (KDD '12) (pp. 262-270). Beijing, China:

ACM. doi:10.1145/2339530.2339576

Vinh, V. D., & Anh, D. T. (2016). Efficient subsequence

join over time series under Dynamic Time Warping.

Recent Developments in Intelligent Information and

Database Systems, (pp. 41-52). doi:10.1007/978-3-

319-31277-4_4

Wang, J., Li, Q., Li, Z., Wang, P., Wang, Y., Wang, W.,

. . . Chi, M. (2019). Similarity join on time series by

utilizing a dynamic segmentation index. Knowledge

and Information Systems, 61(2019), 1517-1546.

doi:10.1007/s10115-018-1317-4

Weigend, A. S. (2016). Time series prediction:

Forecasting the future and understanding the past.

http://www-psych.stanford.edu/~andreas/Time-

Series/SantaFe.html. Accessed December 2016

Yeh, C. C. M., Zheng, Y., Wang, J., Chen, H., Zhuang,

Z., Zhang, W., & Keogh, E. (2022). Error-bounded

approximate time series joins using compact

dictionary representations of time series.

Proceedings of the 2022 SIAM International

Conference on Data Mining (SDM), (pp. 181-189).

Alexandria, VA, USA.

doi:10.1137/1.9781611977172

Yeh, C. C. M., Zhu, Y., Ulanova, L., Begum, N., Ding,

Y., Dau, H. A., . . . Keogh, E. (2018). Time series

joins, motifs, discords and shapelets: a unifying view

that exploits the matrix profile. Data Mining and

Knowledge Discovery, 32(1), 83-123.

doi:10.1007/s10618-017-0519-9

Zhu, Y., Zimmerman, Z., Senobari, N. S., Yeh, C.-C. M.,

Funning, G., Mueen, A., . . . Keogh, E. (2018).

Exploiting a novel algorithm and GPUs to break the

ten quadrillion pairwise comparisons barrier for time

series motifs and joins. Knowledge and Information

Systems, 54(2018), 203-236. doi:10.1007/s10115-

017-1138-x

