
CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

12

DOI:10.22144/ctujoisd.2023.030

An interpretable approach for trustworthy intrusion detection systems against

evasion samples

Nguyen Ngoc Tai, Hien Do Hoang, Phan The Duy, and Van-Hau Pham*

Information Security Laboratory, University of Information Technology, Ho Chi Minh city, Viet Nam

Viet Nam National University Ho Chi Minh city, Viet Nam

*Corresponding author (haupv@uit.edu.vn)

Article info. ABSTRACT

Received 5 Aug 2023

Revised 10 Sep 2023

Accepted 27 Sep 2023

In recent years, Deep Neural Networks (DNN) have demonstrated

remarkable success in various domains, including Intrusion Detection

Systems (IDS). The ability of DNN to learn complex patterns from large

datasets has significantly improved IDS performance, leading to more

accurate and efficient threat detection. Despite their effectiveness, DNN

models exhibit vulnerabilities to adversarial attacks, where malicious

inputs are specifically crafted to deceive the models and evade detection.

This paper provides insights into the effectiveness of deep learning-based

IDS (DL-IDS) against adversarial example (AE) attacks. We tackle the

weaknesses of DNN in detecting adversarial attacks by proposing the

Convolutional Neural Network (CNN), which serves as an AE detector. We

also utilize one of the XAI techniques, specifically SHAP, to enhance the

transparency of the AE detector. Our results show that the AE detector has

obvious effects for detecting adversarial examples and achieves an

impressive 99.46% accuracy in our experimental environment.

Keywords

Machine learning, XAI,

intrusion detection,

adversarial sample

1. INTRODUCTION

According to recent studies (Sun et al., 2020;

Otoum, 2022), the Deep Learning based Intrusion

Detection System (DL-IDS) performs exceptionally

well. However, a notable weakness of Deep

Learning (DL) models is their vulnerability to

adversarial attacks. These attacks manipulate or

deceive DL models by adding subtle perturbations

to the data input (Liang, 2022). This can cause

misclassification and failure of intrusion detection

to DL models, compromising security systems. To

find solutions to prevent these attacks, several

studies (Ko, 2021; Wang N. A., 2022) have been

conducted and showed promising outcomes. Yet,

there are still critical concerns regarding the lack of

transparency in their adversarial example (AE)

pattern detection methods.

Explainable Artificial Intelligence (XAI) is a branch

of artificial intelligence research that focuses on

developing models and methods capable of

providing understandable and transparent

explanations for the decision-making processes of

machine learning models. In the cybersecurity

domain, XAI can achieve transparency of models or

enhance model performance, as well as explain

errors made by classifiers (Capuano, 2022). There

are studies (Peng, 2022) (Le, 2022) utilizing XAI to

enhance the transparency of DL-IDS. However,

there is still no research using XAI to increase the

transparency of AE detection methods. Our work

contributes primarily to addressing this knowledge

gap by:

− Exploring the impact of highlight features on the

model's effectiveness against AE attacks.

− Developing an AE detector that can distinguish

between benign and adversarial samples.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

13

− Applying an XAI method, specifically SHAP

framework (Lundberg, 2017), to explain the AE

detector predictions, aiming to enhance the

transparency of the detector.

The rest of this paper is structured as follows.

Section 2 introduces related studies on using XAI to

explain Machine Learning/Deep Learning IDS and

adversarial attack detection methods. In Section 3,

we present the details of our approach. Section 4

describes experiment settings and results. Finally,

we illustrate our discussion, conclusion, and future

work in Section 5.

2. RELATED WORK

Ko and Lim (Ko, 2021) proposed a method that used

model explanation to detect adversarial examples

and did not rely on pre-generated adversarial

samples. First, they used the saliency map method

to generate input explanations. Second, they used

generated explanations to train their reconstructor

networks. Finally, they used the reconstructor

networks to separate normal and adversarial

examples. They conducted experiments on the

MNIST handwritten digit dataset and applied attack

techniques such as the Fast Gradient Sign Method

(FGSM), Projected Gradient Descent (PGD), and

Momentum Iterative Method (MIM). Their method

achieved the adversarial example detection rates

99.23% on FGSM with an epsilon of 0.1, 95.73%

with an epsilon of 0.2, 96.93% with an epsilon of

0.3, and 98.39% on Basic Iterative Method (BIM)

with an epsilon of 0.1, 98.94% with an epsilon of

0.2, 99.01% with an epsilon of 0.3.

Wang (2022) leveraged SHapley Additive

exPlanations (SHAP) values to discriminate

between normal and adversarial samples. First, they

created a data set of benign and adversarial

examples from popular datasets via a Generating

Adversarial Example algorithm. The algorithm

utilized well-known attack techniques, such as the

Fast Gradient Sign Method (FGSM), Basic Iterative

Method (BIM), and Carlini and Wagner (C&W), to

create adversarial examples. Second, they generated

SHAP values for this data set by SHAP

DeepExplainer and referred to them as an XAI

signature data set. Finally, they used the XAI

signature data set to train a fully connected feed-

forward neural network model. The model

distinguished between normal and adversarial

samples. They conducted experiments using each

data set and model pair (i.e., [CIFAR-10, ResNet56]

and [MNIST, CNN]). CIFAR's AUC ROC and

AUC PR pairs were 96.6% and 95.8%, whereas

MNIST's were 96.7% and 96.1%.

Peng (2022) proposed a novel trustworthy intrusion

detection framework (TIDF) by applying ex-post

interpretation and machine learning. The network

data underwent preprocessing, balancing, and

division before being fed into a model for

prediction. They then performed objective and

subjective tests to evaluate the performance of the

TIDF framework. Global and local interpretation

models were employed to increase the clarity of

prediction findings based on network access data.

The findings and explanations were obtained by the

Network Security Management Engineer (NSME).

These results showed that the suggested structure

improved the transparency of the IDS. They then

used the NSL-KDD data set to evaluate the

effectiveness of the method, and the results showed

that the proposed framework significantly enhanced

the IDS's transparency.

Le et al. (2022) employed SHAP to explain and

interpret Decision Tree and Random Forest

decisions on three public IoT-based data sets, such

as IoTID20, NF-BoT-IoT-v2, and NF-ToN-IoT-v2.

They used PyCaret to implement an algorithm that

selected the best model and its appropriate

hyperparameters for binary and multiple

classification tasks in each dataset. After running the

algorithm, they trained the chosen model using its

related dataset and hyperparameters. Finally, they

leveraged the SHAP method to explain the models'

predictions, employing the Heatmap for global

explanations and the Decision Plot for local

explanations.

These studies had made significant progress in using

XAI frameworks to increase the transparency of ML

(machine learning)/DL-IDS and have shown

promising results in adversarial detection methods,

bolstering the robustness of DL-IDS against

Adversarial Attacks. However, the lack of

transparency in these detection methods presents a

challenge in comprehending the employed defense

mechanisms. In response to these challenges, we

integrate a XAI support into the AE detector

mechanism, allowing for a more interpretable

understanding of the defense strategies employed,

shedding light on the decision-making process, and

further enhancing the overall resilience of ML/DL-

IDS against Adversarial Attacks. Table 1 compares

our approach with previously proposed state-of-the-

art methods.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

14

Table 1. The comparison between the current state-of-the-art methods and our approach

Proposed

Method
XAI method Dataset

XAI for

classifier

AE

detector

XAI for AE

detector

(Ko, 2021) Saliency Map MNIST Yes Yes No

(Wang N.

A., 2022)
-

NSL-KDD,

MNIST
No Yes No

(Le, 2022) SHAP NSL-KDD Yes No No

(Peng, 2022)

Mean Decrease Impurity; Partial Dependence

Plot; SHAP; Local Interpretable Model-

Agnostic Explanation; Explain like I’m five

NSL-KDD Yes No No

Ours SHAP NSL-KDD Yes Yes Yes

3. OUR APPROACH

3.1. Explanation method

SHAP introduced in (Lundberg, 2017), is one of the

XAI techniques that helps to interpret and

understand outcomes made by machine learning

models. The primary purpose of SHAP is to

calculate the contribution of each feature to the ML

model's prediction. The SHAP can provide both

global and local explanations. In this paper, we use

the Deep SHAP method to rank significant features

and explain the predictions of an AE detector.

3.2. Ranking the features

Wilson and Danilo proposed a feature selection

mechanism in (Wilson, 2020) using SHAP values.

We assume that 𝑥 ∈ ℝ𝑐×𝑚×𝑛 where 𝑥 is SHAP

values, 𝑐 is the number of classes, 𝑛 is the number

of instances and 𝑚 is the number of features. For

each class 𝑘 (𝑘 ∈ ℕ, 1 ≤ 𝑘 ≤ 𝑐), its SHAP value of

feature 𝑗 (𝑗 ∈ ℕ, 1 ≤ 𝑗 ≤ 𝑛) and instance 𝑖 (𝑖 ∈
ℕ, 1 ≤ 𝑖 ≤ 𝑚) is 𝑥𝑘,𝑖,𝑗, the average SHAP value of

class 𝑐 and feature 𝑗 is:

𝑠𝑗
𝑘 =

∑ 𝑥𝑘,𝑖,𝑗
𝑚
𝑖=1

𝑚

A SHAP sum value of feature 𝑗 is:

𝑆𝑗 =∑𝑠𝑗
𝑘

𝑐

𝑘=1

The SHAP sum is a set of {𝑆1, 𝑆2, … , 𝑆𝑛}. Based on

the SHAP sum, we infer a list of most important

features in any order.

3.3. Proposed model

Figure 1 illustrates our interpretable approach for

trustworthy intrusion detection systems against

evasion samples. There were two stages: the

primary goal of stage 1 was to create a list of

predefined features, while the primary goal of stage

2 was to detect attacks, test evasion samples, and

provide result explanations.

In stage 1, network traffic was first collected from

the internet and then preprocessed to have an

appropriate input format for the trained DNN model

to produce an output. The outputs were then sent to

DeepExplainer to obtain SHAP values. A list of

predefined features was created by sending the

SHAP values to a Feature Rank and Selector

mechanism. The mechanism comprised of 2 steps,

the first one evaluated and arranged important

features in order, as detailed in Section 3.2. The

second one extracted a number of the most

important features with conditions that exclude the

features generated from One Hot Encoder and the

features that do not significantly influence the

model's predictions, for which a SHAP sum of the

feature is 0. For features generated by One Hot

Encoder, they needed to be retained because, in AE

samples created by FGSM with an epsilon of 0.2, for

example, they may contain a value of 0.2 instead of

just zero or one, which is illogical. Although it is not

mandatory to remove features that do not

significantly influence the model's predictions, we

removed them to focus on the most influential

features.

Figure 1. Proposed method

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

15

Stage 2 was only be deployed after the list of

predefined features had been defined. In stage 2,

when a network stream arrives, its information was

first extracted and pre-processed. Next, the trained

DNN classified the network stream into an attack

class, such as distribution denial of service,

malware, privilege escalation, or a safe class. If a

DNN prediction was a safe class, the network stream

was sent to an AE detector. The AE detector

extracted information from the network stream

based on the list of predefined features and feeds

extracted information to a CNN (Convolutional

Neural Network) model for a prediction. The

prediction result from the AE detector was sent to

an XAI to provide an explanation.

4. EXPERIMENTAL RESULT

4.1. Experimental Environment

Our experiments were conducted on a Linux

operating system with an 8-core CPU and 16 GB of

RAM and Python version 3.10. Adversarial

Robustness Toolbox (ART, n.d.) was utilized to

generate adversarial samples. Additionally, SHAP

DeepExplainer (SHAP, n.d.) is used to calculate

SHAP values.

4.2. Dataset

NSL-KDD data set was used in our experiment. A

total of 148,517 network access records made up the

data set, which was split into 125,973 samples for

KDDTrain+ and 22,544 samples for KDDTest+.

These samples were categorized into five groups:

Benign, DoS (Denial of Service attacks), Probe

(Probing attacks), R2L (Root to Local attacks), and

U2R (User to Root attacks). The data set comprised

of 41 features that allowed us to study various

aspects of network traffic. First, duplicate and NA

values were eliminated from the train and test sets.

Second, we used one hot encoding to convert

“protocol_type”, “service”, and “flag” feature to

binary features. Next, the data set was scaled by the

Min-Max Scaler:

𝑥𝑠𝑐𝑎𝑙𝑒 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Where 𝑥 represents the original value of a feature,

𝑥𝑚𝑖𝑛 is the minimum value of the feature and 𝑥𝑚𝑎𝑥

is the maximum value of the feature. Finally,

SMOTE method is used (Chawla, 2002) to increase

the number of ‘L2R’ and ‘U2R’ instances in the

preprocessed KDDTrain+, which each type being

increased to 5000 instances.

Table 2. DNN hyper-parameters

Layer 1 Dense (122, ReLU activation)

Layer 2 Dense (100, ReLU activation)

Layer 3 Dense (100, ReLU activation)

Layer 4 Dense (100, ReLU activation)

Layer 5 Dense (100, ReLU activation)

Output Dense (5, Softmax activation)

Loss Function Categorical Cross Entropy

Optimizer Adam

Table 3. CNN hyper-parameters

Layer 1 Convolution1D (2048, ReLU activation)

Layer 2 MaxPooling1D

Layer 3 Convolution1D (512, ReLU activation)

Layer 4 MaxPooling1D

Layer 5 Flatten

Layer 6 Dense (512, ReLU activation)

Output Dense (2, Softmax activation)

Loss

Function
Categorical Cross Entropy

Optimizer Adam

4.3. Deep Neural Network

A DNN was constructed to classify inputs into the

five groups mentioned in 4.2, at the same time, it is

also a target of adversarial attacks. Table 2 displays

the hyper-parameters of the DNN. Additionally, the

number of epochs and batch sizes were 5 and 1,024,

respectively.

4.4. Adversarial Examples Detector

CNN was constructed to discriminate between clean

and AE samples. Table 3 displays hyper-parameters

of the CNN. Additionally, the number of epochs and

batch size were 2 and 16, respectively.

4.5. Experiment Steps

This session presents each individual step to

conduct our experiment:

Step 1: Preprocessing the data set as described in

Section 4.2 and we obtained the preprocessed

KDDTrain+ and the preprocessed KDDTest+. We

then trained the DNN using the preprocessed

KDDTrain+.

Step 2: 500 instances were taken from the

preprocessed KDDTest+ and then sent them to

DeepExplainer to retrieve SHAP values. The

number of background data for the DeepExplainer

was 512 samples from the preprocessed

KDDTrain+. A list of predefined features was

produced after the operation of the Feature Rank and

Selector processes.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

16

Step 3: 10,000 samples were collected from the

preprocessed KDDTrain+ and generate 4

adversarial example versions of them. Each version

was generated by one of AE attack methods, such as

FGSM (Goodfellow, 2014), BIM (Wang J. , 2021),

Jacobian-based saliency map attack (JSMA)

(Papernot, 2016) and DeepFool (Moosavi-Dezfooli,

2016). After performing the attacks, all versions

were necessary to retain features that are not in the

list of predefined features. Then, we selected

instances in all versions that transform the DNN

model's predictions from any attack to normal and

refer to them as evasion samples. We merged all

'normal' labeled instances from the preprocessed

KDDTrain+ data set and evasion samples into a

collection and then referred to it as a Defense Set.

The evasion samples in the Defense Set were

labeled ‘attack', while the remains were labeled

‘normal'. We then over-sampled the 'attack' labeled

samples in the Defense Set by SMOTE (Chawla,

2002) . Here we used SMOTE because, in the

context of multi-class classifications, each instance

targeted by any AE attack can transform from an

attack prediction to another attack prediction, so

there are not many instances labeled ‘normal' by

DNN-IDS, which leads to the imbalance between

safe and evasion samples in Defense Set. The

Defense Set was split into a 7:3 ratio for training and

testing the AE detector, where 70%, referred to as

the Defense Train Set, was used for training and

30%, referred to as the Defense Test Set, for testing.

Finally, we extracted information from the Defense

Train Set based on the list of predefined features to

train the AE detector and test the detector by

Defense Test Set as an experiment.

Step 4: We sampled 5,000 examples from the

preprocessed KDDTest+, filter instances that DNN-

IDS's predictions are attacking, and then generated

an adversarial version of them in which each sample

was targeted by one of the four attack methods, such

as FGSM, BIM, JSMA, and DeepFool, randomly.

Here, it is necessary to retain features of the

adversarial version that are not in the predefined

feature list. Next, we selected samples that make the

predictions of DNN-IDS as safe samples from the

adversarial version, which we refer to as evasion

samples. Sequentially, we merged the benign

instances in preprocessed KDDTest+ and evasion

samples into a set and refer to them as the Random

Test Set. Finally, the AE detector was tested using

the Random Test Set as a practice experiment.

4.6. Evaluation Metrics

Figure 2 displays the confusion matrix of DNN

model prediction on the KDDTest+. In the Normal,

DoS, and Probe classes, the DNN performed well;

however, in the U2R and U2R classes, it performed

a poorly.

Figure 3 displays accuracy values of DNN-IDS

when the AE attack methods increased the number

of targeted features. The y-axis represents the

model's accuracy, while the x-axis represents the

number of the most or least important features. Note

that the most or least important features are in the

list of predefined features. For example, if the value

on the x-axis is 10, it means we consider the top 10

of the most or least important features. The solid line

represents the variation in accuracy when increasing

the number of the most important features targeted

by adversarial attack methods. On the other hand,

the dotted line represents a similar variation, but it

considers the number of least significant features.

Based on this Figure, we may conclude two things:

1) The accuracy of DNN-IDS decreases as more

features are targeted by AE attacks. 2) Attacking the

most important features typically leads to a more

significant decrease in the model’s accuracy

compared to attacking the least one, considering the

same number. The Deep Fool, on the other hand,

displayed the opposite trend by selecting fewer than

15 features. Table 4 illustrates the top 8 influential

features.

Figure 2. Confusion Matrix on KDDTest+ of

DNN model

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

17

Figure 3. The change in accuracy of the model

encountering AE attacks

Table 5 displays the number of safe and evasion

samples in the Defense Set (before applying

SMOTE (Chawla, 2002)) and the Random Test Set.

We can see that the Defense Set shows a serious

imbalance between safe and evasion samples,

therefore, SMOTE method (Chawla, 2002) is used

to balance the attack class in the Defense Set. The

imbalance of Random Test Set is lower than the

Defense Set, so we decide not to balance the

Random Test Set.

Table 4. The top 8 features with the highest

SHAP sum

Features
SHAP sum value of the

feature

service_auth 242.6854267

dst_host_srv_count 212.4594738

dst_host_serror_rate 191.2416891

srv_count 113.7827973

srv_serror_rate 70.11557833

count 69.99419681

same_srv_rate 63.1915511

logged_in 44.15858485

Table 5. Defense Set and Random Test Set

information

 Normal AE samples Total

Defense Test Set 67583 9659 77242

Random Test Set 2895 1348 4243

Table 6. Metrics on Defense Test and Random

Test Set

 Accuracy Precision Recall F1-Score

Defense

Test Set
99.46% 99.76% 99.16% 99.46%

Random

Test Set
65.68% 18.60% 2.37% 4.21%

Table 6 represents the evaluation metrics of the AE

detector on the Defense Test Set and Random Test

Set. Although the AE detector shows high

performance on the Defense Test Set, it has poor

effectiveness on the Random Test Set. This issue

can be DUE TO by several reasons. Firstly, the

DNN-IDS's performance in testing is not high,

which affects the extraction of the most important

features and results in an ineffective list of

predefined features. Secondly, selecting only 500

instances from the preprocessed KDDTest+ dataset

in Step 2.

Figure 4. Global Explanation on a subset of

Defense Test Set

Figure 5. Local Explanation runs on a normal

instance in Defense Test Set

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

18

Figure 6. Local Explanation runs on an AE

attack instance in Defense Test Set

is quite small, leading to a poor list of predefined

features. Lastly, sampling 10,000 samples from the

preprocessed KDDTrain+ dataset in Step 3, instead

of selecting attack instances, resulted in an

unqualified Defense Set.

Figure 7. Global Explanation runs on a subset

of Random Test Set

Figure 8. Local Explanation runs on a normal

instance of Random Test Set

Figure 9. Local Explanation runs on an AE

instance of Random Test Set

Figure 4 and Figure 7 show the global explanation

of the CNN's predictions on the Defense Test Set

and Random Test Set, respectively. The y-axis

represents features with the highest impact on the

CNN, while the x-axis represents the mean SHAP

values of these features. The main purpose of the

global explanation charts is to illustrate which

features have the most significant impact on the

model's predictions. Based on Figure 4, we can

see that the most influential features in order

are 'logged_in', 'dst_host_same_src_port_rate',

'srv_diff_host_rate', etc. Whereas Figure 7 shows

that 'srv_diff_host_rate', 'logged_in',

'srv_rerror_rate', etc., in order, are the most

important features that impact the AE detector.

The local explanations of a benign instance

prediction and an attack instance prediction in the

Defense Test Set are shown in Figure 5 and Figure

6 display, respectively. The y-axis shows features

that have the most impact on the prediction, and the

x-axis shows the values of these features. Figure 8

and Figure 9 display the local explanations of a

benign instance prediction and a malicious instance

prediction in the Random Test Set. These

explanations increase our understanding of the AE

detector's decision-making process within the

context of what features contribute to the output

and how much they influence it. In the Defense

Test Set, Figure 5 represents 'logged_in' and

'dst_host_same_src_port_rate' that they have an

impressive effect on the 'normal' outcome of the AE

detector, and Figure 6 shows 'wrong_fragment' and

'srv_rerror_rate' that they have the most impact on

the `attack' outcome of the AE detector. In the

Random Test Set, Figure 8 represents 'logged_in'

and 'dst_host_same_src_port_rate' that are the most

impactful features that lead AE detectors predict as

normal, and Figure 9 clarifies that a most significant

feature to the attack output of the AE

detector is 'srv_diff_host_rate'.

CTU Journal of Innovation and Sustainable Development Vol. 15, Special issue on ISDS (2023): 12-19

19

5. CONCLUSION

In this paper, we have proposed an interpretable

approach for trustworthy intrusion detection

systems against evasion samples. We used the DNN

model to classify the collected network data and the

CNN model as an AE detector to identify evasion

samples. SHAP served as the explanation method,

generating a predefined feature list and providing

explanations for both the DNN IDS and the AE

detector. Our experiment employed the NSL-KDD

dataset and demonstrated the successful detection of

AE samples from common attacks like FGSM,

BIM, JSMA, and DeepFool using the Defense Test

Set. The outcomes of our practice experiment using

a Random Test Set, however, were poor and

highlight areas that need to be improved in future

studies. SHAP helped us define the most important

features for generating a predefined feature list and

making the prediction of the DNN-IDS and the AE

detector transparent and understandable. Moreover,

we discovered how the performance of DNN-IDS

will be affected by increasing the number of features

targeted by AE attacks. Increasing the most or least

significant features both reduces the performance of

the IDS, and increasing the number of most

important features will decrease the effectiveness of

the IDS faster than increasing the number of least

important features.

ACKNOWLEDGMENT

This research was supported by the VNUHCM-

University of Information Technology's Scientific

Research Support Fund.

REFERENCES

ART. (n.d.). Retrieved from Adversarial Robustness

Toolbox: https://github.com/Trusted-AI/adversarial-

robustness-toolbox
Capuano, N. A. (2022). Explainable artificial

intelligence in cybersecurity: A survey. IEEE Access,

93575--93600.

Carlini, N. A. (2017). Towards evaluating the robustness

of neural networks. In 2017 IEEE Symposium on

Security and Privacy (sp) (pp. 39--57). IEEE.

Chawla, N. V. (2002). SMOTE: Synthetic minority over-

sampling technique. Journal of artificial intelligence

research.

Goodfellow, I. J. (2014). Explaining and harnessing

adversarial examples. arXiv preprint

arXiv:1412.6572.

Ko, G. A. (2021). Unsupervised detection of adversarial

examples with model explanations. arXiv preprint

arXiv:2107.10480.

Le, T.-T.-H. A. (2022). Classification and explanation

for intrusion detection system based on ensemble

trees and SHAP method. Sensors, 1154.

Liang, H. A. (2022). Adversarial attack and defense: A

survey. Electronics, 1283.

Lundberg, S. M. I. (2017). A unified approach to

interpreting model predictions. Advances in neural

information processing systems, 30.

Moosavi-Dezfooli, S.-M. A. (2016). Deepfool: a simple

and accurate method to fool deep neural networks. In

Proceedings of the IEEE conference on computer

vision and pattern recognition.

Otoum, Y. A. (2022). DL-IDS: a deep learning--based

intrusion detection framework for securing IoT.

Transactions on Emerging Telecommunications

Technologies, e3803.

Papernot, N. A. (2016). The limitations of deep learning

in adversarial settings. In 2016 IEEE European

symposium on security and privacy (EuroS&P) (pp.

372--387).

Peng, J. A. (2022). An trustworthy intrusion detection

framework enabled by ex-post-interpretation-enabled

approach. Journal of Information Security and

Applications, 103364.

SHAP. (n.d.). Retrieved from SHAP:

https://github.com/shap/shap

Sun, P., Liu, P., Li, Q., Liu, C., Lu, X., Hao, R., & Chen,

J. (2020). DL-IDS: Extracting features using CNN-

LSTM hybrid network for intrusion detection

system. Security and communication networks, 2020,

1-11.

Wang, J. (2021). Adversarial examples in physical

world. In IJCAI (pp. 4925-4926).

Wang, N. A. (2022). Manda: On adversarial example

detection for network intrusion detection system.

IEEE Transactions on Dependable and Secure

Computing, 1139-1153.

Wilson, D. (2020). From explanations to feature

selection: assessing SHAP values as feature selection

mechanism. In 2020 33rd SIBGRAPI conference on

Graphics, Patterns and Images (SIBGRAPI) (pp.

340-347).

