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In recent years, Deep Neural Networks (DNN) have demonstrated 

remarkable success in various domains, including Intrusion Detection 

Systems (IDS). The ability of DNN to learn complex patterns from large 

datasets has significantly improved IDS performance, leading to more 

accurate and efficient threat detection. Despite their effectiveness, DNN 

models exhibit vulnerabilities to adversarial attacks, where malicious 

inputs are specifically crafted to deceive the models and evade detection. 

This paper provides insights into the effectiveness of deep learning-based 

IDS (DL-IDS) against adversarial example (AE) attacks. We tackle the 

weaknesses of DNN in detecting adversarial attacks by proposing the 

Convolutional Neural Network (CNN), which serves as an AE detector. We 

also utilize one of the XAI techniques, specifically SHAP, to enhance the 

transparency of the AE detector. Our results show that the AE detector has 

obvious effects for detecting adversarial examples and achieves an 

impressive 99.46% accuracy in our experimental environment. 
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1. INTRODUCTION 

According to recent studies (Sun et al., 2020; 

Otoum, 2022), the Deep Learning based Intrusion 

Detection System (DL-IDS) performs exceptionally 

well. However, a notable weakness of Deep 

Learning (DL) models is their vulnerability to 

adversarial attacks. These attacks manipulate or 

deceive DL models by adding subtle perturbations 

to the data input (Liang, 2022). This can cause 

misclassification and failure of intrusion detection 

to DL models, compromising security systems. To 

find solutions to prevent these attacks, several 

studies (Ko, 2021; Wang N. A., 2022) have been 

conducted and showed promising outcomes. Yet, 

there are still critical concerns regarding the lack of 

transparency in their adversarial example (AE) 

pattern detection methods. 

Explainable Artificial Intelligence (XAI) is a branch 

of artificial intelligence research that focuses on 

developing models and methods capable of 

providing understandable and transparent 

explanations for the decision-making processes of 

machine learning models. In the cybersecurity 

domain, XAI can achieve transparency of models or 

enhance model performance, as well as explain 

errors made by classifiers (Capuano, 2022). There 

are studies (Peng, 2022) (Le, 2022) utilizing XAI to 

enhance the transparency of DL-IDS. However, 

there is still no research using XAI to increase the 

transparency of AE detection methods. Our work 

contributes primarily to addressing this knowledge 

gap by: 

− Exploring the impact of highlight features on the 

model's effectiveness against AE attacks. 

− Developing an AE detector that can distinguish 

between benign and adversarial samples. 
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− Applying an XAI method, specifically SHAP 

framework (Lundberg, 2017), to explain the AE 

detector predictions, aiming to enhance the 

transparency of the detector. 

The rest of this paper is structured as follows. 

Section 2 introduces related studies on using XAI to 

explain Machine Learning/Deep Learning IDS and 

adversarial attack detection methods. In Section 3, 

we present the details of our approach. Section 4 

describes experiment settings and results. Finally, 

we illustrate our discussion, conclusion, and future 

work in Section 5. 

2. RELATED WORK 

Ko and Lim (Ko, 2021) proposed a method that used 

model explanation to detect adversarial examples 

and did not rely on pre-generated adversarial 

samples. First, they used the saliency map method 

to generate input explanations. Second, they used 

generated explanations to train their reconstructor 

networks. Finally, they used the reconstructor 

networks to separate normal and adversarial 

examples. They conducted experiments on the 

MNIST handwritten digit dataset and applied attack 

techniques such as the Fast Gradient Sign Method 

(FGSM), Projected Gradient Descent (PGD), and 

Momentum Iterative Method (MIM). Their method 

achieved the adversarial example detection rates 

99.23% on FGSM with an epsilon of 0.1, 95.73% 

with an epsilon of 0.2, 96.93% with an epsilon of 

0.3, and 98.39% on Basic Iterative Method (BIM) 

with an epsilon of 0.1, 98.94% with an epsilon of 

0.2, 99.01% with an epsilon of 0.3.  

Wang (2022) leveraged SHapley Additive 

exPlanations (SHAP) values to discriminate 

between normal and adversarial samples. First, they 

created a data set of benign and adversarial 

examples from popular datasets via a Generating 

Adversarial Example algorithm. The algorithm 

utilized well-known attack techniques, such as the 

Fast Gradient Sign Method (FGSM), Basic Iterative 

Method (BIM), and Carlini and Wagner (C&W), to 

create adversarial examples. Second, they generated 

SHAP values for this data set by SHAP 

DeepExplainer and referred to them as an XAI 

signature data set. Finally, they used the XAI 

signature data set to train a fully connected feed-

forward neural network model. The model 

distinguished between normal and adversarial 

samples. They conducted experiments using each 

data set and model pair (i.e., [CIFAR-10, ResNet56] 

and [MNIST, CNN]). CIFAR's AUC ROC and 

AUC PR pairs were 96.6% and 95.8%, whereas 

MNIST's were 96.7% and 96.1%. 

Peng (2022) proposed a novel trustworthy intrusion 

detection framework (TIDF) by applying ex-post 

interpretation and machine learning. The network 

data underwent preprocessing, balancing, and 

division before being fed into a model for 

prediction. They then performed objective and 

subjective tests to evaluate the performance of the 

TIDF framework. Global and local interpretation 

models were employed to increase the clarity of 

prediction findings based on network access data. 

The findings and explanations were obtained by the 

Network Security Management Engineer (NSME). 

These results showed that the suggested structure 

improved the transparency of the IDS. They then 

used the NSL-KDD data set to evaluate the 

effectiveness of the method, and the results showed 

that the proposed framework significantly enhanced 

the IDS's transparency. 

Le et al. (2022) employed SHAP to explain and 

interpret Decision Tree and Random Forest 

decisions on three public IoT-based data sets, such 

as IoTID20, NF-BoT-IoT-v2, and NF-ToN-IoT-v2. 

They used PyCaret to implement an algorithm that 

selected the best model and its appropriate 

hyperparameters for binary and multiple 

classification tasks in each dataset. After running the 

algorithm, they trained the chosen model using its 

related dataset and hyperparameters. Finally, they 

leveraged the SHAP method to explain the models' 

predictions, employing the Heatmap for global 

explanations and the Decision Plot for local 

explanations. 

These studies had made significant progress in using 

XAI frameworks to increase the transparency of ML 

(machine learning)/DL-IDS and have shown 

promising results in adversarial detection methods, 

bolstering the robustness of DL-IDS against 

Adversarial Attacks. However, the lack of 

transparency in these detection methods presents a 

challenge in comprehending the employed defense 

mechanisms. In response to these challenges, we 

integrate a XAI support into the AE detector 

mechanism, allowing for a more interpretable 

understanding of the defense strategies employed, 

shedding light on the decision-making process, and 

further enhancing the overall resilience of ML/DL-

IDS against Adversarial Attacks. Table 1 compares 

our approach with previously proposed state-of-the-

art methods. 
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Table 1. The comparison between the current state-of-the-art methods and our approach 

Proposed 

Method 
XAI method Dataset 

XAI for 

classifier 

AE 

detector 

XAI for AE 

detector 

(Ko, 2021) Saliency Map MNIST Yes Yes No 

(Wang N. 

A., 2022) 
- 

NSL-KDD, 

MNIST 
No Yes No 

(Le, 2022) SHAP NSL-KDD Yes No No 

(Peng, 2022) 

Mean Decrease Impurity; Partial Dependence 

Plot; SHAP; Local Interpretable Model-

Agnostic Explanation; Explain like I’m five 

NSL-KDD Yes No No 

Ours SHAP NSL-KDD Yes Yes Yes 

3. OUR APPROACH 

3.1. Explanation method 

SHAP introduced in (Lundberg, 2017), is one of the 

XAI techniques that helps to interpret and 

understand outcomes made by machine learning 

models. The primary purpose of SHAP is to 

calculate the contribution of each feature to the ML 

model's prediction. The SHAP can provide both 

global and local explanations. In this paper, we use 

the Deep SHAP method to rank significant features 

and explain the predictions of an AE detector. 

3.2. Ranking the features 

Wilson and Danilo proposed a feature selection 

mechanism in (Wilson, 2020) using SHAP values. 

We assume that 𝑥 ∈ ℝ𝑐×𝑚×𝑛 where 𝑥 is SHAP 

values, 𝑐 is the number of classes, 𝑛 is the number 

of instances and 𝑚 is the number of features. For 

each class 𝑘 (𝑘 ∈ ℕ, 1 ≤ 𝑘 ≤ 𝑐), its SHAP value of 

feature 𝑗 (𝑗 ∈ ℕ, 1 ≤ 𝑗 ≤ 𝑛) and instance 𝑖 (𝑖 ∈
ℕ, 1 ≤ 𝑖 ≤ 𝑚) is 𝑥𝑘,𝑖,𝑗, the average SHAP value of 

class 𝑐 and feature 𝑗 is: 

𝑠𝑗
𝑘 =

∑ 𝑥𝑘,𝑖,𝑗
𝑚
𝑖=1

𝑚
 

A SHAP sum value of feature 𝑗 is: 

𝑆𝑗 =∑𝑠𝑗
𝑘

𝑐

𝑘=1

 

The SHAP sum is a set of {𝑆1, 𝑆2, … , 𝑆𝑛}. Based on 

the SHAP sum, we infer a list of most important 

features in any order. 

3.3. Proposed model 

Figure 1 illustrates our interpretable approach for 

trustworthy intrusion detection systems against 

evasion samples. There were two stages: the 

primary goal of stage 1 was to create a list of 

predefined features, while the primary goal of stage 

2 was to detect attacks, test evasion samples, and 

provide result explanations.  

In stage 1, network traffic was first collected from 

the internet and then preprocessed to have an 

appropriate input format for the trained DNN model 

to produce an output. The outputs were then sent to 

DeepExplainer to obtain SHAP values. A list of 

predefined features was created by sending the 

SHAP values to a Feature Rank and Selector 

mechanism. The mechanism comprised of 2 steps, 

the first one evaluated and arranged important 

features in order, as detailed in Section 3.2. The 

second one extracted a number of the most 

important features with conditions that exclude the 

features generated from One Hot Encoder and the 

features that do not significantly influence the 

model's predictions, for which a SHAP sum of the 

feature is 0. For features generated by One Hot 

Encoder, they needed to be retained because, in AE 

samples created by FGSM with an epsilon of 0.2, for 

example, they may contain a value of 0.2 instead of 

just zero or one, which is illogical. Although it is not 

mandatory to remove features that do not 

significantly influence the model's predictions, we 

removed them to focus on the most influential 

features. 

 

Figure 1. Proposed method 
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Stage 2 was only be deployed after the list of 

predefined features had been defined. In stage 2, 

when a network stream arrives, its information was 

first extracted and pre-processed. Next, the trained 

DNN classified the network stream into an attack 

class, such as distribution denial of service, 

malware, privilege escalation, or a safe class. If a 

DNN prediction was a safe class, the network stream 

was sent to an AE detector. The AE detector 

extracted information from the network stream 

based on the list of predefined features and feeds 

extracted information to a CNN (Convolutional 

Neural Network) model for a prediction. The 

prediction result from the AE detector was sent to 

an XAI to provide an explanation. 

4. EXPERIMENTAL RESULT  

4.1. Experimental Environment 

Our experiments were conducted on a Linux 

operating system with an 8-core CPU and 16 GB of 

RAM and Python version 3.10. Adversarial 

Robustness Toolbox (ART, n.d.) was utilized to 

generate adversarial samples. Additionally, SHAP 

DeepExplainer (SHAP, n.d.) is used to calculate 

SHAP values. 

4.2. Dataset 

NSL-KDD data set was used in our experiment. A 

total of 148,517 network access records made up the 

data set, which was split into 125,973 samples for 

KDDTrain+ and 22,544 samples for KDDTest+. 

These samples were categorized into five groups: 

Benign, DoS (Denial of Service attacks), Probe 

(Probing attacks), R2L (Root to Local attacks), and 

U2R (User to Root attacks). The data set comprised 

of 41 features that allowed us to study various 

aspects of network traffic. First, duplicate and NA 

values were eliminated from the train and test sets. 

Second, we used one hot encoding to convert 

“protocol_type”, “service”, and “flag” feature to 

binary features. Next, the data set was scaled by the 

Min-Max Scaler: 

𝑥𝑠𝑐𝑎𝑙𝑒 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

Where 𝑥 represents the original value of a feature, 

𝑥𝑚𝑖𝑛 is the minimum value of the feature and 𝑥𝑚𝑎𝑥 

is the maximum value of the feature. Finally, 

SMOTE method is used (Chawla, 2002) to increase 

the number of ‘L2R’ and ‘U2R’ instances in the 

preprocessed KDDTrain+, which each type being 

increased to 5000 instances. 

Table 2. DNN hyper-parameters 

Layer 1 Dense (122, ReLU activation) 

Layer 2 Dense (100, ReLU activation) 

Layer 3 Dense (100, ReLU activation) 

Layer 4 Dense (100, ReLU activation) 

Layer 5 Dense (100, ReLU activation) 

Output Dense (5, Softmax activation) 

Loss Function Categorical Cross Entropy 

Optimizer Adam 

Table 3. CNN hyper-parameters 

Layer 1 Convolution1D (2048, ReLU activation) 

Layer 2 MaxPooling1D 

Layer 3 Convolution1D (512, ReLU activation) 

Layer 4 MaxPooling1D 

Layer 5 Flatten 

Layer 6 Dense (512, ReLU activation) 

Output Dense (2, Softmax activation) 

Loss 

Function 
Categorical Cross Entropy 

Optimizer Adam 

4.3. Deep Neural Network 

A DNN was constructed to classify inputs into the 

five groups mentioned in 4.2, at the same time, it is 

also a target of adversarial attacks. Table 2 displays 

the hyper-parameters of the DNN. Additionally, the 

number of epochs and batch sizes were 5 and 1,024, 

respectively. 

4.4. Adversarial Examples Detector 

CNN was constructed to discriminate between clean 

and AE samples. Table 3 displays hyper-parameters 

of the CNN. Additionally, the number of epochs and 

batch size were 2 and 16, respectively. 

4.5. Experiment Steps 

This session presents each individual step to 

conduct our experiment: 

Step 1: Preprocessing the data set as described in 

Section 4.2 and we obtained the preprocessed 

KDDTrain+ and the preprocessed KDDTest+. We 

then trained the DNN using the preprocessed 

KDDTrain+. 

Step 2: 500 instances were taken from the 

preprocessed KDDTest+ and then sent them to 

DeepExplainer to retrieve SHAP values. The 

number of background data for the DeepExplainer 

was 512 samples from the preprocessed 

KDDTrain+. A list of predefined features was 

produced after the operation of the Feature Rank and 

Selector processes. 
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Step 3: 10,000 samples were collected from the 

preprocessed KDDTrain+ and generate 4 

adversarial example versions of them. Each version 

was generated by one of AE attack methods, such as 

FGSM (Goodfellow, 2014), BIM (Wang J. , 2021), 

Jacobian-based saliency map attack (JSMA) 

(Papernot, 2016) and DeepFool (Moosavi-Dezfooli, 

2016). After performing the attacks, all versions 

were necessary to retain features that are not in the 

list of predefined features. Then, we selected 

instances in all versions that transform the DNN 

model's predictions from any attack to normal and 

refer to them as evasion samples. We merged all 

'normal' labeled instances from the preprocessed 

KDDTrain+ data set and evasion samples into a 

collection and then referred to it as a Defense Set. 

The evasion samples in the Defense Set were 

labeled ‘attack', while the remains were labeled 

‘normal'. We then over-sampled the 'attack' labeled 

samples in the Defense Set by SMOTE (Chawla, 

2002) . Here we used SMOTE because, in the 

context of multi-class classifications, each instance 

targeted by any AE attack can transform from an 

attack prediction to another attack prediction, so 

there are not many instances labeled ‘normal' by 

DNN-IDS, which leads to the imbalance between 

safe and evasion samples in Defense Set. The 

Defense Set was split into a 7:3 ratio for training and 

testing the AE detector, where 70%, referred to as 

the Defense Train Set, was used for training and 

30%, referred to as the Defense Test Set, for testing. 

Finally, we extracted information from the Defense 

Train Set based on the list of predefined features to 

train the AE detector and test the detector by 

Defense Test Set as an experiment. 

Step 4: We sampled 5,000 examples from the 

preprocessed KDDTest+, filter instances that DNN-

IDS's predictions are attacking, and then generated 

an adversarial version of them in which each sample 

was targeted by one of the four attack methods, such 

as FGSM, BIM, JSMA, and DeepFool, randomly. 

Here, it is necessary to retain features of the 

adversarial version that are not in the predefined 

feature list. Next, we selected samples that make the 

predictions of DNN-IDS as safe samples from the 

adversarial version, which we refer to as evasion 

samples. Sequentially, we merged the benign 

instances in preprocessed KDDTest+ and evasion 

samples into a set and refer to them as the Random 

Test Set. Finally, the AE detector was tested using 

the Random Test Set as a practice experiment. 

4.6. Evaluation Metrics 

Figure 2 displays the confusion matrix of DNN 

model prediction on the KDDTest+. In the Normal, 

DoS, and Probe classes, the DNN performed well; 

however, in the U2R and U2R classes, it performed 

a poorly. 

Figure 3 displays accuracy values of DNN-IDS 

when the AE attack methods increased the number 

of targeted features. The y-axis represents the 

model's accuracy, while the x-axis represents the 

number of the most or least important features. Note 

that the most or least important features are in the 

list of predefined features. For example, if the value 

on the x-axis is 10, it means we consider the top 10 

of the most or least important features. The solid line 

represents the variation in accuracy when increasing 

the number of the most important features targeted 

by adversarial attack methods. On the other hand, 

the dotted line represents a similar variation, but it 

considers the number of least significant features. 

Based on this Figure, we may conclude two things: 

1) The accuracy of DNN-IDS decreases as more 

features are targeted by AE attacks. 2) Attacking the 

most important features typically leads to a more 

significant decrease in the model’s accuracy 

compared to attacking the least one, considering the 

same number. The Deep Fool, on the other hand, 

displayed the opposite trend by selecting fewer than 

15 features. Table 4 illustrates the top 8 influential 

features. 

 

Figure 2. Confusion Matrix on KDDTest+ of 

DNN model 
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Figure 3. The change in accuracy of the model 

encountering AE attacks 

Table 5 displays the number of safe and evasion 

samples in the Defense Set (before applying 

SMOTE (Chawla, 2002)) and the Random Test Set. 

We can see that the Defense Set shows a serious 

imbalance between safe and evasion samples, 

therefore, SMOTE method (Chawla, 2002) is used 

to balance the attack class in the Defense Set. The 

imbalance of Random Test Set is lower than the 

Defense Set, so we decide not to balance the 

Random Test Set. 

Table 4. The top 8 features with the highest 

SHAP sum 

Features 
SHAP sum value of the 

feature 

service_auth 242.6854267 

dst_host_srv_count 212.4594738 

dst_host_serror_rate 191.2416891 

srv_count 113.7827973 

srv_serror_rate 70.11557833 

count 69.99419681 

same_srv_rate 63.1915511 

logged_in 44.15858485 

Table 5. Defense Set and Random Test Set 

information 

 Normal AE samples Total 

Defense Test Set 67583 9659 77242 

Random Test Set 2895 1348 4243 

Table 6. Metrics on Defense Test and Random 

Test Set 

 Accuracy Precision Recall F1-Score 

Defense 

Test Set 
99.46% 99.76% 99.16% 99.46% 

Random 

Test Set 
65.68% 18.60% 2.37% 4.21% 

Table 6 represents the evaluation metrics of the AE 

detector on the Defense Test Set and Random Test 

Set. Although the AE detector shows high 

performance on the Defense Test Set, it has poor 

effectiveness on the Random Test Set. This issue 

can be DUE TO by several reasons. Firstly, the 

DNN-IDS's performance in testing is not high, 

which affects the extraction of the most important 

features and results in an ineffective list of 

predefined features. Secondly, selecting only 500 

instances from the preprocessed KDDTest+ dataset 

in Step 2. 

 

Figure 4. Global Explanation on a subset of 

Defense Test Set 

 
Figure 5. Local Explanation runs on a normal 

instance in Defense Test Set 
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Figure 6. Local Explanation runs on an AE 

attack instance in Defense Test Set 

is quite small, leading to a poor list of predefined 

features. Lastly, sampling 10,000 samples from the 

preprocessed KDDTrain+ dataset in Step 3, instead 

of selecting attack instances, resulted in an 

unqualified Defense Set. 

 

Figure 7. Global Explanation runs on a subset 

of Random Test Set 

 

Figure 8. Local Explanation runs on a normal 

instance of Random Test Set 

 

Figure 9. Local Explanation runs on an AE 

instance of Random Test Set 

Figure 4 and Figure 7 show the global explanation 

of the CNN's predictions on the Defense Test Set 

and Random Test Set, respectively. The y-axis 

represents features with the highest impact on the 

CNN, while the x-axis represents the mean SHAP 

values of these features. The main purpose of the 

global explanation charts is to illustrate which 

features have the most significant impact on the 

model's predictions. Based on Figure 4, we can  

see that the most influential features in order  

are 'logged_in', 'dst_host_same_src_port_rate', 

'srv_diff_host_rate', etc. Whereas Figure 7 shows 

that 'srv_diff_host_rate', 'logged_in', 

'srv_rerror_rate', etc., in order, are the most 

important features that impact the AE detector. 

The local explanations of a benign instance 

prediction and an attack instance prediction in the 

Defense Test Set are shown in Figure 5 and Figure 

6 display, respectively. The y-axis shows features 

that have the most impact on the prediction, and the 

x-axis shows the values of these features. Figure 8 

and Figure 9 display the local explanations of a 

benign instance prediction and a malicious instance 

prediction in the Random Test Set. These 

explanations increase our understanding of the AE 

detector's decision-making process within the 

context of what features contribute to the output  

and how much they influence it. In the Defense  

Test Set, Figure 5 represents 'logged_in' and 

'dst_host_same_src_port_rate' that they have an 

impressive effect on the 'normal' outcome of the AE 

detector, and Figure 6 shows 'wrong_fragment' and 

'srv_rerror_rate' that they have the most impact on 

the `attack' outcome of the AE detector. In the 

Random Test Set, Figure 8 represents 'logged_in' 

and 'dst_host_same_src_port_rate' that are the most 

impactful features that lead AE detectors predict as 

normal, and Figure 9 clarifies that a most significant 

feature to the attack output of the AE  

detector is 'srv_diff_host_rate'. 
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5. CONCLUSION 

In this paper, we have proposed an interpretable 

approach for trustworthy intrusion detection 

systems against evasion samples. We used the DNN 

model to classify the collected network data and the 

CNN model as an AE detector to identify evasion 

samples. SHAP served as the explanation method, 

generating a predefined feature list and providing 

explanations for both the DNN IDS and the AE 

detector. Our experiment employed the NSL-KDD 

dataset and demonstrated the successful detection of 

AE samples from common attacks like FGSM, 

BIM, JSMA, and DeepFool using the Defense Test 

Set. The outcomes of our practice experiment using 

a Random Test Set, however, were poor and 

highlight areas that need to be improved in future 

studies. SHAP helped us define the most important 

features for generating a predefined feature list and 

making the prediction of the DNN-IDS and the AE 

detector transparent and understandable. Moreover, 

we discovered how the performance of DNN-IDS 

will be affected by increasing the number of features 

targeted by AE attacks. Increasing the most or least 

significant features both reduces the performance of 

the IDS, and increasing the number of most 

important features will decrease the effectiveness of 

the IDS faster than increasing the number of least 

important features.  
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