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Regarding the Dong Son culture, given the diverse range of artifacts 

discovered, we propose the utilization of an artificial intelligence system 

for the automated and comprehensive identification of Dong Son glass 

jewelry through SEM gemological analysis. This approach, which has 

gained prominence in the field of archaeology worldwide over the past five 

years, aims to integrate advanced technology into Vietnamese 

archaeology. Our research is motivated by the unique conditions present 

in archaeology, where we seek to employ evolving learning algorithms to 

archaeological databases, comparing and selecting the most suitable 

model that aligns with the archeological dataset's performance. We have 

developed the Recognition Automatic System for Dong Son Antique 

Glasses (RAS-DSA), capable of accurately distinguishing between Dong 

Son and non-Dong Son glass ornaments, and is freely distributed to experts 

and archaeologists. This collaborative research involves Nam Can Tho 

University, Hanoi University of Mining and Geology, the Vietnamese 

Institute of Archaeology, and the UNESCO Center for Research and 

Conservation of Vietnamese Antiquities. 
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1. INTRODUCTION 

Throughout ancient times and even in the present 

day, ancient Vietnamese glassware such as Dong 

Son, Sa Huynh, and Oc Eo artifacts (relative with 

Dong Son Culture, Sa Huynh Culture, and Oc Eo 

Culture) have been widely traded and can be found 

in various regions of Viet Nam and across the globe. 

However, within private antiquities collections, 

there is a prevalent and intricate issue of 

misclassifying and confusing these ancient jewels. 

Specifically, with the Dong Son culture, jewelry is 

often sold under different names, while ornaments 

from other cultures like Sa Huynh and Oc Eo are 

frequently mislabeled as Dong Son.  

This paper aims to address this challenge by 

analyzing the distinct identification characteristics 

of Dong Son glass jewelry using a combination of 

gemological methods and advanced artificial 

intelligence. The ultimate aim is to develop a 

valuable tool that enables scientists to automatically 

differentiate between Dong Son glassware and other 

groups of ancient glassware within the region, as 

well as identify modern glass jewelry that imitates 

antiquated styles.  

In this paper, our aim is to present our research 

through three main sections. First, we will 

summarize the interdisciplinary research conducted 

at the intersection of gemology, archaeology, and 

machine learning. The subsequent section will delve 

into the details of our archaeology dataset, the 
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gemological measuring equipment used, and the 

experimental procedures implemented. We then will 

offer a concise yet comprehensive overview of our 

learning methods, evaluation metrics, and 

experimental protocols, accompanied by a detailed 

discussion of our experimental results. Finally, we 

will conclude the paper by emphasizing the overall 

significance and value of our findings. 

1.1. State of Art of gemological ancient glass 

analysis research 

The study of ancient glass using gemological 

methods emerged in the 1990s, with J. Henderson's 

series on Roman glass in England being a notable 

contribution (Henderson, 1991). The gemological 

approach for categorizing ancient glass is based on 

their characteristics and composition-related 

components. Scholars recognize two primary 

categories of antique glass based on the glassmaking 

process: lead glass and natron glass. Lead glass, 

invented by the Mesopotamians, reached China 

through the Silk Road and became known as Han 

glass or Oriental glass. Natron glass, invented by the 

Romans, appeared in various Mediterranean 

cultures such as Egypt, Africa, and Arabia, and is 

often referred to as ancient Roman or Western 

ancient glass (Tait, 2004). 

Studies on ancient glass in Asia are relatively 

limited and have only recently gained attention in a 

few studies conducted in Thailand and China. In 

Viet Nam, there have been only a few separate 

French studies on this topic, with little local 

research. Most of the research in this field has been 

conducted in Europe, primarily focusing on the 

natron glass category, and the research framework 

has been relatively mature for over 30 years. One of 

the earliest taxonomies, proposed by Sayre (Sayre, 

1961) divided natron glasses into two main 

categories based on their components. The first 

category is lmlp (low-magnesia, low-potash 

glasses), which were popular in ancient cultures, 

including the Romans, from the 1st millennium BC 

until the 9th century AD. The second category is 

hmhp (high-magnesia, high-potash glasses), found 

in Central Asia before the 7th century BC and in the 

Arab cultural area before the 9th century BC. 

Another classification, proposed by Freestone 

(Freestone et al., 2002) and Wedepohl (Wedepohl et 

al., 2000), is based on the calcium (Ca) content and 

divides the glasses into two smaller categories. 

However, for the convenience of studying ancient 

glass with Vietnamese characteristics, we have 

chosen to divide them into seven categories based 

on suggestions by scholars such as Wedepohl, 

despite disagreement from Freestone. Rehren 

(Rehren, 2015) proposed a method of dividing the 

mixtures of Freestone's and Wedepohl's categories 

into six groups of ancient glass based on the material 

source, encompassing both natron and lead glass 

families. Recent research, such as (Ngo-Ho, 2019a, 

2019b, 2020) has published gemological analyses of 

Oc Eo glass specimens with hybrid propositions of 

six categories. 

While categorizing ancient glass into distinct groups 

can be a simplistic method, it does not meet modern 

requirements. Each group of ancient glass can be 

further divided into smaller subgroups, each 

exhibiting distinct differences despite sharing 

common characteristics within the broader category. 

This complexity becomes evident when different 

types of glass are created within the same tradition 

but in different regions, resulting in significant 

archaeological variations. However, from a 

gemological perspective, these differences may not 

be pronounced enough to be discerned using 

rudimentary mathematical tools. On the other hand, 

in many cases in archaeology, an initial group of 

artifacts classified as Group A belonging to Culture 

A may be reclassified into another group in the 

future, depending on the available data at that time 

and subsequent discoveries. Classifying an artifact 

or a group of artifacts into a specific category or 

classification relies on various interdisciplinary 

factors, many of which are related to future 

excavations, and some of these factors can be 

completely unexpected. This makes classification 

studies highly complex because previous research 

data on gemology, for example, can be completely 

different, rendering those studies useless later on. 

This also poses challenges for data science 

disciplines, which will be discussed further in the 

next section, regarding the phenomenon of “concept 

drift”. 

Therefore, it is natural that there is a growing 

expectation for artificial intelligence methods with 

improved classification capabilities in many 

research institutions, especially during the recent 

explosive development in this field. The next 

section of the study will present these expectations. 

1.2. State of Art of artificial intelligence applied 

for identification of antique artifacts 

Currently, the application of artificial intelligence 

technologies for the classification, appraisal, 

assessment, and judgment of antiquities, sites, and 

heritages has gained significant popularity in recent 
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years. This trend has been observed in studies such 

as Bickler's examination of antique porcelain 

(Bickler, 2018), Jones' classification of ancient 

plants (Jones et al, 2019), and Ngo-Ho's works on 

the classification and evaluation of ancient 

documents (Ho et al., 2013, 2014, 2015, 2017). The 

application of AI also includes aerial archaeology, 

employing various techniques for detection through 

aerial images (Alexandra, 2022; Tran et al., 2022). 

Recently, as a result, we are gradually establishing 

the first automatic identification systems for 

Vietnamese antiquities using advanced technologies 

(Ngo-Ho, 2019c).  

In our previous papers, we utilized a neural network 

artificial intelligence system that simulates the 

human brain system, a method proven effective in 

similar systems presented in Bhuvaneswari's, 

Karlik's, and Truong's studies (Bhuvaneswari et al., 

2013; Bekir et al., 2011; Truong et al., 2014). After 

obtaining the feature sets extracted from the SEM 

system, which includes a selection of 36 features, 

we trained the neural networks for recognition, 

comparing them to select the best network. The 

selected network in this application comprised 36 

input values, 120 hidden layer neurons, and one 

output layer neuron. Through the training process, 

we obtained a set of networks suitable for 

identification. During the identification process, the 

application continuously collects data directly 

entered by the user, extracts features, and feeds them 

to the network for further identification. As a result, 

the results and efficiency gradually improve through 

continuous learning, enhancing the accuracy of the 

final outcome. The attributes of the analyzed rays 

are selected based on characteristic properties, 

vectorized, and transformed into a 36-dimensional 

vector {x1, x2, ..., x36}. Although we have installed 

a system that builds a single network for specimen 

recognition, it can be extended to handle multiple 

types of specimens simultaneously. The neuron set 

comprises three layers: the input value layer, the 

hidden neuron layer, and the output neuron layer. 

There are two sets of neuron weights corresponding 

to the links from the input layer to the hidden layer 

and from the hidden layer to the output layer. 

Considering the characteristics of artifact 

identification, we have chosen the feedforward 

neural network architecture combined with the error 

backpropagation algorithm as the network 

architecture type. 

In this article, our main objective is to improve upon 

a recently published system by integrating 

additional learning methods through the utilization 

of evolving approaches. The inspiration behind this 

concept arises from the distinctive characteristics of 

stream data in the field of archaeology. Unlike 

traditional datasets, archaeological data 

accumulates gradually over time as new discoveries 

arise from excavations. This research presents 

significant challenges due to the scarcity of data, 

which can be attributed to three primary reasons. 

Firstly, the real-life scenarios of archaeological 

investigations make it challenging to find artifacts, 

and conducting experimental excavations to extract 

features from these artifacts can be prohibitively 

expensive. As a result, data is acquired sporadically 

over time and in limited quantities. Secondly, 

although archaeological research institutions allow 

the use of experimental feature extraction results 

and the final model, they do not permit the storage 

of the actual archaeological data. Consequently, the 

algorithms employed in the experiments must prove 

their effectiveness under these unique 

circumstances. And the last one, in the field of 

archaeology, there are instances where artifacts 

initially classified as belonging to a group may be 

reclassified in the future based on new data and 

discoveries. The classification of artifacts into 

specific categories or classifications depends on 

various interdisciplinary factors, many of which are 

associated with future excavations. Some of these 

factors can be completely unexpected. As explaned 

in the previous section, this also presents challenges 

for data science disciplines, particularly concerning 

the phenomenon known as "concept drift" which 

will be explored further in the subsequent section. 

Therefore, given the limitations of traditional 

learning methods, evolving continuous learning 

methods become more relevant and intriguing for 

addressing this problem. In this study, we will 

implement and compare the results of evolving 

continuous learning methods using our 

archaeological dataset. A comprehensive overview 

of these evolving continuous learning methods has 

been extensively studied in Ho et al. (2014, 2015), 

especially in archaeology (Ngo-Ho, 2023a, 2023b). 

Considering the specific context of archaeology, we 

acknowledge that the system can effectively utilize 

lightweight methods based on data selection 

approaches due to the limited samples obtained 

from archaeological excavations. This approach 

ensures that important information is not lost due to 

the generalization concept employed by many 

evolving methods. To achieve this, we propose 

employing a simple "sliding windows" approach, 

similar to the FLORA approach (Widmer & Kubat, 
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1996). This principle involves updating the model at 

each moment 't' using the most recent training data, 

defined by a sliding window of a predetermined size 

(either based on time scale or number of data 

points). This approach can involve either batch 

retraining using the selected data within the sliding 

window or updating the model if an online learning 

method allows for it. 

Typically, these methods comprise three steps 

(Bitfet & Gavalda, 2007): 

1. Detecting concept changes using statistical 

tests on different windows. 

2. If a change is observed, selecting 

representative and recent examples to 

adapt the models. 

3. Updating the models. 

The size of the window is determined a priori by the 

user, and each window overlaps the previous one by 

sharing a batch of data. At each step, a new model 

is learned, which represents an updated set of 

classes. The crucial aspect of these approaches lies 

in determining the most appropriate window size. 

While most methods employ a fixed-size window 

configured for each real-world problem, there are 

approaches aimed at automatically detecting the 

optimal size of the analysis window. 

For instance, Bitfet & Gavalda, (2007) with 

ADWIN (ADaptive WINdow), tested a set of 

window sizes by dividing each window into sub-

windows of minimal size. If the sub-windows 

exhibit sufficiently different distributions, a 

statistically significant size is considered a good 

choice. Lazarescu et al., (2003), propose using two 

models at each step, each trained with a different 

window size: S (a predefined standard size) and 2S. 

The smaller window with size S was utilized to 

detect new concept spaces using a statistical test, 

while the larger window with size 2S was employed 

to update the model upon detecting a new concept 

space. Last (2002) used OLIN (On Line Information 

Network), to suggest dynamically adjusting the 

window size based on performance achieved on a 

validation dataset. The new data was divided into 

two parts: one for training and the other for 

validation. Multiple windows with varying sizes 

were independently applied for learning and testing, 

and the size that yields the best result on the 

validation data was selected for the current step. 

However, to implement this approach effectively, it 

requires conducting learning phases on sufficiently 

large batches of data. Lastly, in (Klinkenberg, 

2004), the author applies a consecutive increment of 

window sizes. At each step, the performance (in 

terms of error rate) is calculated for different 

window sizes, and the size that yields the best 

performance is chosen (e.g., size No1 represents the 

last batch, size No2 represents the last two batches, 

size No3 represents the last three batches, and so 

on). In this article, we will explore the evolving 

approaches based on Klinkenberg's idea 

(Klinkenberg, 2004), applied to our archaeological 

dataset, to dynamically detect the best window size 

for analysis. Hence, it is essential for the algorithms 

used in the experiments to show their efficacy 

within these exceptional conditions. Considering the 

specific context of archaeology, as explained 

previously, we recognize the potential effectiveness 

of employing lightweight methods that leverage 

data selection approaches. This is important because 

of the limited number of samples obtained from 

archaeological excavations. The underlying 

rationale is straightforward: we can exercise control 

over information loss by managing the "density" of 

learning data within the optimal size selected. By 

utilizing Klinkenberg's methods, with only a simple 

parameter n as the size of the batches, we can control 

the loss of valuable information caused by the 

generalization concept commonly employed in 

various evolving techniques. 

2. MATERIAL AND METHODS: 

ARCHAEOLOGICAL DATASET  

The Oc Eo, Sa Huynh, and Dong Son specimens 

utilized in this study have been showcased in 

numerous national exhibitions, authorized by the 

National Appraisal Council, and sourced from the 

collection of the UNESCO Center for Research and 

Conservation of Vietnamese Antiquities. To extract 

the gemological characteristics of these antique 

specimens, we employed the gemological Scanning 

Electron Microscope (SEM) technique. A 

comprehensive description of the SEM technique 

can be found in our previous studies (Ngo-Ho, 

2019a, 2019c). In summary, this method revolves 

around the utilization of Energy Dispersive X-ray 

Spectroscopy (EDXS) or Wavelength Dispersive X-

ray Spectroscopy (WDXS) analysis. These 

techniques involve analyzing the chemical 

composition of solids by recording the X-ray 

spectrum emitted when the solid interacts with 

radiation, typically high-energy electron beams in 

electron microscopes (Figure 1). In our study, we 

employed the SEM machine combined with the 

EDS exploitation machine (Model: Quanta 450; 
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Manufacturer: FEI-USA) to facilitate this physical 

technique. 

 

Figure 1. The technique is described in terms of 

electron interactions.  

The SEM technique provides a combination of 10 

values for each chemistry element in the results. The 

effective reflectance (Net Int) represents the 

reflectance of the electron beam, while Weight and 

Atomic Mass (%) and Atoms (%) indicate the 

composition of the specimen. The Kratio value 

represents the ratio of the reflected electron density, 

and R signifies the resolution in microns after 

determining the reflected electron density. The 

elemental composition is calibrated by comparing 

the spectrum of the standard sample with the 

spectrum of the measured sample. Calibrating 

values such as Z (atomic calibration), A (absorption 

correction), and F (fluorescence calibration) are 

used to ensure accuracy and adjust for specific 

factors. Table. 1 depicts the Structure of SEM 

Measurement Results: for each detected chemical 

element, SEM technique will calculate 9 indicators; 

Table 1 is a demo result for iron (Fe). 

In this particular experiment, the antique Oc Eo 

glass specimens consist of eight chemical elements: 

Calcium (Ca), Potassium (K), Iron (Fe), Sodium 

(Na), Magnesium (Mg), Aluminium (Al), Silicon 

(Si), and Oxygen (O). The location and number of 

analytical processing times are crucial for 

identification. Given the expense of each analysis 

shot, only necessary positions are analyzed to avoid 

data redundancy. Therefore, we follow specific 

conditions in our measurements: depending on the 

sample quality, each sample is analyzed five times 

at different locations on the specimen. By selecting 

distinct sites for analysis, we aim to achieve 

maximum variation. Homogeneous samples may 

require fewer analyses, while larger samples may 

undergo fewer shots. For Dong Son specimens, we 

analyze five different locations within each 

specimen, with five shots at each position to ensure 

analytical quality. For other antique specimens, we 

analyze one position in each specimen with five 

shots or less depending on the specificity of the 

artifacts. 

Table 1. Structure of SEM Measurement Results 

Element1  Weight2 (%)  Atomic3 (%)  Net Int.4 Error5 (%) Kratio6 Z7 R8 A9 F10 

FeK (Iron class K)          

1Element names according to electron subshell 

2Mass (%) in specimen 

3Atoms (%) in specimen 

4Effective intensity obtained in the specimen 

5Errors rate 

6Density of reflected electrons in the specimen 

7Atomic calibration 

8Resolution in microns 

9Absorption correction 

10Fluorescence calibration 

At present, our dataset solely consists of information 

sourced from the UNESCO Center for Research and 

Conservation of Vietnamese Antiquities. However, 

we are soon expecting a data package from the 

Vietnamese Institute of Archaeology, which will be 

transferred under technology transfer conditions 

that exclude direct data transfer, as previously 

mentioned. With a total of 108 different analyses 

collected, including 25 Dong Son specimens, the 

remaining samples consist of Sa Huynh, Oc Eo, and 

antique imitations. Each sample is characterized by 

40 features representing eight chemistry elements 

with 5 indicators ('W,' 'R,' 'Z,' 'A,' and 'F,') for each 

element, different with the previous works with 36 
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selected features (Ngo-Ho et al., 2019c). For tiny 

datasets, using any normalization before 

classification can lead to significant distortion of the 

true class concept underlying the data, so the study 

decides not to use any normalization.  

3. RESULTS AND DISCUSSION  

In this article, we will explore nine different 

machine learning methods with the incorporation of 

evolving approaches based on the Klinkenberg 

concept idea for dynamically detecting the optimal 

window size, utilizing our archaeological dataset. 

AdaBoost Classifier (Freund & Schapire, 1995): An 

ensemble estimation tool that adjusts a classifier on 

the original dataset and fits additional copies to 

focus on difficult cases. Gaussian Naïve Bayes 

(Chan et al., 1979): A variant of Naïve Bayes that 

follows the Gaussian normal distribution and 

supports continuous data. Decision Tree Classifier 

(Breiman et al., 1984): A tree-like flowchart 

structure that uses decision rules to partition data 

based on attribute values. K-Neighbors Classifier 

(Goldberger et al., 2005): A method that finds a 

predefined number of training samples closest in 

distance to a new point and predicts the label based 

on these neighbors. Extra Tree Classifier (Geurts et 

al., 2006): A meta estimator that fits randomized 

decision trees on subsets of the dataset to improve 

predictive accuracy. Bagging Classifier (Breiman, 

1996): An ensemble meta-estimator that fits base 

classifiers on random subsets of the dataset and 

aggregates their predictions. Multi-layer Perceptron 

Classifier (Hinton, 1989): Relies on a neural 

network to perform classification, optimizing the 

log-loss function. Random Forest Classifier 

(Breiman, 2001): A meta-estimator that fits multiple 

decision tree classifiers on different subsets of the 

dataset and uses averaging to improve prediction 

accuracy. Bernoulli Naive Bayes (Lewis, 1998): A 

variant of Naive Bayes that works well with a 

transformation for limited binary data. These 

learning methods are combined with the "sliding 

windows" approach and incorporate Klinkenberg's 

idea for dynamically detecting the optimal window 

size to conduct evolving continuous learning. 

The algorithms utilized in this experiment were 

implemented using version 0.24.2 of the scikit-learn 

library, combined with the "sliding windows" 

technique. The data is processed in a streaming 

fashion using mini "sliding windows" that consider 

the last n samples. We begin with n=1, which 

corresponds to classic online learning, and then 

gradually increase n > 1, representing batch 

learning. For each method, only the best results of n 

will be selected for comparison with other learning 

methods. 

The archaeology dataset comprises a total of 108 

samples, with 25 belonging to Dong Son specimens 

and the remaining samples belonging to other 

categories. Each sample is characterized by 40 

features representing 8 chemical elements, each 

having 5 associated indicators. This differs from 

previous works where only 36 features were 

Figure 2. The chart presenting the results of Average of Balanced Accuracy, Balanced Accuracy of 

last step and Standard deviation of algorithms in the archaeology dataset 
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selected (Ngo-Ho et al., 2019c). The dataset is 

divided into a training dataset (70%) and a testing 

dataset (30%) with a cross-validation. The positions 

of the data in the training and testing datasets are 

randomly assigned for each experiment, which is 

repeated 10 times. The training dataset is shuffled 

randomly 10 times to create different scenarios of 

stream learning, demonstrating the model's 

adaptability to evolving data. This means that each 

learning method with each parameter variation will 

undergo 100 random experiments before obtaining 

the final comparison data. The results will be 

averaged to ensure the reliability and 

generalizability of the experiments. 

All obtained results are predicated upon the 

utilization of Balanced Accuracy (BA). The 

selection of various metrics depends on the specific 

problem's objectives and the composition of the 

dataset. In pronounced data imbalance, where, for 

instance, one group contains only a single data point 

while another has 999 data points, traditional 

accuracy computations prove unreliable. 

Consequently, the area under a receiver operating 

characteristic (ROC) curve, abbreviated as AUC, 

and Balanced Accuracy (BA) are often preferred in 

such scenarios. Metrics like precision, recall, 

specificity are less appropriate when processing 

imbalanced class data. If the problem aims to 

discover consensus, it relies on metrics generated by 

true positive/false positive, such as precision, recall, 

and F-Score. Conversely, although less prevalent in 

real-life scenarios, if the problem seeks to detect 

non-consensus rather than consensus, it relies on 

true negative/false negative, such as specificity. The 

use of Recall, Precision, and F-score is criticized for 

their limitations as they disregard the true negative 

cell of the contingency table and are susceptible to 

manipulation through prediction bias (Powers, 

2011). In contrast, Balanced Accuracy considers 

both true positive and true negative, providing a 

more balanced assessment for both consensus 

detection (true positive) and non-consensus 

detection (true negative). Therefore, when aiming to 

address both consensus and imbalanced data 

conditions, Balanced Accuracy emerges as the most 

appropriate metric (Ho et al., 2015). Balanced 

Accuracy (BA) serves as an essential and 

straightforward metric for evaluating the 

performance of binary classifiers in situations of 

class imbalance, where one class is significantly 

more prevalent than the other. The balanced 

accuracy formula provides a means to calculate the 

most realistic and optimal assessment percentage. 

The formula for balanced accuracy is Balanced 

Accuracy (BA) = ½ (Specificity + Precision). 

Overall, all methods performed well, with the 

average balanced accuracy exceeding 80% for each 

method (except k-Neighbors Classifier, MLP 

Classifier and Bernoulli Naive Bayes). The rankings 

are Random Forest Classifier (92.12%), Adaboost 

(87.13%), Decision Tree Classifier (85.87%), Extra 

Tree Classifier (85.34%), Bagging Classifier 

(85.13%), Gaussian Naive Bayes Classifier 

(82.45%), MLP Classifier (78.39%), Bernoulli 

Naive Bayes Classifier (77.26%), and k-Neighbors 

Classifier (76.68%); they almost achieved the best 

results with a window size around 70. It is worth 

noting that Ensemble Learning methods such as 

Random Forest Classifier, Adaboost, Extra Tree 

Classifier, and Bagging Classifier, achieved 

excellent results compared to other classical 

Figure 3. The line graph of learning process of the algorithms 
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methods. Regarding the final balanced accuracy 

results, although there were differences in 

magnitude and some positions changed, the results 

were similar to the average balanced accuracy. In 

terms of results, the Random Forest Classifier 

performed the best, although the Bagging Classifier 

also achieved excellent results. 

Table 2. Table of experiment results 

Algorithms Average (%) Last Step (%) Std (%) 

k-Neighbors Classifier (n=74) 76,68 81,58 5,18 

Bernoulli NB Classifier (n=73) 77,26 77,00 3,10 

MLP Classifier (n=63) 78,39 76,34 3,42 

Gaussian NB Classifier (n=75) 82,45 80,15 6,27 

Bagging Classifier (n=74) 85,13 90,55 7,86 

Extra Tree Classifier (n=70) 85,34 93,29 7,98 

Decision Tree Classifier (n=65) 85,87 92,25 7,13 

Adaboost Classifier (n=73) 87,13 93,90 9,18 

Random Forest Classifier (n=57) 92,12 97,11 9,40 

The Naive Bayes methods (Bernoulli Naive Bayes 

and Gaussian Naive Bayes) achieved unsatisfactory 

results, showing an unclear separation between 

Dong Son Specimens and the remaining samples. 

The outcome of the MLP Classifier may appear 

unexpected initially, but it can be rationalized. 

Neural network methodologies typically exhibit 

robust performance in scenarios characterized by 

abundant data, yet their behavior often diverges in 

situations marked by data scarcity. The observed 

results of the MLP Classifier, while initially 

perplexing, can be explained. In accordance with the 

theoretical underpinnings of the MLP Classifier and 

also deep learning methods, it exhibits a consistent 

and minimal variance in its performance. However, 

it struggles to achieve efficient classification 

outcomes when confronted with limited data, 

mirroring the negative impact observed with the k-

Neighbors Classifier. This suggests that 

representing the concept of Dong Son and other 

ancient glass as a single category is not effective, 

possibly due to the inefficiency of representing 

different types of ancient glass within the same 

category because of their significant differences. 

Conversely, the separation between Dong Son and 

others could be easily solved with "divide-and-

conquer" approaches like Ensemble Learning or 

Decision Trees (Random Forest Classifier, 

Adaboost, Extra Tree Classifier, Decision Tree 

Classifier, and Bagging Classifier), which all 

achieved the top 5 performance results. This shows 

that the structure of the Dong Son class has distinct 

components that align with the components of other 

classes. Therefore, with limited data, this alignment 

becomes a challenge for probabilistic-based 

machine learning approaches, while it becomes 

advantageous for "divide-and-conquer" approaches, 

as evidenced by the overall results in this study. 

Observing the plotted lines representing the learning 

progression of the methods, two main groups can be 

identified. After an initial period, the groups 

stabilize, with most of them achieving stability 

around steps 10-12, with results hovering around 

80%. Subsequently, the groups gradually diverge 

and distinctively separate around steps 37 to 40: one 

group steadily increases and reaches high levels of 

stability, becoming one of the top 5 most effective 

methods, while the other group maintains stability. 

The breakthrough group comprises methods based 

on "divide-and-conquer" approaches; the group that 

maintains stability comprises methods based on 

probability factors, as analyzed in the previous 

section. As expected, the ensemble learning 

methods exhibit less stability with limited data 

compared to probabilistic-based methods. 

Therefore, although these ensemble methods rank 

among the top 5 most effective methods, they also 

fall into the top 5 least stable methods when 

considering the overall standard deviation. 

Overall, the Random Forest Classifier, despite 

having a relatively high overall standard deviation 

(primarily influenced by the initial phase when 

seeking stability points), outperforms all other 

methods with high stability and distinctively 

superior results. 

4. CONCLUSION 

This study was conducted within the unique 

limitations of the archaeology field, where data 

scarcity poses a significant challenge. This scarcity 

arises from three primary factors: the difficulty of 

locating artifacts in real-world contexts, the high 
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costs associated with conducting excavations for 

feature extraction, and the sporadic nature of data 

acquisition. It should be noted that, in archaeology, 

artifacts initially classified under a specific group 

belonging to a culture may be subject to 

reclassification based on additional data and new 

discoveries. The classification of artifacts or groups 

into specific categories relies on interdisciplinary 

factors, some of which may emerge unexpectedly 

during future excavations. This complexity makes 

classification studies challenging, as previously 

conducted research in relevant fields may become 

outdated and lose relevance. Consequently, these 

circumstances present challenges for data science 

disciplines, particularly in relation to the 

phenomenon of "concept drift" which becomes a 

prominent factor driving the adoption of these 

methods in archaeological datasets. 

The results obtained from the study have been 

integrated into a software suite called the 

Recognition Automatic System of Dong Son Glass 

(RAS-DSG), freely available on the system's 

website for archaeological experts. While the 

system shows commendable performance in 

recognition, further support is required to expand 

and enhance the feature dataset. 

This paper introduces an advanced artificial 

intelligence system specifically designed for the 

automatic identification of Dong Son glass jewelry, 

utilizing SEM gemological analysis parameters. 

Implementing this system represents a significant 

technological advancement in the evaluation and 

identification of antiquities, surpassing traditional 

methods and aligning with the latest developments 

in archaeological centers worldwide. The 

integration of artificial intelligence technology into 

archaeological practices is a natural progression in 

the field.  
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