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In this study, we investigate the effectiveness of ResNet, a deep neural 

network architecture, for a deep learning approach to address the problem 

of printed document identification. ResNet is known for its ability to handle 

the vanishing gradient problem and learn highly representative features. 

Multiple variations of ResNet have been applied, including ResNet50, 

ResNet101, and ResNet152, which provide the backbone architecture of 

our classification model and are trained on a comprehensive dataset of 

microscopic printed images containing some microscopic printing patterns 

from various source printers. We also incorporate Mix-up augmentation, 

a technique that generates virtual training samples by interpolating pairs 

of images and labels, to further enhance the performance and 

generalization capability of the model. The experimental results showed 

that ResNet101 and ResNet152 variants outperformed in accurately 

distinguishing printer sources based on microscopic printed patterns. We 

developed a mobile app to test the feasibility of our findings in practice. In 

conclusion, this study aims to lay the groundwork for creating a sufficiently 

pre-trained model with accurate performance of identification that can be 

deployed on mobile devices to detect the printed sources of documents. 
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1. INTRODUCTION 

To fight against the counterfeit industry effectively, 

innovative solutions are needed that can accurately 

authenticate and classify genuine products. This 

research focuses on developing a classification 

framework that leverages advanced deep learning 

techniques, to identify and categorize authentic 

products based on the use of printed graphical codes 

stuck on each product (performing authentication 

for printed documents). By enhancing our ability to 

distinguish genuine items from counterfeits, we can 

protect consumer trust, safeguard industries, and 

mitigate the detrimental effects of counterfeit trade 

on the global economy and public health. 

This paper proposes a comprehensive approach that 

combines microscopic printing analysis and deep 

learning techniques to classify the source of printed 

documents, responsible for producing microscopic 

printing patterns carved on various products. By 

accurately identifying the source of printed patterns, 

we establish a reliable link between the printing 

pattern and the genuine manufacturer, facilitating 

the authentication process and aiding in the fight 

against counterfeiting.  

The subsequent chapters will delve into the existing 

literature, methodologies, experimental results, and 

analysis, leading to the conclusion and potential 

future directions for research in this vital area of 

classification for authenticating products. 
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Figure 1. Microscopic printing patterns applied

2. MATERIALS AND METHOD  

In this section, we describe the method used in this 

paper for the identification of printed documents, 

which uses various ResNet (He et al., 2016) based 

models as the backbone. To enhance the training 

performance, we also incorporate Mixup 

augmentation to generate more similar data, and 

then perform the training for different patterns using 

a combination of different paper and printers. 

2.1. Dataset  

In this study, we examined the same dataset with 

authors from (Nguyen et al., 2021), (Nguyen et al., 

2021), and (Vo et al., 2022) which contain 

microscopic images of eight distinguished patterns 

printed using three different printing technologies 

on two types of papers. This dataset was achieved 

with numerous hours of labor following these steps:  

First, two commonly used printing methods were 

employed, Offset and Xerography, to print on two 

different surfaces: (1) uncoated natural paper and 

(2) paper coated with one or more layers. Offset 

printing, a lithographic technique, involves 

transferring the inked image from a printing plate 

(containing the desired pattern) to a rubber blanket 

and then onto the printing surface through a process 

called "Offset" (Kipphan, 2001). This work used 

two specific offset printing techniques: (1) 

Conventional Offset Printing, where water and 

additives dampen the image-carrying plate, and (2) 

Waterless Offset Printing, which employs a silicone 

layer that repels ink, covering the non-inked areas of 

the printing plate. Whereas, Xerography, also 

known as laser printing, is a dry photocopying 

method. It uses a laser beam to electrostatically 

charge the photoconductor, attracting inks, powders, 

or liquid toners that carry an opposite charge to the 

photoconductor surface. Subsequently, the 

transferred ink is fixed to the substrate by subjecting 

it to elevated temperatures (Kipphan, 2001). 

Next, eight distinct patterns outlined in Figure 1 

were produced using the previously outlined setups. 

These patterns were chosen based on an evaluation 

of microscopic observations. The sample collection 

process involved using an optical Zeiss Microscope 

with an AxioCam camera. The outcomes following 

this step can be seen in Figure 2. 

         

      (a)                 (b)                     (c) 

   

     (d)                 (e)                     (f) 

Figure 2. The uncoated (a, c) and coated (b, d) 

papers with conventional (a, b) and waterless (c, 

d) offset printing technologies, uncoated (e) and 

coated (f) papers with xerography printing 

technology 

To create a diverse and representative dataset, 

printer source images were gathered from various 

sources, including different manufacturers, printing 

technologies, and printing papers. The dataset 

collection process involved obtaining eight patterns 

for each printer model and substrate combination. 

For consistency and reliability, one hundred copies 

were produced for each pattern of each printer type. 

These copies were then captured using a Zeiss 

Microscope to ensure high-resolution images for 

further analysis.  

Table 1. Details of the Experimented Dataset 

Printing Technology 
Printing 

Paper 

Number of 

samples per 

pattern 

Conventional Offset Uncoated 100 

Conventional Offset Coated 100 

Waterless Offset Uncoated 100 

Waterless Offset Coated 100 

Xerography Uncoated 100 

Xerography Coated 100 

As shown in Table 1. Details of the Experimented 

Dataset, the dataset comprises 4800 samples, with 
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each sample corresponding to a specific 

combination of design, printer type, and paper type. 

This comprehensive dataset allows for an in-depth 

investigation of the patterns and their variations 

across different printers and substrate. 

2.2. Data Preprocessing 

Before proceeding with the training, several 

preprocessing steps were applied to the dataset. 

These steps aimed to enrich the source of images, 

remove the redundant noise, and hence improve the 

view of the learning model for subsequent 

classification tasks. The preprocessing pipeline 

comprised of the following steps:  

GAN-based Augmentation: To augment the dataset 

and increase its diversity, we used Generative 

Adversarial Networks (GANs) (Isola et al., 2017). 

GANs are deep learning models that consist of a 

generator and a discriminator. The generator learns 

to generate realistic synthetic data samples, while 

the discriminator learns to distinguish between real 

and synthetic samples. Figure 3 describes the GAN 

model implementation on our dataset so that we 

could generate additional synthetic images that 

closely resemble the original printer source images. 

This augmentation technique helps to increase the 

variability of the dataset and hence improve the 

power of learning models. 

 

Figure 3. GAN architecture for generating more 

training images 

Augmentation: Mix-up (Zhang et al., 2017) 

augmentation is another technique that we use to 

create new augmented samples. It involves taking a 

weighted average of the input images and their 

corresponding labels. By blending samples together, 

mix-up augmentation introduces smooth transitions 

between different classes and helps to improve the 

model’s robustness and generalization. We applied 

mix-up augmentation to the dataset (Figure 4), 

creating augmented samples that combine the 

characteristics of multiple printer sources. 

These preprocessing techniques, including GAN-

based augmentation, and mix-up augmentation, 

helped enhance the dataset’s diversity, improve the 

model’s ability to generalize, and isolate the 

relevant microscopic printing patterns for accurate 

classification. The preprocessed dataset was then 

used for training the deep learning models with a list 

of selected ResNet variants as the backbone 

architecture. 

 

Figure 4. Mix-up example 

2.3. Model Architecture  

The backbone architecture used in this study is 

based on the ResNet (Residual Network) models. 

ResNet is a deep learning architecture that has 

showed excellent performance in image 

classification tasks. It addresses the problem of 

vanishing gradients by introducing residual 

connections, which enable the network to 

effectively learn from deeper layers. In this study, 

we used various ResNet variants as the backbone 

architecture for our deep learning models. The 

following ResNet models were employed:  

− ResNet50: This variant comprises 50 layers and 

has shown strong performance in image 

classification tasks. It includes residual blocks with 

skip connections, enabling the network to learn deep 

representations effectively.  

− ResNet101: Similar to ResNet50, ResNet101 

has 101 layers. It provides a deeper network 

architecture, allowing for more complex feature 

extraction and representation.  

− ResNet152: ResNet152 is an even deeper 

variant with 152 layers. It offers increased model 

capacity and the ability to capture more intricate 

patterns and details in the input images.  

− ResNeXt50_32x4d: ResNeXt (Xie et al., 2017) 

models introduce a cardinality parameter, which 

allows for more extensive network connectivity. 

ResNeXt50_32x4d has 50 layers and a cardinality 

of 32, enhancing its feature learning capabilities.   

− ResNeXt101_32x8d: this variant provides a 

deeper and more connected architecture compared 

to ResNeXt50_32x4d with 101 layers and a 

cardinality of 32. It can capture more fine-grained 

features and exhibit improved classification 

performance.  
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− ResNeXt101_64x4d: this variant is similar to 

ResNeXt101_32x8d, but exhibits a higher 

cardinality of 64. This variant offers enhanced 

feature learning and representation abilities, making 

it suitable for complex classification tasks.  

− WideResNet50_2: WideResNet (Zagoruyko et 

al., 2016) models increase the width (number of 

channels) of the network, providing a broader 

capacity for feature learning. WideResNet50_2 has 

double the number of channels compared to 

ResNet50, allowing for richer feature 

representations.  

− WideResNet101_2: WideResNet101_2 has 

increased width and capacity with 101 layers. It can 

capture more diverse and detailed features from the 

input images.  

These ResNet variants illustrated in Table 2 offer a 

range of architectural depths and complexities, 

allowing for flexibility in capturing and learning 

different levels of patterns and details in the printed 

source images. By utilizing these models as the 

backbone architecture, our deep learning models 

can effectively extract and leverage hierarchical 

features for the accurate classification of printed 

sources of documents based on their microscopic 

printing patterns.

Table 2. Architectures of Experimented ResNet Variants  

Layer Name conv1 conv2_x conv4_x conv5_x  

Output Size 112x112 56x56 14x14 14x14 1x1 
 

ResNet50 
 
 
 
 
 
 
 
 
 
 
 
 
 

7x7, 
64, 

Stride 
2 

 
 
 
 
 
 
 
 
 
 
 
 

3x3 
Max 
pool, 
stride 

2 

[
1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3 [

1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

 

[
1 × 1, 256
3 × 3,256

1 × 1,1024
] × 6 

 

[
1 × 1, 512
3 × 3, 512

1 × 1, 2048
] × 3  

 

 
 
 
 
 
 
 
 
 
 
 
 

average 
pool, 

1000-d 
fc, 

softmax 

 
ResNet101 [

1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3  

 

[
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 4 

 

[
1 × 1, 256
3 × 3,256

1 × 1,1024
] × 23 

 

[
1 × 1, 512
3 × 3, 512

1 × 1, 2048
] × 3  

 

 
ResNet152 [

1 × 1, 64
3 × 3, 64

1 × 1, 256
] × 3  

 

[
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 8 

 

[
1 × 1, 256
3 × 3,256

1 × 1,1024
] × 36 

 

[
1 × 1, 512
3 × 3, 512

1 × 1, 2048
] × 3  

 

 
ResNeXt50_32x

4d 
 
 

[
1 × 1, 128               
3 × 3, 128, 𝐶 = 32
1 × 1, 256            

] × 3 

 

[
1 × 1,128               
3 × 3, 128, 𝐶 = 32
1 × 1, 256            

] × 4 

 

[
1 × 1, 512               
3 × 3, 512, 𝐶 = 32
1 × 1, 1024            

] × 6 

 

[
1 × 1, 1024               
3 × 3, 1024, 𝐶 = 32
1 × 1, 2048            

] × 3 

 

 
ResNeXt101_3

2x8d 
 
 

[
1 × 1, 128               
3 × 3, 256, 𝐶 = 32
1 × 1, 256            

] × 3 

 

[
1 × 1,128               
3 × 3, 256, 𝐶 = 32
1 × 1, 256            

] × 4 

 

[
1 × 1, 512                  
3 × 3, 1024, 𝐶 = 32
1 × 1, 1024               

] × 23 

 

[
1 × 1, 1024                
3 × 3, 2048, 𝐶 = 32
1 × 1, 2048               

] × 3 

 

 
ResNeXt101_6

4x4d 
 

[
1 × 1, 64               
3 × 3, 64, 𝐶 = 64
1 × 1, 256            

] × 3 

 

[
1 × 1,128               
3 × 3, 128, 𝐶 = 64
1 × 1, 256            

] × 4 

 

[
1 × 1, 256               
3 × 3, 256, 𝐶 = 64
1 × 1, 1024             

] × 23 

 

[
1 × 1, 512               
3 × 3, 512, 𝐶 = 64
1 × 1, 2048             

] × 3 

 

 
WideResNet50_

2 
 
 
 

[
1 × 1, 128
3 × 3, 128
1 × 1, 256

] × 3 

 

[
1 × 1, 256
3 × 3, 256
1 × 1, 512

] × 4 

 

[
1 × 1, 512  
3 × 3, 512  
1 × 1, 1024

] × 6 [
1 × 1, 1024  
3 × 3, 1024  
1 × 1, 2048  

] × 3 

 
WideResNet10

1_2 
[
1 × 1, 128
3 × 3, 128
1 × 1, 512

] × 3 [
1 × 1, 256
3 × 3, 256

1 × 1, 1024
] × 4 [

1 × 1, 512  
3 × 3, 512  
1 × 1, 2048

] × 23 [
1 × 1, 1024  
3 × 3, 1024  
1 × 1, 4096  

] × 3 

2.4. Train-Validation-Test Split  

After the preprocessing steps, we acquired 9600 

images (4800 original + 4800 Generative images) 

and divided the dataset into three subsets: train, 

validation, and test. We used a ratio of 7:2:1 for 

these splits, respectively. The train set, comprising 

70% of the dataset, was used to train our models and 

optimize their parameters. The validation set, 

comprising 20% of the dataset, served as a separate 

subset to monitor the model’s performance during 

training and fine-tune hyperparameters. Finally, the 

test set, accounting for 10% of the dataset, was used 

to evaluate the models’ generalization and assess 

their performance on unseen data. 

2.5. Training procedure and evaluation metrics  

For our experiments, we applied the aforementioned 

architectures for the Feature Extractor part of the 

framework. In the data loading part, the images are 

loaded with a batch size of 32. The model was 

trained for 100 epochs using SGD optimizer (Ruder 
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et al., 2016) with an initial learning rate 1×10−3 and 

decays by 0.1 after 15, 30, 45, and 60 epochs. We 

resized the image to 224x224 in both the training 

and testing process. Our study was built on Pytorch 

(Paszke et al., 2017) version 1.9.1 and conducted on 

a machine with NVIDIA RTX 3070Ti GPU. For 

evaluation, we used the macro CE_Loss-Score 

(Paszke et al., 2017) for measuring performances. 

We also recorded the number of parameters required 

from each model and the GPU RAM requirement 

with the same configuration.results and discussion  

Additionally, it is important to consider the 

applications of these findings. Thus, we developed 

a mobile app shown in Figure 5 to test the feasibility 

of our study in practice. In the app, the user can 

upload an image of a printed pattern (Figure 5a), 

choose a prediction model (Figure 5b), and receive 

the predicted result (Figure 5c).      

Table 3 represents the results of our experiment 

involving multiple ResNet variants on eight 

aforementioned microscopic printing patterns. The 

table includes accuracy and cross-entropy (CE) loss 

values for each pattern and provides valuable 

insights into the performance of the tested materials, 

printing technologies, and patterns. From these 

results, we perform a detailed analysis of the 

experiment.  

In this experiment, we focus on microscopic 

printing patterns and their imaging from several 

printing technologies on distinct substrates to 

evaluate the effectiveness of these patterns in terms 

of accuracy and CE loss. Eight distinct microscopic 

printing patterns, represented by Pattern 1 to Pattern 

8, have diverse characteristics of structural 

variations. The materials used for printing will not 

be discussed here. The accuracy values measure the 

success rate of correctly identifying or matching the 

printed patterns. In comparing the results across the 

various models utilized in this research, we observe 

that the accuracy achieved is relatively high. The 

percentages provided range from 95.56% to 100% 

in comparison with the range from 66% to 80% in 

our previous study (Vo et al., 2022). This shows the 

effectiveness of the methodologies applied and the 

feasibility of using the deep learning approach for 

microscopic printer identification. 

From the indicated values in the result table, we can 

observe that pattern 5 consistently shows high 

accuracy, ranging from 98.33% to 100%, indicating 

its robustness across different materials. Patterns 6 

and 8 also exhibit high accuracy, consistently 

achieving 99.44% and 100% accuracy, respectively. 

Patterns 3 and 4 show relatively consistent accuracy 

values, ranging from 95.56% to 97.78% and 97.22% 

to 99.44%, respectively. Whereas, patterns 1, 2, and 

7 display varied results, showing potential 

sensitivity to the materials or printing technologies.  

Interestingly, the models that were trained on more 

complex patterns (pattern 5, 6, 7, and 8) 

outperformed their counterparts that were trained on 

simpler patterns (pattern 1, 2, 3, and 4). These 

models achieved better results in terms of lower 

Cross-Entropy (CE) loss, suggesting that increasing 

the complexity of the patterns contributes to 

improving the model’s ability to classify the source 

printer accurately. 

It was initially hypothesized that adding complexity 

might raise a challenge to the model, potentially 

leading to overfitting. However, the findings 

suggest the opposite: the increased complexity 

seems to have provided the models with more 

distinctive features to learn from, thereby enhancing 

their discriminative power.  

Given these encouraging results, it can be concluded 

that this dataset and the proposed approach offer 

significant potential for real-world applications. The 

high accuracy and improved performance with 

higher pattern complexity suggest that even more 

complex patterns might lead to further 

improvements, marking a promising direction for 

future research.  

     

    (a)                            (b)                           (c) 

Figure 5. Upload page (a), Choose model page (b), 

and Result page (c) 

These findings make a substantial contribution to 

the field of source printer identification, particularly 

when based on microscopic printed documents. The 

results show the potential of deep learning 

techniques in this domain and pave the way for more 

sophisticated approaches in the future.  
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Additionally, it is important to consider the 

applications of these findings. Thus, we developed 

a mobile app shown in Figure 5 to test the feasibility 

of our study in practice. In the app, the user can 

upload an image of a printed pattern (Figure 5a), 

choose a prediction model (Figure 5b), and get the 

predicted result (Figure 5c). 

Table 3.  Accuracy and CE Loss for Different Patterns and Models on test set at best epoch 

 ResNet 

50 

ResNet 

101 

ResNet 

152 

ResNeXt 

50_32x4d 

ResNeXt 

101_32x8d 

ResNeXt 

101_64x4d 

WideResNet 

50_2 

WideResNet 

101_2 

Pattern 1 
Accuracy 98.00% 98.00% 98.00% 96.00% 96.00% 96.67% 96.00% 97.33% 

CE Loss 0.097 0.1211 0.0777 0.1315 0.1351 0.1509 0.1351 0.1218 

Pattern 2 
Accuracy 95.56% 96.11% 95.56% 95.56% 95.56% 96.67% 96.67% 96.11% 

CE Loss 0.1602 0.1461 0.135 0.1343 0.1579 0.1353 0.1323 0.1455 

Pattern 3 
Accuracy 96.67% 96.11% 95.56% 96.11% 95.56% 94.44% 97.78% 95.56% 

CE Loss 0.1107 0.1296 0.1375 0.1652 0.1487 0.1741 0.1272 0.1764 

Pattern 4 
Accuracy 97.78% 99.44% 98.89% 97.78% 97.22% 98.33% 96.11% 97.78% 

CE Loss 0.0769 6.5 0.0653 0.1039 0.1233 0.1012 0.1207 0.12 

Pattern 5 
Accuracy 98.33% 98.33% 98.89% 98.89% 98.89% 97.22% 99.44% 100.00% 

CE Loss 0.0915 0.0605 0.04 0.0495 0.1013 0.1088 0.0504 0.037 

Pattern 6 
Accuracy 100.00% 98.33% 99.44% 99.44% 99.44% 99.44% 99.44% 99.44% 

CE Loss 0.0171 0.0336 0.0211 0.024 0.0459 0.028 0.0261 0.015 

Pattern 7 
Accuracy 99.33% 99.33% 100.00% 99.33% 99.33% 98.00% 98.67% 99.33% 

CE Loss 0.0234 0.0487 0.0104 0.0207 0.0626 0.0699 0.0364 0.0359 

Pattern 8 
Accuracy 100.00% 98.00% 98.67% 100.00% 98.67% 98.67% 98.67% 99.33% 

CE Loss 0.0463 0.072 0.0564 0.0256 0.0718 0.0826 0.0474 0.0408 

3. CONCLUSION 

In conclusion, the research shows the effectiveness 

of deep learning approaches for microscopic printed 

document identification. The high accuracy 

achieved, and the superior performance of models 

trained on complex patterns highlight their potential 

in real-world applications. Contrary to initial 

expectations, more complicated patterns improved 

the potency to classify printers, offering distinctive 

features for better discrimination. We also 

developed a mobile app at the staging level to prove 

the feasibility of this approach. Future research 

should focus on developing new, secure patterns and 

implementing data adaptation techniques to handle 

actual data with noise. These findings contribute 

significantly to the field of printed document 

identification for authentication and lay the 

groundwork for enhanced anti-counterfeiting 

measures. 
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