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The present study meticulously investigates optimization strategies for 

real-time sign language recognition (SLR) employing the MediaPipe 

framework. We introduce an innovative multi-modal methodology, 

amalgamating four distinct Long Short-Term Memory (LSTM) models 

dedicated to processing skeletal coordinates ascertained from the 

MediaPipe framework. Rigorous evaluations were executed on esteemed 

sign language datasets. Empirical findings underscore that the multi-

modal approach significantly elevates the accuracy of the SLR model while 

preserving its real-time capabilities. In comparative analyses with 

prevalent MediaPipe-based models, our multi-modal strategy consistently 

manifested superior performance metrics. A distinguishing characteristic 

of this approach is its inherent adaptability, facilitating modifications 

within the LSTM layers, rendering it apt for a myriad of challenges and 

data typologies. Integrating the MediaPipe framework with real-time SLR 

markedly amplifies recognition precision, signifying a pivotal 

advancement in the discipline. 
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1. INTRODUCTION 

Sign language, a vital communication mechanism 

for the deaf and hard-of-hearing community, relies 

on intricate hand gestures, body movements, and 

facial expressions. Technological advancements 

have intensified the demand for automated sign 

language recognition (SLR) systems to translate 

these gestures into comprehensible text or speech 

(Shi et al., 2020). While numerous methodologies 

have been proposed in the SLR domain, the real-

time recognition aspect remains challenging 

because of the subtle nuances of sign language. 

Driven by the MediaPipe (Lugaresi et al., 2019) 

framework, our research introduces a 

groundbreaking multi-modal SLR methodology. 

Central to our approach is integrating four distinct 

Long Short-Term Memory (LSTM) (Staudemeyer 

& Morris, 2019) models hinged on skeleton 

coordinates extracted from MediaPipe (Lugaresi et 

al., 2019), capturing the depth and dynamism of sign 

language. 

 

Figure 1. Proposed multi-modal SLR model 

using skeleton posing to enhance recognition 

In urban centers like Ho Chi Minh City, the bustling 

heart of Vietnam, there are many stories of 
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individuals relying on sign language daily. Amidst 

the city's cacophonous streets and alleyways, the 

silent world of these individuals intersects with ours. 

A refined sign language recognition system, such as 

the one proposed, can facilitate more seamless 

interactions in such dynamic environments, creating 

more inclusive urban societies. 

Our choice of the How2Sign dataset, as presented 

by (Duarte et al., 2021), underpins our 

methodology. This dataset's reputation in the SLR 

community renders it an ideal benchmark to validate 

the efficacy of our multi-modal approach. Our 

venture extends beyond merely demonstrating 

increased accuracy; we posit our multi-modal 

approach as a versatile and efficient solution for 

real-time SLR challenges. 

While foundational, our proposed LSTMs 

(Staudemeyer & Morris, 2019) are inherently 

adaptable. The emphasis is on the overarching 

multi-modality, allowing the LSTMs (Staudemeyer 

& Morris, 2019) to be tailored to various datasets 

and problems rather than being a monolithic 

solution. This adaptability ensures that our 

framework remains relevant across diverse 

challenges. 

We further align our work with state-of-the-art 

models rooted in the MediaPipe (Lugaresi et al., 

2019) framework, specifically those highlighted by 

(Velmathi & Goyal, 2023). Our comparative 

analysis is marked by meticulous customizations to 

the LSTM networks (Staudemeyer & Morris, 2019), 

ensuring they resonate with the challenges these 

models address. While retaining our approach's core 

principles, this alignment guarantees an equitable 

evaluation. 

The subsequent sections will offer a more granular 

exploration of our methodologies, evaluations, and 

discussions, setting the stage for continued 

innovations in this pivotal domain. 

2. MATERIALS AND METHOD 

2.1. Datasets Overview 

Our research uses two cornerstone datasets: the 

How2Sign dataset (Duarte et al., 2021) and an 

Indian Sign Language dataset. 

The How2Sign dataset, as introduced by (Duarte et 

al., 2021), has garnered attention for its pioneering 

attributes, emerging as the foremost expansive, 

multi-modal, and multi-view continuous dataset 

dedicated to American Sign Language (ASL). 

Encompassing a staggering 80 hours of sign 

language videos, it seamlessly integrates various 

modalities such as speech, meticulously curated 

English transcripts, and depth, setting a new 

standard in sign language datasets. One of its 

standout features is a specialized subset endowed 

with intricate 3D pose estimations, a feat achieved 

by the advanced Panoptic studio. The topics it 

encapsulates range from everyday subjects like 

"Cars and Other Vehicles" to niche themes like 

"Sports and Fitness," providing a comprehensive 

and varied learning environment. This diversity 

ensures a robust and holistic training paradigm, 

enhancing the generalizability of models trained on 

it. Delving deeper into our experimental design, we 

harness the potential of the Green Screen RGB clips 

from this dataset. This subset, comprising 35,191 

clips meticulously extracted from 2,456 videos, 

presents a pragmatic yet challenging testbed for our 

model evaluations, simulating real-world conditions 

with its intricate gestures and nuances. Table 2  

further explains the detailed division and 

categorization of the dataset. 

Table 2. How2Sign Dataset Statistics 

Subsets Words Sentences Clips 

Training  15,686 31,128 31,128 

Validation 3,218 1,741 1,741 

Testing  3,670 2,322 2,322 

Total  35,191 35,191 

To enhance the comprehensiveness of the Indian 

Sign Language dataset (Velmathi & Goyal, 2023), 

which boasts an extensive collection of 1200 

photographs for each object within the dataset, our 

study incorporates a diverse range of elements. This 

dataset, crafted with meticulous attention, 

specifically encompasses the digits 1 to 9 and the 

complete alphabet from A to Z, resulting in a 

comprehensive representation of sign language 

gestures. This extensive scope ensures that our 

multi-modal models can be systematically 

compared and benchmarked against the real-time 

sign language recognition model developed by 

Velmathi and Goyal in 2023. Throughout the 

process of conducting these comparative analyses, 

we strategically adapted our LSTM network, as 

initially proposed by Staudemeyer & Morris in 

2019, to effectively align with the intricacies and 

challenges posed by the model presented by 

Velmathi & Goyal while maintaining the core 

principles and methodology of our approach. 

The judicious selection and combination of these 

datasets in our research provide a foundation for 

robust evaluation and benchmarking. By harnessing 
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the depth of How2Sign (Duarte et al., 2021) and the 

specificity of the Indian Sign Language dataset, we 

strive to push the boundaries of AI-based sign 

language recognition, ensuring our results are 

comprehensive and contextually relevant. 

2.2. Sign Recognition Techniques 

Sign language is a beacon of effective 

communication for those with hearing and speech 

impairments, which is pivotal in fostering 

connections and even advancing cognitive 

development in specific contexts (Emmorey, 2001). 

As essential as it is, the real-time deciphering of sign 

language and the demand for impeccable accuracy 

is an intricate challenge (Dardas & Georganas, 

2011). While traditional strategies like 

Convolutional Neural Networks (CNNs) (Huang et 

al., 2018) have showcased promise in static image 

recognition, their computational demands escalate 

when real-time analysis comes into play. Our 

research aims to break this impasse, offering a 

rejuvenated perspective on the problem. Our 

solution revolves around skeleton pose estimation, a 

method that can transcend the confines of previous 

strategies, as visually portrayed in Figure 2. 

Historically, sign language recognition has relied 

heavily on techniques steeped in CNNs (Huang et 

al., 2018), processing gestures extracted from static 

images. The results, undeniably potent, have not 

been without their pitfalls. Every frame in a video 

stream funnels a significant computational toll, 

stretching resources thin. This computational 

heftiness translates to a bottleneck in real-time 

gesture recognition, introducing compromises in 

accuracy to maintain timeliness. Moreover, sign 

language's richness extends beyond mere hand 

gestures; facial cues and body postures add layers of 

meaning and, simultaneously, layers of 

computational demands. 

Venturing off the trodden path, our proposal 

emphasizes skeleton pose estimation, zeroing in on 

vital joints and landmarks rather than canvassing the 

entire frame. This refined approach bears a host of 

benefits. Primarily, it slashes computational 

requirements by narrowing the focus to skeletal 

configurations. With less data to wrangle, 

computational speeds surge, paving the way for 

accurate real-time recognition. An added boon is our 

model's indifference to video resolution; its essence 

lies in interpreting joints and landmarks, not pixel 

densities. Furthermore, we have designed our model 

to exhibit resilience, gracefully navigating 

challenges like fluctuating lighting conditions, 

obstructions, and varied backgrounds. 

The finesse of our skeleton's estimation owes much 

to MediaPipe (Lugaresi et al., 2019). Esteemed in 

computer vision for its blend of rapidity and 

precision, MediaPipe's deep learning modules 

(Lugaresi et al., 2019) are fine-tuned for real-time 

tasks. Its prowess shines brightly in landmark 

detection, a facet we exploit to its fullest. In 

deciphering sign language gestures, we zero in on a 

meticulously curated set: 34 posture points, a dense 

grid of 468 facial landmarks, and 21 points each for 

the left and right hands. This comprehensive 

constellation guarantees that no subtle or overt 

nuance escapes our notice. The fusion of 

MediaPipe's impeccable landmark detection with 

our methodology sets the stage for a groundbreaking 

sign language recognition system. 

Our foray into sign language recognition, anchored 

by the tenets of skeleton pose estimation and 

supercharged with MediaPipe's proficiency 

(Lugaresi et al., 2019), heralds a fresh era in this 

domain. Its ramifications extend beyond academic 

intrigue, holding tangible promise in areas like 

assistive technologies for hearing-impaired and 

novel educational tools. 
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2.3. Multi-Modal Multi-Stream Approach 

In the realm of sign language recognition, real-time 

performance is a cardinal necessity. Building upon 

the principles shown in Figure 3, our methodology 

brings forth a multi-stream approach. This approach 

is meticulously tailored to confront the complexities 

of discerning sign language gestures, primarily 

when solely relying on skeleton coordinates within 

short bursts of 30 frames. The crux of the challenge 

lies in the inherent similarity of skeletal movements 

in continuous motion-based signs. Our answer to 

this is an ensemble of models, each homing in on 

different skeletal aspects, functioning in tandem to 

yield optimal real-time results. 

Joint Sign Language Recognition Model: Our 

journey begins with the foundational concept of 

interpreting sign languages directly via skeletal joint 

coordinates, represented as: 

𝐉(𝐱𝐢
𝐭, 𝐲𝐢

𝐭, 𝐳𝐢
𝐭) 

In this representation, 𝐱𝐢 and 𝐲𝐢 pinpoint a skeletal 

joint's position within a singular video frame. 

Concurrently, 𝐳𝐢 conveys our confidence in that 

specific joint detection, with 𝐭 emphasizing the 

temporal progression across frames. For example, 

inputting a video frame by frame will output a series 

of coordinates of the joints from Mediapipe. 

Bone Sign Language Recognition Model: As we 

progress, we introduce a model underpinned by 

bone motion. Recognizing the dynamism of bone 

interactions during sign execution, vectors, 

formulated as: 

𝐁(𝐱𝐣
𝐭 − 𝐱𝐢

𝐭, 𝐲𝐣
𝐭 − 𝐲𝐢

𝐭, 𝐳𝐢
𝐭) 

Become pivotal. These vectors encapsulate the 

nuances of bone position shifts, serving as a beacon 

to capture the unique movement blueprints tied to 

diverse sign language expressions.  

Joint Motion Sign Language Recognition Model: 

Pivoting to a more holistic view, our third model 

amalgamates a heatmap representation, offering a 

temporal vista of how skeletal joint coordinates 

transition across frames. This visualization 

approach is potent in differentiating skeletal setups 

that may otherwise seem identical. To augment this, 

we integrate joint motion insights by assessing 

consecutive frame disparities, captured as: 

𝐉𝐌(𝐱𝐢
𝐭+𝟏 − 𝐱𝐢

𝐭, 𝐲𝐢
𝐭+𝟏 − 𝐲𝐢

𝐭, 𝐳𝐢
𝐭) 

offering a granular lens into skeletal transitions. For 

example, when inserted in 31 frames, it will get 31 

skeleton coordinates. From these 31 Joint 

coordinates, we will rely on the formula and 

calculate 30 Joint Motions. 

Bone Motion Sign Language Recognition Model: 

Our model ensemble's culmination is deeply 

entrenched in the temporal domain. It delves into the 

granularities of frame-to-frame skeletal shifts, 

offering a vantage point from where even minute 

motion subtleties are perceptible. The key lies in 

assessing bone vector transitions between frames, 

represented succinctly as: 

𝐁𝐌(𝐱𝐣
𝐭+𝟏 − 𝐱𝐢

𝐭+𝟏 − 𝐱𝐣
𝐭 + 𝐱𝐢

𝐭, 𝐱𝐣
𝐭+𝟏 − 𝐱𝐢

𝐭+𝟏 − 𝐱𝐣
𝐭

+ 𝐱𝐢
𝐭, 𝐳𝐢

𝐭) 

Figure 2. Real-Time Sign Language Recognition via Skeleton Pose Estimation 
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The training regiment for these models mandates 

independence, ensuring each becomes adept at 

recognizing actions from the primordial landmark 

points. As the essence of bone and joint motion lies 

in frame sequences, our blueprint embraces the 

inaugural model's structure, evaluating 30 frames 

consecutively. 

Fusing insights, our ensemble technique 

amalgamates predictions from each model, yielding 

the cohesive sign recognition verdict: 

𝐪 = 𝐉.∝𝟏+ 𝐁.∝𝟐+ 𝐉𝐌.∝𝟑+ 𝐁𝐌.∝𝟒 

Herein, J, B, JM, and BM symbolize predictions 

from the individual models: Joint, Bone, Joint 

Motion, and Bone Motion. The weightage 

coefficients ∝𝟏, ∝𝟐, ∝𝟑 ,and ∝𝟒 dictate the relative 

significance of each model's insights. 

With our multi-stream ensemble, the objective 

transcends mere accuracy enhancement. We sculpt 

a resilient, comprehensive framework for real-time 

sign language recognition, amalgamating spatial 

nuances, bone and joint dynamics, and temporal 

intricacies into a singular, potent methodology. 

2.4. Neural Network 

The neural network's architecture is paramount in 

our journey through the multi-modal, multi-stream 

approach. This section introduces the foundational 

LSTM model (Staudemeyer & Morris, 2019) 

structure for clarity and replication. It is essential to 

understand that while this LSTM blueprint serves as 

a minimalist yet efficient starting point, its 

configuration and hyperparameters might 

necessitate adjustments based on specific datasets 

and the intricacies of problems at hand. 

Long Short-Term Memory (LSTM) (Staudemeyer 

& Morris, 2019) is a specialized variant of Recurrent 

Neural Networks (RNN) (Sofianos et al., 2021), 

meticulously crafted to counter the vanishing 

gradient problem inherent in traditional RNNs 

(Staudemeyer & Morris, 2019). The heart of LSTM 

(Staudemeyer & Morris, 2019) lies in its distinctive 

unit, encompassing a cell and three gates: an input 

gate, an output gate, and a forget gate. This unique 

structure enables the cell to retain values across 

varied time intervals, with the gates deftly 

regulating the information flow in and out of the 

cell. 

The dense layer, often considered fully connected, 

functions as the melting pot of abstract 

representations. It is achieved by intricately 

connecting neurons to every preceding layer's 

neuron. In parallel, we integrate the Dropout layer 

to ensure model robustness and deter over-fitting 

(Srivastava et al., 2014). This regularization 

technique periodically and randomly deactivates 

specific input units during the training phase, 

ensuring the model does not develop an excessive 

dependency on particular training data patterns. 

Activation functions are the neural network's 

linchpin, catalyzing non-linearity and driving 

intricate mappings between inputs and outputs. The 

Rectified Linear Unit (ReLU) (Agarap, 2019) is an 

elemental piece-wise linear function, which, if fed a 

positive input, echoes it and, for non-positive inputs, 

returns zero. Its widespread adoption stems from the 

ease of training models that use it, often yielding 

superior performance. Conclusively, the neural 

network leverages the soft-max activation function 

(Pearce et al., 2021), which metamorphoses raw 

neural outputs into a structured probability vector, a 

Figure 3. Illustration of the model pipeline: Process visualization 
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delineated probability distribution across input 

categories. Mathematically, the soft-max activation 

function is represented as: 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑁
𝑗−1

 

Here, 𝑥𝑖 embodies the input value of the 𝑖𝑡ℎ element 

within the input vector, with 𝑁 symbolizing the 

count of input vector elements. 

 

Figure 4. Schematic of the Neural Network 

Framework 

In summary, our proposed architecture pivots 

around a foundational LSTM structure adeptly 

designed to interpret 30 NumPy arrays and yield a 

probability array for prospective actions. While this 

framework forms the bedrock of our multi-modal 

ensemble, it is paramount to acknowledge its 

malleability. Real-world applications may 

necessitate tailored refinements, ensuring the 

architecture resonates harmoniously with the 

idiosyncrasies of distinct datasets and their myriad 

challenges. As the world of sign language 

recognition forges ahead, such adaptable blueprints 

will invariably dictate the trajectory of 

advancements. 

3. RESULTS AND DISCUSSION  

Embarking on this journey with the comprehensive 

How2Sign dataset (Duarte et al., 2021), we trained 

and meticulously evaluated four distinct sign 

language recognition models: the joint model, bone 

model, joint motion model, and bone motion model 

Figure 3. Beyond merely understanding their 

performance, our focus intensified as we 

customized our Multi-modal application for a 

deeper comparative analysis against an Indian 

model (Velmathi & Goyal, 2023) using the Indian 

Sign Language dataset. In ensuring a fair 

comparison, while we tailored our LSTM layer to 

resonate with the dataset and challenges targeted by 

the (Velmathi & Goyal, 2023) model, the essence 

and principles of our multi-modal approach 

remained unaltered. This meticulous approach 

safeguards our research from biases and underscores 

the integrity of our results. As we move forward, this 

section also sets the stage to discuss prospects, 

culminating in unveiling our FPTs2l application 

Figure 5, a manifestation of our scientific endeavors 

to revolutionize human-computer interactions for 

those with hearing impairments. 

3.1. How2Sign Dataset Evaluation 

The How2Sign dataset, as delineated by (Duarte et 

al., 2021), serves as a veritable treasure trove for 

sign language researchers, a sentiment manifested in 

Table 2. Its vast repository, encompassing varied 

sign language expressions across multiple 

practitioners against a standardized green screen 

backdrop, is pivotal for precise pose 

approximations, consequently bolstering the 

accuracy and reliability of sign language recognition 

systems. 

An elaborate dive into our model training sequence 

provides insights into its sophistication. Initially, we 

engaged with a comprehensive collection of 35,191 

clips, each correlating to a unique sentence. This 

vastness translates to 35,191 distinct actions, setting 

the groundwork for subsequent steps. These clips 

were then dissected frame by frame, and each 

became a substrate for MediaPipe, a state-of-the-art 

tool tailored for extracting joint coordinates. After 

this extraction, two primary processes were 

employed: the calculation of Bone vector 

coordinates and the intricate computation of Joint 

Motions. While the former rests on the skeleton 

coordinates on individual frames, the latter draws 

from comparing coordinates between consecutive 

frames. An implication of this methodology is the 

emergence of 31 NumPy arrays for the Joint and 

Bone models from a video spanning 31 frames and 

only 30 NumPy arrays for both the Joint Motion and 

Bone Motion models because of the frame-to-frame 

comparisons given the negligible impact of a single 

frame on action interpretation, a solitary NumPy 

array was dismissed, ensuring alignment across 

models and diminishing any induced bias. Crucially, 

each model was architectured with four LSTM 

layers, adeptly equipped to process sets of 30 

consecutive NumPy arrays. 

Having distilled the dataset into its most refined 

form, our next endeavor was architecting a Neural 

LSTM network. The design of this network was 

congruent with the foundational neural network 

posited for our four models. The training regimen 

for this model was fortified with the Adam 

optimization technique, and the categorical-cross-

entropy loss function was employed to minimize 

discrepancies. The meticulous dataset segmentation 

into training, validation, and testing sets is worth 

noting, a decision vindicated by the dataset's 
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authors, who posited this division as the most 

optimal for ensuring an equitable distribution. 

Advancing to the next echelon, the LSTM network's 

design was symbiotic with a rudimentary neural 

network mapped out for the quartet of models. This 

network was subjected to the Adam optimization 

technique, and errors were curtailed by employing 

the 'categorical-cross-entropy' loss function. The 

dataset's trifurcation into training, validation, and 

testing segments heeds the guidelines advocated by 

the authors, asserting an optimal and balanced 

distribution. Each LSTM operation ingests 30 

meticulously computed NumPy arrays as input, 

rendering an array illuminating probabilities linked 

to the pre-defined 35,191 actions. 

The crescendo of our methodology lies in the Multi-

Modal approach, wherein ∝n parameters are 

initialized at 0.25 for all constituent models, 

mirroring the multivariate regression model's 

orientation. The Multi-Modal's genius rests in 

synthesizing four probability arrays, ingeniously 

adjusting them using the predetermined alpha 

parameters from the multivariate regression model. 

The resultant array, distilled from the harmonization 

of the four arrays, prompts the selection of an action 

boasting the apex probability. 

In culmination, as evident in Table 3, our models, 

once trained on the How2Sign dataset, yielded 

fascinating insights. The Joint model emerged as the 

front-runner in accuracy among the four individual 

models. This reaffirms the longstanding belief in. 

Table 3. Performance of Different Streams 

Models Precision Accuracy  F1-score 

Joint 0,681 0,67 0,653 

Bone 0,678 0,668 0,651 

Joint Motion 0,666 0,656 0,639 

Bone Motion 0,663 0,652 0,635 

Multi-Modal 0,684 0,673 0,656 

Sign language recognition frequently capitalizes on 

joint coordinates, owing to their ability to precisely 

encapsulate the essence of gestures, reflecting the 

intricate movements and postures of the signer. A 

closer look at our model performances provides an 

illuminating perspective on this. Specifically, the 

Joint model, with an accuracy of 0.67, outstrips the 

Bone model at 0.668, the Joint Motion model at 

0.656, and the Bone Motion model, which clocks in 

at 0.652. The superiority of the Joint model in 

capturing gesture subtleties offers an evidential 

backdrop as to why joint coordinates are often the 

go-to features in many sign language recognition 

systems. 

Nevertheless, transcending these individual 

performances, our Multi-Modal method, an 

amalgamation of the unique strengths of these 

models, achieves an accuracy of 0.673. This 

pinnacle of performance attests to the efficacy of 

combining diverse skeletal posing techniques. It 

suggests that integrating Bone, Joint Motion, and 

Bone Motion models can enhance the robustness of 

sign language recognition systems. 

Pitted against the renowned Indian Sign Language 

Recognition (ISLR) model formulated by (Velmathi 

& Goyal, 2023), our Multi-Modal approach held its 

ground, bringing to the fore its distinctive merits and 

hinting at scopes for further fine-tuning and 

refinement. 

While the inherent efficacy of the Joint model 

underlines the time-tested value of joint coordinates 

in sign language recognition, our multi-modal 

approach's holistic, composite nature truly shines. 

As we progress, such multi-faceted models have the 

potential to revolutionize assistive technology, 

making it more adaptive and intuitive in the domain 

of human-computer interaction. 

3.2. Comparative Analysis 

The nexus between MediaPipe (Lugaresi et al., 

2019) and LSTM (Staudemeyer & Morris, 2019) for 

sign language recognition is still being discovered. 

Nevertheless, our presented multi-modal approach 

Figure 3, unveils a novel paradigm. Our approach 

achieves a heightened recognition accuracy by 

leveraging skeletal frames harnessed via MediaPipe 

and additional modalities. 

The intricate dynamic between the MediaPipe 

framework (Lugaresi et al., 2019) and LSTM 

(Staudemeyer & Morris, 2019) in the context of sign 

language recognition remains a fertile ground for 

exploration. In this realm, our multi-modal 

methodology, illustrated in Figure 3, offers a novel 

trajectory. By harnessing skeletal information 

sourced through MediaPipe and supplementing it 

with various modalities, we achieve a marked 

enhancement in recognition accuracy. 

To rigorously scrutinize the merits of our approach, 

we juxtaposed it with the esteemed Indian Sign 

Language Recognition (ISLR) model, as conceived 

by Velmathi & Goyal (2023).. This comparison 

transcends mere statistical benchmarking, providing 
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a panoramic view of our model's unique attributes 

and illuminating avenues for further evolution. 

The Indian Sign Language (ISL) dataset serves as a 

foundational pillar in our research, encapsulating a 

pictorial lexicon of English alphabets from A to Z. 

Each letter is represented by 1,200 individual 

images that intricately capture the nuanced 

semantics inherent to each sign. Through the 

adeptness of the MediaPipe framework, we 

extracted essential skeletal data, precisely the 

critical joint coordinates, which were then 

numerically transformed and stored in NumPy 

arrays for swift processing. While our 

methodological approach broadly resonates with the 

protocols delineated by (Velmathi & Goyal, 2023), 

explicitly employing the categorical cross-entropy 

loss function, a distinct contrast is evident when 

juxtaposed with the How2Sign dataset's modus 

operandi. Whereas our ISL evaluations are anchored 

in individual images, the How2Sign paradigm 

harnesses dynamic, clip-centric sequences, 

showcasing the flexibility of our multi-faceted 

model that seamlessly integrates with static and 

sequential data sources. 

A comprehensive perusal of Table 4 not only reveals 

the performance metrics of our model concerning 

the ISLR model but also serves as an emblematic 

testament to our model's capabilities, the challenges 

encountered, and the potential vistas it opens in 

leveraging the MediaPipe framework for sign 

language recognition. The Table accentuates our 

approach's relative prowess and prospective 

enhancements, making a compelling case for its 

practical applicability in real-world scenarios. 

Table 4. Performance of Different Models 

Models Accuracy  F1-score 

Average 

Execution 

Times 

ISLR 0,855 0,847 0,07s 

Multi-Modal 0,858 0,85 0,3s 

At the nucleus of any recognition system lies its 

accuracy. Our research underscores this statement's 

significance by demonstrating our multimodal 

approach's superior accuracy. Achieving an 

accuracy rate of 0.858, our model presents a modest 

but statistically significant advantage over the ISLR 

model's 0.855 (Velmathi & Goyal, 2023). This 

slight edge suggests our model's enhanced 

proficiency in discerning gestures in Indian Sign 

Language. 

Furthermore, if realized in an authentic system 

design, the capability to run our model across four 

independent reading streams can equalize or even 

offset the time execution disparities. This hints at the 

scalability and adaptability of our approach in 

diverse system architectures. Our model does not 

merely match the standards. It often exceeds them, 

displaying competitive metrics that further 

accentuate its robustness. 

However, every coin has two sides. Our multimodal 

approach exhibits an execution time of 0.3s, slightly 

increasing when juxtaposed with the ISLR model's 

0.07s. Nevertheless, it is crucial to illuminate that 

this latency, albeit higher, still firmly remains within 

the realms of real-time execution constraints. To 

offer perspective, given a standard of 30 frames per 

second (FPS) for real-time video, our model's 

latency equates to processing roughly nine frames a 

performance metric that aligns with instantaneous 

applications. 

While our multimodal approach entails a moderate 

trade-off concerning execution time, its merits, 

primarily in terms of accuracy, position it as a 

formidable contender in Indian Sign Language 

recognition. With continuous refinements, it might 

eclipse the renowned ISLR model in future 

applications. 

3.3. Discussion 

Accuracy is undeniably paramount in assessing the 

effectiveness of sign language recognition models. 

It provides an insightful ratio, elucidating the 

number of correct predictions concerning all 

predictions rendered. This metric's significance in 

sign language recognition is unparalleled, especially 

compared to other performance metrics, such as 

recall or precision. The reasoning lies in the inherent 

nature of sign language communication. For 

instance, while signing a phrase like "How are 

you?", there are often minuscule pauses between the 

words "How," "Are," and "you." These fleeting 

moments of stillness are as essential to the integrity 

of the message as the signs themselves. In another 

example, consider a signer articulating a more 

complex statement like "Although it is raining, I 

would like to go out." The pauses here might be 

slightly elongated, especially before the contrasting 

phrase "I would like to go out." Focusing only on 

recall could risk amplifying the detection of active 

signs, but might marginalize these integral pauses. 

Similarly, an overemphasis on precision could 

inadvertently filter out these gaps, presuming them 

as noise or irrelevant data. Moreover, in practical 
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scenarios, signers might occasionally incorporate 

non-linguistic or cultural gestures, such as nodding 

for affirmation or shaking the head for negation. A 

model fixated solely on recall or precision could 

misinterpret these as signs or miss them entirely. In 

stark contrast, accuracy stands out as it holistically 

encompasses both the articulated signs and the vital 

intervals between them, ensuring that a model 

captures signs and effectively distinguishes them 

from other peripheral movements or pauses. 

Employing categorical entropy loss is commonplace 

in multi-class classification scenarios, fitting snugly 

within the purview of sign language recognition. By 

minimizing this entropy loss, we endeavor to 

enhance accuracy, effectively curtailing incorrect 

predictions. This loss function can be a beacon, 

illuminating underlying data inconsistencies like 

imbalances or noise, paving the path for corrective 

strategies, such as data augmentation or 

regularization. 

Our method, pivoting on the Long Short-Term 

Memory (LSTM) neural networks (Staudemeyer & 

Morris, 2019), marks a significant departure from 

conventional approaches. While earlier works 

revolved around recognizing individual gestures, 

often limited to distinct letters or words, our 

methodology embraces the challenge of deciphering 

sequences to yield coherent phrases or sentences. 

However, a discernible challenge surfaces when 

processing individual letters or standalone words. 

For instance, the sign for the letter "A" might bear 

semblance to a thumbs-up gesture, mainly if 

observed in isolation without the context of an 

ongoing conversation. Such overlaps can muddy the 

waters, causing our model to occasionally falter due 

to these ambiguities and other gestures unrelated to 

sign language. 

Leveraging the How2Sign dataset (Duarte et al., 

2021) as our testing bed, we found the Joint model, 

which concentrates on joint coordinates, 

consistently outshining its counterparts in terms of 

accuracy, a testament to the prevailing preference of 

employing joint coordinates in sign language 

recognition (Velmathi & Goyal, 2023). 

Nevertheless, the crown undoubtedly rests with our 

Multi-Modal model, achieving unparalleled 

accuracy and accentuating the advantage of 

integrating multiple modalities. 

Looking beyond the immediate domain of sign 

language recognition, the implications of our multi-

modal method are manifold. Though our current 

model shows laudable speed and efficacy in 

capturing real-time gestures, its adeptness in 

impeccable sign language translation warrants 

further refinement. Nevertheless, the potential 

applications are vast: from gesture-based smart 

device operations, identifying suspicious activities 

or gang confrontations through specific signs to 

preemptively flagging occupational hazards. Our 

model could be the linchpin for numerous solutions, 

transcending the realm of mere sign language 

recognition. 

A vital facet of our research was the conception and 

development of the FPTs2l application, a tangible 

manifestation of our approach's potential to 

transition from theory to praxis. This application 

was sculpted to test the real-time capabilities of our 

multi-modal methodology. Our preliminary 

observations were promising. The application 

adeptly captured gestures via camera feed, 

reflecting the quick responsiveness we theorized.  

However, it is imperative to acknowledge its 

limitations. While the application detected broader 

gestures with commendable accuracy, it grappled 

with identifying nuanced gestures, particularly those 

representing singular words or letters. This could be 

attributed to the intricate resemblance between 

certain sign gestures and other commonplace 

actions. For instance, the sign for the word "water" 

in Vietnamese Sign Language might closely mimic 

a frequently adopted hand motion by users not 

necessarily signifying "water". These overlapping 

gestures present a conundrum, occasionally causing 

our application to need to be more accurate. 

Furthermore, we used a dataset of 30 vocabulary 

items from online videos showcasing the most 

prevalent vocabulary in Vietnamese. Given the 

restricted dataset, the model's proficiency in 

comprehensive real-time translation for diverse 

conversations remains to be seen. 

Nevertheless, it is essential to underscore the 

broader ramifications of our work. The FPTs2l 

application serves as a prototype, a forerunner to 

potential future applications that can span a 

spectrum of use cases. Think of enhanced models 

tailored for academic integrity by detecting 

suspicious gestures during online examinations. 

Alternatively, envision a system embedded in smart 

homes, translating gestures into commands for 

household devices. On a more ambitious note, this 

could morph into a security apparatus, discerning 

hostile intents through specific hand signs in 

crowded areas. The horizon is vast, from potential 
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occupational safety applications to conflict 

detection. 

In conclusion, while our multi-modal approach and 

the FPTs2l application promise an exciting future 

for gesture recognition and real-time translations, 

we acknowledge the journey ahead with 

refinements, expansions, and practical testing on 

diverse datasets to realize its potential. 

 

Figure 5. Screenshot of the FPTs2l Application in Action 

This application, built to evaluate the real-time capabilities of our approach, successfully processes video feed and 

identifies gestures with a commendable frame rate of 2 FPS. Despite its efficacy, there are occasional misidentifications, 

emphasizing areas for improvement.

4. CONCLUSION 

4.1. Significance and Implications 

In this exploration, we delved into the realm of real-

time sign language recognition by leveraging the 

capabilities of the MediaPipe framework (Lugaresi 

et al., 2019). We introduced a multi-modal approach 

that synergistically combined four LSTM models 

(Staudemeyer & Morris, 2019), trained on skeletal 

coordinates extracted using MediaPipe. This fusion 

capitalized on the strengths of each model, 

enhancing the overall recognition accuracy. 

While traditional methods often get bogged down 

with intricate preprocessing and feature extraction, 

our approach, rooted in the MediaPipe framework, 

bypassed these complexities to offer real-time 

performance. This speed, combined with augmented 

accuracy through our multi-modal approach, 

establishes the potential for our model as an efficient 

tool for facilitating communication for the deaf and 

hard-of-hearing community. 

However, it is noteworthy that while our method 

advanced in real-time processing and reduced the 

need for extensive preprocessing, there remains 

room for refining accuracy. Certain subtle or 

intricate gestures pose challenges. Nevertheless, this 

limitation offers a direction for future endeavors, 

suggesting that enhancements can be made by 

adapting the LSTM network layers according to 

specific problems and datasets. 

4.2. Future Horizons 

Considering the potential and the challenges 

observed, future research efforts are primed for 

several exciting directions. At the forefront is the 

aspiration to devise a real-time translation tool that 

promotes uninhibited communication between deaf 

or hard-of-hearing individuals and those unfamiliar 

with sign language. Such a tool would not only 

facilitate interactions but also stand to democratize 

access to information and resources. 

With the proliferation of digital content, it is 

urgently needed to be accessible. Our approach can 

be further refined to auto-generate accurate subtitles 

or captions for various multimedia channels, 

ensuring the inclusivity of content consumption. 

Beyond mere recognition, the realm of sign 

language is vast. Sign language is not merely about 

(A) 
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hand gestures; facial expressions, emotions, and 

context play pivotal roles. Future explorations could 

delve deeper into a comprehensive multi-modal 

approach that integrates these facets, pushing the 

boundaries of accuracy and expressiveness in sign 

language recognition (Emmorey, 2001). 

Furthermore, in the educational landscape, there lies 

an untapped potential to harness sign language for 

creating interactive games and tools. These can help 

to promote sign language learning, foster broader 

adoption, and cultivate cultural appreciation. 
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