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This study utilized a range of machine learning algorithms to predict the 

hourly streamflow in the Ikpoba River. Data gathering relied on a 

Hydromet System installed along the river, collecting hourly measurements 

of gage height, ambient temperature, and atmospheric pressure. To 

convert the gage height to streamflow data, historical gage and streamflow 

data covering the period from 2015 to 2020 were extracted from the Ikpoba 

River rating curve and were analyzed using curve fitting techniques to 

establish the precise relationship between streamflow and gage height. 

Various goodness-of-fit measures, such as adjusted R-squared value, 

standard error of estimate, and coefficient of determination, were utilized 

to identify the best-fit relationship. The estimated streamflow data were 

subsequently validated using the Soil and Water Assessment Tool, 

incorporating the digital elevation model of the study area, along with 

other input parameters like soil, slope, daily maximum precipitation, and 

daily maximum temperature. Validation results were illustrated using 

regression plots generated in Microsoft Excel. From the machine learning 

results, random forest algorithm outperformed other methods in predicting 

streamflow, with a mean square error of 0.02 and a coefficient of 

determination of 0.98. Conversely, decision trees showed superior 

accuracy in predicting individual data points, with the lowest root-mean-

square error of 0.02. 
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1. INTRODUCTION  

As a result of its recurring patterns, the hydrological 

cycle offers opportunities for water flow 

optimization and estimation (Sohn et al., 2020). 

Streamflow is extensively utilized in the planning 

and managing water resources, including 

hydropower operations and planning, urban, 

agricultural, and environmental water supply 

operations, drought management, and flood 

mitigation. River flow calculations must be precise 

in order to support the efficient design and 

maintenance of vital water infrastructure, such as 

culverts and dams (Hyndman & Athanasopoulos, 

2018). Predicting streamflow in an accurate, timely, 

and continuous manner during anomalous events 

acts as a preventative strategy against impending 

disaster and enables the taking of preventative 

action in order to save lives and valuable property. 

Additionally, it gives decision-makers and 

stakeholders the information they need to manage 

complex water resources systems effectively 

(Ghobadi & Kang, 2022). Still, predicting erratic 

river flows is made more difficult by the intricate 

relationship between water and environmental 

factors, which are regularly influenced by pollution 

and human activity. Streamflow is influenced by a 

wide range of factors, including temperature, 
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evapotranspiration, and land use, topography, and 

soil properties. Streamflow and watershed features 

are related in a non-linear way (Adnan et al., 2019; 

Shah et al., 2021). Streamflow is frequently 

monitored at stream gauge stations, computed using 

hydrological models with a physical foundation, or 

statistically predicted using empirical models based 

on data. The spatiotemporal availability of stream 

gauge data for desired sites might be restricted, 

despite the fact that in situ measurements are crucial 

for getting precise streamflow records. Furthermore, 

due to human or equipment error, these stations may 

mis-measure streamflow necessitating reevaluation 

and flow prediction for the periods when data is 

unavailable. Hydrological models involve physical 

formulas to represent the intricate meteorological 

and hydrological processes; they are based on 

explicit correlations between inputs and outputs and 

demand a high degree of system knowledge (Feng 

et al., 2022; Cacal et al., 2023). For a very long time, 

flow prediction has made extensive use of numerous 

linear statistical prediction models, such as the AR 

and ARMA models, whose accuracy is frequently 

subpar. With the development of machine learning 

algorithms in recent decades, non-linear prediction 

models like support vector machines (SVM) and 

artificial neural networks (ANN) have been used in 

the hydrological field (Lin et al., 2021; Chui & Han, 

2021; Wu & Wang, 2022), improving time series 

prediction accuracy to some degree. Over the past 

20 years, machine learning models have become 

more and more popular for estimating the past or 

forecasting future streamflows. Regression-based 

machine learning models, also known as training 

models, identify statistical correlations between 

target and input data for a historical period and 

forecast future periods. A number of machine 

learning algorithms have been applied to predict 

future streamflow. Khullar and Singh (2021) and Sit 

et al., (2020) reviewed early and new machine 

learning applications in water resources and 

hydrology. Artificial neural networks (ANNs), 

support vector machines (SVMs), random forests 

(RF), extreme gradient boosting (XGBoost), and 

deep learning (DL) are examples of frequently used 

algorithms. Noori and Kalin (2016) used the ANN 

model in conjunction with the physically based 

hydrological model Soil and Water Assessment 

Tool (SWAT) to forecast daily streamflow for 

ungauged watersheds. RF was used by Petty and 

Dhingra (2018) to forecast streamflow for floods. 

Adnan et al., (2019, 2020) used an optimally pruned 

extreme learning machine (ELM) to predict daily 

and monthly streamflow. Using ANN, wavelet 

neural networks (WNNs), and an adaptive neuro-

fuzzy inference system, Dalkiliç and Hashimi 

(2020) estimated daily streamflow and found that 

WNNs provide more precise estimates. A DL model 

was created by Ghobadi and Kang (2022) to forecast 

long-term streamflow on a monthly timescale. Xu et 

al., (2022) forecasted monthly streamflow, taking 

into account variables from general circulation 

models, using the machine learning (ML) method. 

After using two ML models and two hydrological 

models to simulate the rainfall-runoff process, 

Sayed et al. (2023) concluded that ML models are 

useful forecasting tools. Ikpoba River is an 

ungauged river and getting a reasonable volume of 

streamflow data for hydrological studies is a huge 

task. This study attempts to investigate the 

performance of selected ML algorithm for 

streamflow data prediction. By employing the Soil 

and Water Assessment Tool (SWAT) to validate 

streamflow predictions derived from both empirical 

rating curve analysis and machine learning 

techniques, we offer a robust framework for 

estimating streamflow even in data-scarce areas. For 

instance, in regions with limited monitoring 

infrastructure, such as remote or developing areas, 

our approach provides a valuable tool for assessing 

streamflow and informing resource management 

decisions. Moreover, by explicitly discussing the 

implications of our methodology for ungauged 

rivers in the paper, we contribute to advancing 

knowledge in hydrological modeling by addressing 

a critical gap in the existing literature and offering 

practical solutions for estimating streamflow in 

challenging environments. 

2. SWAT APPLICATION IN 

HYDROLOGICAL MODELING 

The relevance of utilizing the Soil and Water 

Assessment Tool (SWAT) for streamflow 

prediction extends beyond gaged stations to 

ungauged stations as well. While gaged stations 

provide direct streamflow measurements, ungauged 

stations lack this data, presenting a challenge for 

water resource management and decision-making in 

many regions. SWAT's ability to utilize readily 

available spatial data, such as topography, land use, 

and soil properties, allows for the estimation of 

streamflow in areas lacking direct measurements. 

Therefore, the methodology developed in this study, 

validated through SWAT, holds relevance for 

ungauged stations by providing a framework for 

estimating streamflow and informing water resource 

management practices in data-scarce regions. 
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In our study, the Soil and Water Assessment Tool 

(SWAT) played a crucial role as an evaluation tool 

for validating streamflow data obtained from both 

empirical rating curve analysis and machine 

learning predictions. We employed SWAT to assess 

the accuracy of our streamflow predictions in the 

Ikpoba River, a task that previous studies often 

overlooked or conducted with less comprehensive 

methodologies. By utilizing SWAT, we were able to 

enhance the credibility and reliability of our 

findings by incorporating various environmental 

and hydrological parameters, such as digital 

elevation models, soil characteristics, and 

precipitation data, into our validation process. This 

approach not only addressed the limitations of 

traditional rating curve analysis but also provided 

valuable insights into the performance of our 

modeling approach, thus contributing significantly 

to the advancement of knowledge in hydrological 

modeling and streamflow prediction methodologies. 

3. MATERIALS AND METHODS 

3.1. Study area 

Ikpoba River is the study area. The river is located 

in southern Nigeria's Edo State, which is surrounded 

by rainforests. The river originates in the northern 

portion of the Ishan Plateau and flows south-west 

through a valley that is sharply carved and through 

sandy areas before entering Benin City and merging 

with the Ossiomo River. Edo State lies roughly 

between longitude 06o 04'E and 06o 43'E and 

latitude 05o44' N and 07o34' N. The wet and dry 

seasons are the two distinct seasons that define Edo 

State's tropical climate. The wet season runs from 

April to October with a break in August. The 

average amount of rainfall during this time ranges 

from 150mm in the far north of the state to 250mm 

in the south. November through April is considered 

the dry season, with a cold harmattan period in 

December and January. During the rainy season, the 

average temperature is roughly 25°C (77 °F), while 

during the dry season; it is roughly 28°C (82 °F). In 

the south, the climate is humid tropical, while in the 

north, it is sub-humid. Because of the dense 

population and reliance on the stream, the Ikpoba 

River is severely disturbed as it passes through 

Benin City. According to Victor and Dickson 

(1985), the stream passes through a dense rainforest 

in its upper reaches, where organic input is 

influenced by surface runoff and organic matter 

from the surrounding vegetation. Because riparian 

settlements are sparsely populated on the outskirts 

of the city, disturbance from human activity is 

minimal and restricted. 

3.2. Data collection 

For accurate data collection, a multi-parameter 

instrument (Hydromet System) for the acquisition of 

hourly gage height, ambient temperature, and 

atmospheric pressure was installed along the river's 

flow section. For this study, data gathered from 

September to December 2022 was used.  

3.2.1. Estimation of streamflow from gage data 

In order to convert the gage data into streamflow, 

historical gage and discharge data from (2015-2020) 

were extrapolated from the Ikpoba River rating 

curve. Thereafter, the data were subjected to curve 

fitting analysis to ascertain the precise mathematical 

relationship between the gage height (m) and the 

streamflow (m3/s). Selected goodness-of-fit 

statistics, including coefficient of determination 

(R2), coefficient of correlation (r), adjusted-R2 

value, and standard error of estimate (SEE), were 

used to pinpoint the precise mathematical 

relationship between the gage data and streamflow. 

The measured gage data were then converted to 

streamflow using the best-fit relationship.  

3.2.2. Validation of streamflow data 

To validate the estimated streamflow data, the Soil 

and Water Assessment Tool (SWAT) was utilized. 

SWAT employed various datasets, including the 

digital elevation model (DEM), slope map, soil map, 

and land use land cover (LULC) map, alongside 

daily maximum temperature and daily maximum 

rainfall data, to simulate river flow (Shijun et al., 

2020, Anna et al., 2021). Subsequently, a regression 

plot comparing the estimated streamflow (observed) 

with a SWAT-simulated streamflow was generated 

using Microsoft Excel Spreadsheet.  

The SWAT model is a physically based, 

computationally efficient model and capable of 

simulating a high level of spatial details by allowing 

the watershed to be divided into a number of sub-

watersheds. Major model components include 

weather, hydrology, soil temperature, and plant and 

land management. 

Following validation, various machine learning 

techniques, including RF, DT, SVR, and GB, were 

employed to forecast future streamflow. The slope 

map and land use/cover map for the study area were 

created according to the procedures described in 

Figures 2 and 3, with Figure 4 illustrating the 

flowchart for streamflow prediction. 
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Figure 2. Schematic for generating slope map 

 
Figure 3. Schematic for generating lulc map 
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Figure 4: Streamflow Prediction Process Flowchart 
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3.3. Data preparation for machine learning 

The initial stage in preparing the data for machine 

learning involved normalization. Normalization, a 

process of scaling numerical features to a 

standardized range, typically between 0 and 1, 

ensures that all features contribute equally to the 

model training process. For this study, the Min-Max 

scaling approach was utilized, and implemented as 

follows: 

from sklearn.preprocessing import 
MinMaxScaler 

>>scaler = MinMaxScaler () 

>>X_train_normalized = 

scaler.fit_transform(X_train) 

Following normalization, the next step in data 

preparation was feature scaling. Feature scaling is 

imperative for algorithms sensitive to feature 

magnitudes, such as support vector machines 

(SVM) or neural networks. The chosen technique 

for feature scaling was standardization, which scales 

features to have a mean of 0 and a standard deviation 

of 1: implemented as follows; 

from sklearn.preprocessing import 
StandardScaler 

scaler = StandardScaler () 

X_train_scaled = 

scaler.fit_transform(X_train) 

By executing these preprocessing procedures, the 

data was appropriately formatted and encoded to 

ensure compatibility with various machine learning 

algorithms, thereby enhancing model performance 

and interpretability. Additionally, descriptive 

statistical analysis, employing metrics such as the 

arithmetic mean, mode, median, quartiles, and box 

diagrams, was utilized to unveil the underlying 

relationships between variables in the dataset (Qin 

& Huang, 2021). These analyses facilitated the 

comprehension of patterns and trends within the 

data, thereby aiding in the interpretation of the 

study's findings. 

3.4. Data analysis using machine learning 

Using four different machine learning algorithms 

was the first step. These algorithms made it easier to 

create models and predictive techniques based on 

historical data, which was helpful for projecting 

river flow rates in the future (Shrestha et al., 2021). 

The selection of the gage data, temperature, and 

pressure data for each hour was based on their 

proven relationship with river behavior. The hourly 

gage height captures the essence of water 

movement, whereas pressure and temperature are 

surrogates for meteorological factors that have a 

major impact on flow dynamics. Temperature is a 

key factor in determining flow patterns because it is 

a powerful predictor of water phase transitions and 

evaporation rates. In contrast, the inflow rates into 

the river system are directly impacted by pressure. 

Through the integration of these features, we 

leverage the complex interactions between 

meteorological factors and the dynamics of water 

resources, thus, improving our models (Fayaz & 

Goswami, 2019). 

We used cross-validation techniques to navigate the 

complex world of model selection and 

hyperparameter calibration. This tactic involved 

dividing the dataset into subsets for training and 

validation in order to enable iterative validation 

across various segments. A variety of metrics were 

used to evaluate the performance of the model. The 

dispersion between predicted and actual values was 

explained by mean squared error, the fundamental 

indicator of prediction accuracy (Kumar et al., 

2021). To further measure predictive efficacy, the 

coefficient of determination was employed as a 

benchmark (Liu & Hsieh, 2021). 

4. RESULTS AND DISCUSSION 

4.1. Streamflow generation  

The outcome of the curve fitting analysis is 

presented in Table 2. 

Table 2. Curve fitting analysis 

Model 

Correlation 

Coefficient 

(r) 

Coefficient of 

Determination 

(R2) 

Adj. R2 Standard Error 

of Estimate 

(SEE) 

P-value 

Linear Function 0.858 0.736 0.721 120.538 0.000 

Quadratic Function 0.986 0.972 0.968 40.812 0.000 

Cubic Polynomial  0.996 0.992 0.990 0.2777 0.000 

Power Function 0.985 0.971 0.969 0.453 0.000 
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Table 2 analysis revealed the cubic polynomial 

model as the optimal relationship between 

streamflow and water gage. Consequently, this 

model was utilized for converting gage data into 

streamflow. The univariate statistics of the resulting 

data post-conversion are detailed in Table 3. 

Table 3. Univariate analysis of the dataset 

Index 
Pressure 

(mm) 

Temperature 

(deg.C) 
Gage Height (m) 

Streamflow 

(m3/s) 

Count 14521.00 14521.00 14521.00 14521.00 

Mean 12.936 25.333 17.304 5481.070 

Std 0.186 0.914 0.438 249.397 

Min 12.669 21.780 2.706 14.658 

25% 12.798 25.023 17.219 5379.175 

50% 12.872 25.477 17.374 5547.794 

75% 13.041 25.920 17.445 5626.447 

Max 13.654 27.123 17.544 5736.980 
 

The univariate analysis revealed the distribution 

characteristics of each column’s data. This analysis 

included the mean and standard deviation, providing 

insight into the central tendency and variability. 

Additionally, it detailed the range of the data, 

spanning from the minimum to the maximum 

values. The analysis also highlighted key 

percentiles: 25th, 50th (median) and 75th 

percentiles, indicating the most common values 

within these quartiles. As observed in Table 3, each 

column distribution had a mean value 

approximately similar to the most common value in 

the 50% data distribution quartile. For example, the 

data distribution under the label “pressure” had a 

mean value of 12.936317, and the most common 

value in the 50% data distribution was 12.872000, 

which are approximately 12.9 for both. Similarly, 

column labeled “temperature” had approximately 

similar value of 25.00, “gage height” had 17.30, and 

“discharge” had 5500.00. This indicates the 

centralized positioning of the mean value on the data 

distribution curve. Also, the minimum value of 

12.669000 on the label “pressure” in terms of range 

was close to 12.798000, the most common data in 

its 25% distribution quartile. This information 

represents a closely packed data distribution and a 

similar pattern can be observed in the data column 

labeled “temperature”. However, the data column 

labeled “gage height” and “discharge” had 

minimum values farther away in terms of range 

from the most common data in their 25% 

distribution quartile. This indicates the presence of 

outliers in such data columns. The combined box-

and-whisker plot of the dataset is presented in 

Figure 5. 

 
Figure 5. Box and Whisker plot of the dataset 
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The box-and-whisker plot confirmed the closely 

packed data distribution of columns labeled 

“pressure” and “temperature” at the upper and lower 

limits respectively. However, data columns labeled 

“gage height” and “discharge” have some outlying 

data farther away from the lower data limits. In 

terms of range, outliers present in the data column 

labeled “gage height” seem farther from its lower 

data limit compared to the other column data 

distributions. To identify these outliers, present in 

the data column labeled “gage height”, Z standard 

score method was employed. The Z standard score 

is the number of standard deviations by which the 

value of a raw score is above or below the mean 

value of the observed data distribution. 

Consequently, the lower and upper limit of 3; 

standard deviation away from the mean, to capture 

at least a 99.73% data distribution of the “gage 

height” was set, and a total of 11 outliers were 

identified. Unfortunately, there is no straight 

forward best solution for dealing with 

outliers because it depends on the severity 

of the outliers and the goals of the analysis. 

One way of handling outlier is to replace 

the outlier using imputation as if they were 

missing values using the interpolated mean 

values which were employed in this study.  

4.2. Streamflow data validation 

The result of the regression plot comparing the 

estimated streamflow (observed) with SWAT-

simulated streamflow using Microsoft Excel 

Spreadsheet is presented in Figure 6 

 
Figure 6. Observed versus SWAT simulated streamflow 

The trend of the streamflow data for estimated 

versus SWATsimulated as observed in Figure 6 was 

employed to conclude that the estimated streamflow 

data were accurate and reliable. Hence, the 

estimated streamflow data were employed as 

training and validation datasets for future 

streamflow prediction using selected machine 

learning algorithms. 

4.3. Streamflow prediction using machine 

learning technique 

The first step in the development of the model using 

a machine learning approach is to split the datasets 

into dependent (y) and independent (x) variables. 

For streamflow prediction modelling, we are trying 

to predict the streamflow based on the water 

pressure, gage height and temperature. Hence, the 

streamflow data was used as the dependent variable 

while water pressure, gage height and temperature 

were used as the independent variables. Using the 

seabon library the pairplot which shows the exact 

relationship between streamflow and other 

independent variables was obtained.The 

relationship defined revealed a perfect linear 

relationship between streamflow and gage height. It 

was also observed that temperature range of 

between 240C and 270C defined the boundary for 

streamflow data collection and underscored the 

prevailing condition of the study area. To 

understand the variables that are positively or 

negatively correlated with streamflow, the 

correlation matrices between dependent and 

independent variables were obtained and presented 

in Table 4. 
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Table 4. Correlation matrix of regression 

 Pressure Temperature Gage Discharge 

Pressure 1.000 -0.304 -0.982 -0.986 

Temperature -0.304 1.000 0.271 0.274 

Gage -0.982 0.271 1.000 0.992 

Streamflow -0.986 0.274 0.992 1.000 
 

It was observed from the result of Table 4 that gage 

height is strongly positively correlated with 

streamflow with a correlation coefficient of 99.2%. 

Although temperature is also positively correlated 

with streamflow, it was observed that the correlation 

coefficient is very low (27.4%). For pressure, a 

strong negative correlation of about 99% was 

observed. Knowing the correlation between the 

dependent and independent variables, the datasets 

were then split into training, validation and testing 

data. RF, DT, SVR and GB like every other machine 

learning algorithm adopt the 60% training, 25% 

validation and 15% testing method. One unique 

quality of random forest is the tendency to 

determine the optimum number of n_estimator 

(optimum number of trees required to obtain the 

most desirable result. To make a prediction with a 

Random Forest model, each tree in the forest 

independently predicts the output variable, and the 

final prediction is based on the majority vote or 

average of these individual predictions. The 

graphical relationship between the performance 

accuracy of random forest and the number of 

n_estimators is presented in Figure 7. 

 
Figure 7. Model accuracy versus n_estimators 

From the plot of Figure 7, the number of 

n_estimators for RFR was taken as 30. Using the 

sklearn library, the dataset was then fitted to RFR, 

DT, SVR and GB.   

4.3.1. Model performance evaluation 

To find out how well each model can forecast future 

streamflow, performance evaluation was carried out 

on both the training and testing datasets. Evaluation 

metrics and graphical visualization were used for 

performance assessment.  Generating the learning 

curve that was used to train the model was the first 

step in assessing its performance. If the model is 

underfitting (not capturing all the patterns in the 

data), or overfitting (fitting too closely to the 

training data and not generalizing well to new data), 

the learning curve can shed light. By looking at the 

learning curve, you can determine whether your 

model performs better with more data, or with 

changes made to its architecture, or with adjusted 

hyperparameters. The learning curves developed for 

this study are shown in Figures 8, 9, 10 and 11 

representing the curve for RF, DT, SVR and GB. 
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Figure 8. Random Forest Learning Curve 

 
Figure 9. Decision Tree Learning Curve 

 
Figure 10. Support Vector Learning Curve 
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Figure 11. Gradient Boosting Learning Curve 

It was noted from the presented learning curves that 

the chosen algorithm exhibits good data fit. 

Nonetheless, the SVR model's learning curve 

demonstrates that the validation and training curves 

overlapped. Curves that overlap could indicate that 

the model is effectively generalizing to new data and 

is not overfitting the training set. Though the curves 

may overlap, a model may still be overfitting the 

data; this is particularly likely to happen if the model 

has many parameters or if the data contains a lot of 

noise or variability. A machine learning model is 

generally trained with the aim of minimizing the 

difference between the training and validation 

curves and obtaining high accuracy on both sets. 

The model may be performing fairly well on the 

training and validation sets if the curves overlap, but 

it's crucial to keep an eye on the curves and tweak 

the model's architecture or hyperparameters as 

necessary to make sure the model is adapting to new 

data. In a study published in 2021, Guo et al. 

provided a clear explanation of the overlapping 

problem and how it affects the machine learning 

algorithm's overall performance.   They confirmed 

that overlapping data can significantly affect how 

well deep neural networks generalize information 

from the training and validation sets. In particular, 

the authors discovered that a greater quantity of 

overlapping data can raise the model's 

generalization error. This finding implies that it's 

critical to choose the training and validation sets 

carefully to prevent the model from becoming 

overly fit. The study also emphasizes how helpful it 

is to keep an eye on the training and validation 

curves in order to evaluate the model's 

generalization performance, and it proposes that 

overlapping curves may be a helpful sign of the 

model's generalization error. Future research, 

according to the authors, should concentrate on 

creating techniques for choosing training and 

validation sets that reduce the quantity of 

overlapping data while still guaranteeing that the 

model can effectively generalize to new data. It was 

determined, based on the authors' submission, that 

SVR did not fit the data as well as RF, DT, and GB 

did. When RF, DT, and GB learning curves are 

compared, it is also observed that the Decision Tree 

Regression model's learning curve indicates that the 

model did not fit the data as well as RF and GB did. 

All things considered, RF was declared the best 

model and yields the best learning curve. Shrestha 

et al., (2021) are among the other authors who have 

assessed the effectiveness of the machine learning 

model by employing the learning curve approach. In 

their investigation, the effectiveness of clinical 

natural language processing (NLP) systems was 

assessed using a learning curve technique. Using a 

sizable clinical corpus, they trained and assessed 

their NLP system using supervised machine 

learning techniques. They also produced learning 

curves to determine the ideal sample size required to 

get the system to operate at the required level. They 

discovered that their learning curve approach 

worked well for maximizing the NLP system's 

performance on various clinical tasks and showed 

how useful it was for assessing and enhancing NLP 

system performances in clinical settings. A learning 

curve-based technique for evaluating the 

generalization effectiveness of machine learning 

models was presented by Liu and Hsieh in 2021. 

They created learning curves to calculate the 

models' generalization error and trained and 

assessed their models using a variety of benchmark 
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datasets using supervised machine learning 

techniques. They showed the value of their method 

for evaluating the generalization capabilities of 

various machine learning models and discovered 

that their learning curve approach was successful in 

pointing out overfitting and underfitting issues in 

the models. A learning curve method was presented 

by Qin and Huang (2021) to assess deep neural 

network generalization performance. They created 

learning curves to calculate the models' 

generalization error and trained and assessed their 

models using a variety of deep neural network 

architectures on a range of benchmark datasets. 

They showed the value of their learning curve 

approach for optimizing the performance of deep 

neural networks in various applications and 

discovered that it was useful for comparing the 

performance of various neural network architectures 

and hyperparameters. The validation of model 

performance using the learning curve approach was 

judged to be satisfactory in accordance with the 

findings of Shrestha et al., (2021), Liu and Hsieh 

(2021), and Qin and Huang (2021). 

A variety of metrics were used to evaluate the 

performance of the model in addition to the 

graphical method. The dispersion between predicted 

and actual values was explained by the mean 

squared error (MSE). To further measure predictive 

efficacy, coefficient of determination (R2) and other 

selected metrics, such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) and 

Explained Variance Score (EVS), were employed as 

benchmarks. RMSE (Root Mean Square Error) is a 

measure of the differences between predicted and 

observed values, and it represents the square root of 

the average squared differences between the 

predicted and observed values. Lower RMSE values 

indicate better model performance. MAE (Mean 

Absolute Error) is a measure of the differences 

between predicted and observed values, and it 

represents the average absolute differences between 

the predicted and observed values. Lower MAE 

values indicate better model performance. R2 

(Coefficient of Determination) is a measure of how 

well the model fits the data, and it represents the 

proportion of the variance in the observed data that 

can be explained by the model. R2 values range from 

0 to 1, with higher values indicating better model 

performance. EVS (Explained Variance Score) is 

another measure of how well the model fits the data, 

and it represents the proportion of the variance in the 

observed data that is explained by the model. EVS 

values range from 0 to 1, with higher values 

indicating better model performance. Results of the 

estimated metrics are presented in Table 5. 

Using the selected algorithms, the observed and 

predicted streamflow were obtained and presented 

in Figures 12, 13, 14 and 15 respectively. 

Table 5. Training goodness of fit statistics based on the selected models 

GoF Statistics R2 MAE MSE RMSE EVS 

RFR 0.98 0.01 0.02 0.05 0.97 

DTR 0.96 0.02 0.03 0.02 0.94 

SVR 0.68 18.71 906.23 30.1 0.65 

GB 0.77 6.74 82.36 9.08 0.69 
 

 
Figure 12. Observed versus RF predicted streamflow 
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Figure 13. Observed versus DT predicted streamflow 

 
Figure 14. Observed versus SVR predicted streamflow 

 
Figure 15. Observed versus GB predicted streamflow 
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Each model's overall goodness of fit was assessed 

using a ranking system that compared the five test 

criteria categories according to the relative 

importance of the statistical test results. A score of 

4 was given to the model with the lowest MAE, 

lowest MSE, lowest RMSE, highest R2 and highest 

EVS; a score of 3 was given to the next model, and 

a score of 1 to the worst. The model with the highest 

total point score was chosen as the best-fit model. 

With the highest total score of 19, RFR was chosen 

as the best-fit model, and was followed by DTR, 

GB, and SVR. In a similar study by Ates and 

Dadaser-Celik, 2020 on streamflow prediction using 

machine learning techniques. The authors used RF, 

DT, and SVR to predict daily streamflow in the 

Karasu River in Turkey using meteorological and 

hydrological variables as inputs. With an R2 value 

of 0.93, RF was found to perform the best by the 

authors, followed by SVR (0.89), DT (0.85), and 

SVR (0.89). In a related study, Sahoo et al., (2020) 

compared the efficacy of RF, DT, and SVR for 

streamflow prediction in three Indian river basins 

using hydrological and meteorological data as 

inputs. The study focused on streamflow prediction 

using machine learning techniques. With an R2 

value of 0.91, RF proved to be the most effective, 

according to the authors, ahead of SVR (0.87) and 

DT (0.81). 

5. CONCLUSIONS 

This study compares, using various evaluation 

metrics, the streamflow prediction performance of 

four well-known machine learning algorithms: RF, 

DT, SVR, and GB. RF demonstrated superior 

predictive performance when compared to DT, 

SVR, and GB algorithms. RF had the lowest RMSE 

of 0.02 and the highest R2 of 0.98. With an RMSE 

value of 0.02, DT has the lowest RMSE value, 

suggesting that it predicts individual data points 

more accurately. The study's conclusions regarding 

RF's superior performance in streamflow prediction 

are in line with those of earlier research, which 

discovered RF to be a useful algorithm for 

hydrological modeling. The results of the study also 

emphasize the significance of taking into account a 

variety of algorithms and assessment metrics when 

choosing a prediction model, since the effectiveness 

of an algorithm can differ based on the particular 

context and objectives of the modeling exercise.  
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