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benzenedicarboxylic acid and iron(l11) chloride by a solvothermal meth-
od. Physical characterizations of the solid catalyst were achieved by us-
ing a variety of techniques. The Fe-MOF was used as a productive heter-
ogeneous catalyst for the synthesis of benzimidazoles via oxidative con-
densation of primary amines with 1,2-diaminoarenes. The MOF-235 was
found to be more catalytically active for the oxidative condensation of
primary amines with 1,2-diaminoarenes than other Metal-organic frame-
works (MOFs). Leaching tests verified that the cyclization of 1,2-
phenylenediamine  with  benzylamine to generate 2-phenyl-1H-
benzo[d]imidazole was only possible in the presence of the iron-based
framework catalyst, thus indicating that the transformation progressed

via truly heterogeneous catalysis.
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1 INTRODUCTION

Benzimidazole derivatives are pervasive structural
skeletons recognized in innumerable agrochemicals
and pharmaceuticals, and also in wide range of
functional polymers and organic materials (Singh
et al., 2009; Noél et al., 2013). Classically, these
nitrogen-containing heterocyclic motifs could be
generated by the condensation of aldehydes or car-
boxylic acids with 1,2-diaminoarenes accompanied
by oxidative cyclization utilizing acid catalysts
(Chen et al., 2008; Mahesh et al., 2015). To inau-
gurate more efficient synthetic strategies for the
construction of benzimidazole, transition metal-
catalyzed protocols have been investigated. Ma et
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al. (2009) previously reported a Cul-catalyzed
coupling of 2-iodoacetanilides with aqueous am-
monia at ambient temperature, which experienced
in situ cyclization to form 1H-benzimidazoles
(Diao et al., 2009). Lv and Bao (2009) employed
an effective Cul-catalyzed domino addition/C-N
coupling process to produce a broad range of ben-
zimidazoles from N- or O-nucleophiles and o-
haloarylcarbodiimides.  Punniyamurthy et al.
(2015) synthesized innumerable benzimidazoles by
a Cul-catalyzed cascade reaction between azides,
aryl amines, and aldehydes (Mahesh et al., 2015).
Zhou et al. (2013) demonstrated a straightforward
protocol for the generation of benzazoles via
CuBr,-catalyzed oxidative cyclization of benzyla-
mines with hydroxyanilines/mercaptan/o-amino
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(Xiao et al., 2013). Taddei et al. (2012) mentioned
the production of benzimidazoles starting from
amines and o-phenylenediamines in the existence
of palladium on charcoal as catalyst (Pizzetti et al.,
2012). Very recently, Gopalaiah and Chandrudu
(2015) developed an FeBrj-catalyzed oxidative
coupling of 2- amino/mercapto/hydroxyanilines
with benzylamines to generate varied 1,3-
benzazoles. To acquire more environmentally be-
nevolent synthetic approaches for the production of
benzimidazoles, heterogeneous catalysts should be
investigated (Leadbeater and Marco, 2002).

Metal-organic frameworks (MOFs) have come up
as a new grade of crystalline materials, furnishing
interesting applications in diverse disciplines (Chae
et al., 2004; Tranchemontagne et al., 2008; Kup-
pler et al., 2009). The nature of these frameworks
enables the greatest flexibility of structures and
properties, and hence offering advantages as corre-
lated to ordinary porous materials (Chae et al.,
2004; Tranchemontagne et al., 2008; Kuppler et
al., 2009). Although the prosperity of these
sponge-like materials is still challenging, MOFs
are an area of intense research around the world
throughout the most recent decade (Mason et al.,
2014; Jusoh et al., 2015). Employing these materi-
als as heterogeneous catalysts has recently attracted
notable interests from both industry and academy
(Dhakshinamoorthy and Garcia, 2012; Leus et al.,
2014; Liu et al., 2014). The application of iron-
based frameworks in catalysis has been updated in
the literature (Cele et al., 2014; Wang et al., 2014).
In this research, the synthesis of benzimidazoles
via oxidative condensation of primary amines with
1,2-diaminoarenes utilizing an iron-based frame-
work MOF-235 as a heterogeneous catalyst was
described. To our best understanding, the genera-
tion of benzimidazoles using iron-based heteroge-
neous catalysts was not previously disclosed in the
literature.

2 MATERIALS AND METHODS
2.1 Materials and instrumentation

All reagents and starting materials were purchased
from Sigma-Aldrich and Acros, and used as re-
ceived without further purification. Gas chromato-
graphic (GC) analyses were performed using a
Shimadzu GC 2010-Plus equipped with a flame
ionization detector and an SPB-5 column (length =
30 m, inner diameter = 0.25 mm, and film thick-
ness = 0.25 pum). The temperature program for GC
analysis held samples at 100 °C for 1 min; heated
them from 100 to 280 °C at 40 °C/min; held them
at 280 °C for 5 mins. Inlet and detector tempera-
tures were set constant at 280 °C. Dodecane was
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used as an internal standard to calculate reaction
conversions. GC-MS analyses were performed
using a Hewlett Packard GC-MS 5972 with a
RTX-5MS column (length = 30 m, inner diameter
= 0.25 mm, and film thickness = 0.5 um). The
temperature program for GC-MS analysis heated
samples from 60 to 280 °C at 10 °C/min and held
them at 280 °C for 5 mins. Inlet temperature was
set constant at 280 °C. MS spectra were compared
with the spectra gathered in the NIST library. The
'H NMR and **C NMR were recorded on Bruker
AV 500 spectrometers using residual solvent peak
as a reference.

2.2 Catalyst synthesis

The framework MOF-235 was synthesized in a
yield of 73% in conformity with a literature proce-
dure (Haque et al., 2011; Anbia et al., 2012). A
solid mixture of FeCls.6H.O (0.541 g, 2.0 mmol)
and H;BDC (H;BDC=1,4-benzenedicarboxylic
acid; 0.332 g, 2.0 mmol) was dissolved in a mix-
ture of DMF (DMF = N,N’-dimethylformamide;
40 mL) and ethanol (40 mL). The resulting solu-
tion was distributed to eight 20-mL vials. The
vials were tightly capped and then heated at 85 °C
in an isothermal oven for 48 hrs, yielding light or-
ange crystals. After cooling the vial to room tem-
perature, the solid product was obtained by decant-
ing with mother liquor and washed with DMF (3 x
10 mL) for 3 days. Solvent exchange was then per-
formed with ethanol (3 x 10 mL) at room tempera-
ture for 3 days. The product was then dried under
vacuum at 140 °C for 6 hrs, yielding 0.3 g of MOF-
235 in the form of brick red crystals (43 % based
on H,BDC).

2.3 Catalytic studies

In a representative experiment, a solution of 1,2-
phenylenediamine (0.108 g, 1 mmol), benzyl amine
(0.214 g, 2 mmol) in chlorobenzene (2 mL) was
added into a 15 mL vial containing the required
catalyst. Diphenyl ether (0.17g, 1 mmol) as an in-
ternal standard was then introduced to the vial. The
catalyst amount was calculated regarding the
iron/1,2-phenylenediamine mole proportion. The
reactor was connected with an oxygen balloon
through a needle, the reaction mixture was mag-
netically stirred for 7 hrs at 130 °C. The samples
were withdrawn, dissolved in methanol, and ana-
lyzed by GC concerning diphenyl ether. The ex-
pected product, 2-phenyl-1H-benzo[d]imidazole,
was isolated using column chromatography. The
product specification was verified by GC-MS, H
NMR and *C NMR. For the recyclability experi-
ment, the catalyst was separated, washed many
times with ethanol, heated at 150 °C under vacuum
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in a shlenkline for 6 hrs, and reused for new cata-
Iytic run. In the leaching experiment, the reaction
was ceased after 2 hrs, and centrifuged to isolate
the catalyst. The reaction solution was then heated
with magnetic stirring for additional 5 hrs. The
formation of 2-phenyl-1H-benzo[d]imidazole in
the absence of the solid catalyst was then moni-
tored.

3 RESULTS AND DISCUSSION

The Fe-MOF was evaluated for its efficiency in the
oxidative condensation of benzylamine with 1,2-
phenylenediamine to generate  2-phenyl-1H-
benzo[d]imidazole as the main product (Fig. 1).
The expected product was isolated using column
chromatography, and analyzed by GC-MS, 'H
NMR and *3C NMR. Opening studies aimed at the
impression of temperature on the yield of the ex-
pected product. The reaction was executed in chlo-
robenzene under an oxygen atmosphere for 7 hrs,

using 1,2-phenylenediamine:benzylamine mole
NH,
- o™
NH,
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proportion of 1:2, at 1,2-phenylenediamine concen-
tration of 0.5 M, in the presence of 5 mol% cata-
lyst, at ambient temperature of 60 °C, 100 °C, 110
°C, 120 °C, and 130 °C, respectively. It was spotted
that only 5% vyield of 2-phenyl-1H-
benzo[d]imidazole was recognized after 7 hrs at
ambient temperature. The conversion also carried
on with obstacle at 60 °C, offering only 8% yield
after 7 hrs. Boosting the temperature contributed a
notable augmentation in the yield of 2-phenyl-1H-
benzo[d]imidazole, with 26% and 66% yields be-
ing recorded after 7 hrs for the reaction conducted
at 100 °C and 110 °C, respectively. It was possible
to improve the yield to 70% after 7 hrs when the
reaction temperature was increased to 120 °C. Ex-
perimental data displayed that the cyclization reac-
tion between benzylamine and 1,2-
phenylenediamine utilizing the framework catalyst
could proceed to 92% vyield after 7 hrs at 130 °C

H
MOF-235 N

-

chlorobenzene

’

(Fig. 2).
C :N

oxygen

Fig. 1: The oxidative condensation of benzylamine with1,2-phenylenediamine utilizing MOF-235 catalyst
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Fig. 2: Yields of 2-phenyl-1H-benzo[d]imidazole
vs temperature

For reactions utilizing solid catalysts, the reaction
rate might be considerably altered by the solvent.
In the previous report of the iron-catalyzed cycliza-
tion between 2-amino/mercapto/hydroxyanilines
and benzylamines, Gopalaiah and Chandrudu
(2015) performed the conversion in different sol-
vents, and pointed out that chlorobenzene should
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Fig. 3: Yields of 2-phenyl-1H-benzo[d]imidazole
vs solvent

be used. It was consequently determined to inspect
the formation of 2-phenyl-1H-benzo[d]imidazole
in various solvents. The reaction was conducted at
130 °C under an oxygen atmosphere for 7 hrs, in
the presence of 5 mol% catalyst, utilizing 1,2-
phenylenediamine:benzylamine mole proportion of
1:2, at 1,2-phenylenediamine concentration of 0.5
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M, in DMSO (DMSO = dimethyl sulfoxide), di-
glyme, 1,2-dichlorobenzene, DMF, mesitylene, and
chlorobenzene as solvent, respectively. Compared
to other solvents, DMF offered poorest perfor-
mance, though the conversion could provide 39%
yield of 2-phenyl-1H-benzo[d]imidazole after 7 h.
The reaction continued more effortlessly in di-
glyme, DMSO, and 1,2-dichlorobenzene, reaching
66%, 71%, and 73% vyields, respectively, after 7
hrs. The vyield of 2-phenyl-1H-benzo[d]imidazole
could be upgraded to 81% for the reaction execut-
ed in mesitylene. Chlorobenzene emerged as the
solvent of choice for the reaction between 1,2-
phenylenediamine and benzylamine with 92%
yield of the expected product being recorded after
7 h (Fig. 3).

Having these data, it is continuously determined to
explore the influence of catalyst quantity on the
generation of 2-phenyl-1H-benzo[d]imidazole. The
reaction was performed at 130 °C in chlorobenzene
under an oxygen atmosphere for 7 hrs, utilizing
1,2-phenylenediamine:benzylamine molar ratio of
1:2, at 1,2-phenylenediamine concentration of 0.5
M, in the presence of 2.5 mol%, 5 mol%, 7.5
mol%, and 10 mol% catalyst, respectively. As
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Fig. 4: Yields of 2-phenyl-1H-benzo[d]imidazole
vs catalyst concentration

As the reaction between 1,2-phenylenediamine and
benzylamine to generate 2-phenyl-1H-
benzo[d]imidazole using the framework catalyst
was executed in liquid phase, the likelihood of
leaching must be studied. In a number of circum-
stances, as a result of the leaching phenomenon,
homogeneous catalysis donated dramatically to the
transformation. In order to verify that 2-phenyl-1H-
benzo[d]imidazole was generated via heterogene-
ous catalysis, the leaching experiment was con-
ducted. The reaction was executed at 130 °C in
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mentioned earlier, the reaction utilizing 5 mol%
catalyst could offer 92% yield after 7 hrs. Drop-
ping the catalyst quantity to 2.5 mol% caused a
loss in the yield of the predicted product, though
70% yield was yet monitored after 7 hrs. It must be
noted that 11% yield of 2-phenyl-1H-
benzo[d]imidazole was detected after 7 hrs without
using the catalyst, hence signifying the demand of
the solid catalyst for the conversion. Expanding the
catalyst quantity to more than 5 mol% was unrea-
sonable as the yield of the benzimidazole was not
intensified tremendously (Fig. 4). Indeed, Gopal-
aiah and Chandrudu (2015) previously employed 5
mol% FeBr, as catalyst for the coupling of 2-
amino/mercapto/hydroxyanilines  with  benzyla-
mines to produce substituted 1,3-benzazoles
(Gopalaiah et al., 2015). Additionally, it was rec-
ognized that the reactant mole proportion displayed
a marked influence on the generation of 2-phenyl-
1H-benzo[d]imidazole. The reaction deploying one
equivalent of benzylamine afforded 59% vyield after
7 hrs, while 71% yield was recorded for that em-
ploying 1.5 equivalents of benzylamine. This num-
ber could be upgraded to 92% and 96% when 2 and
2.5 equivalents of benzylamine, respectively, were
utilized (Fig. 5).
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Fig. 5: Yields of 2-phenyl-1H-benzo[d]imidazole
vs reactant mole proportion
chlorobenzene under an oxygen atmosphere for 7
hrs, in the presence of 5 mol% catalyst, utilizing
1,2-phenylenediamine:benzylamine mole propor-
tion of 1:2, at 1,2-phenylenediamine concentration
of 0.5 M. The solid catalyst was isolated after 2-
hour reaction time by centrifugation. The solution
phase was then transported to a new flask, and
heated at 130 °C with magnetic stirring for extra 5
hrs under argon. It was noticed that no more 2-
phenyl-1H-benzo[d]imidazole was generated from
the reaction between 1,2-phenylenediamine and
benzylamine in the absence of the solid catalyst
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(Fig. 6). These data would denote that the cycliza-
tion of 1,2-phenylenediamine with benzylamine to
generate 2-phenyl-1H-benzo[d]imidazole was only
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_. 60
g
°©
T 40
2
20
0 ‘
0 1 2 3 4 5 6 7
Time (h)
Fig. 6: Leaching test indicated no contribution

from homogeneous catalysis of active species
leaching into reaction solution

The catalytic performance of MOF-235 in the reac-
tion between 1,2-phenylenediamine and benzyla-
mine to generate 2-phenyl-1H-benzo[d]imidazole
was correlated with a number of homogeneous
catalysts. The reaction was conducted at 130 °C in
chlorobenzene under an oxygen atmosphere for 7
hrs, in the presence of 5 mol% catalyst, utilizing
1,2-phenylenediamine:benzylamine mole propor-
tion of 1:2, at 1,2-phenylenediamine concentration
of 0.5 M. FeCl; expressed similar catalytic activity
to the framework in the synthesis of 2-phenyl-1H-
benzo[d]imidazole, with 91% yield being noticed
after 7 hrs. FeCl, was less catalytically active than
FeCls, though 87% yield was yet achieved after 7
hrs. However, the Fe(NO3)s-catalyzed cyclization
reaction carried on with dilemma, reaching only
51% yield of the benzimidazole after 7 hrs. CuCl;
displayed reasonable efficiency for the reaction,
and 71% yield of the expected product was detect-
ed after 7 hrs. Ni(OAc), and Zn(NQOs), should not
be used as catalyst for this transformation. 1,4-
Benzenedicarboxylic acid, the organic linker used
to prepare the framework, disclosed low activity
(Fig. 7). To underscore the impressive aspect of
MOF-235 in the reaction between 1,2-
phenylenediamine and benzylamine to generate 2-

Vol. 54, No. 8 (2018): 88-95

possible in the attendance of the framework cata-
lyst, and hence verifying that the reaction pro-
gressed via truly heterogeneous catalysis.
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Fig. 7: Yields of 2-phenyl-1H-benzo[d]imidazole

with various homogeneous catalysts

phenyl-1H-benzo[d]imidazole, its catalytic activity
was then differentiated with other MOFs. Among
these heterogeneous catalysts, MOF-235 displayed
the best presentation, with 92% vyield of the ex-
pected product being realized after 7 hrs (Fig. 8).
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Fig. 8: Yields of 2-phenyl-1H-
benzo[d]imidazole with numerous MOF-based
catalysts
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Table 1: The reaction of 1,2-phenylenediamines with benzylamines utilizing the framework catalyst

Isolated yields

Entry 1,2-Phenylenediamines Benzylamines Products (%)
NF2 NH N
L, O™ oo o
NH, N
NH N
2 NH, N
2 / 79
NH, cl N
Cl
H
NH2 NH2 N
» X < -
NH
2 Cl cl
NH2 NH2 H
: O ™
NH, Cl N
NH A
2 NH, N
5 % 74
NH, OMe N
MeO
H
NH, NH; N
. (I Qo
NH
2 OMe OMe
NH2 NH, ¥
7 CLyOrom
NH, MeO N
NH, H
NH N
OO OO
Me NH, Me N
NHz NH N
O,N NH, O,N N
SH
S
NH
L O™ O v
NH, N

The research was then continued to the oxidative
condensation of 1,2-phenylenediamine with differ-
ent benzylamines, including 2-chlorobenzylamine,
3-chlorobenzylamine, 4-chlorobenzylamine, 2-
methoxybenzylamine, 3-methoxybenzylamine, and
4-methoxybenzylamine, respectively. The reaction
was executed at 130 °C in chlorobenzene under an
oxygen atmosphere for 7 hrs, in the presence of 5
mol% catalyst, utilizing 1,2-
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phenylenediamine:benzylamine molar ratio of 1:2,
at 1,2-phenylenediamine concentration of 0.5 M.
The reaction between 1,2-phenylenediamine with
benzylamine produced 2-phenyl-1H-
benzo[d]imidazole in 92% isolated yield. The reac-
tion of 1,2-phenylenediamine  with  2-
chlorobenzylamine afforded 79% yield of 2-(2-
chlorophenyl)-1H-benzo[d]imidazole, while 90%
yield of 2-(3-chlorophenyl)-1H-benzo[d]imidazole
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was recorded for the case of 3-chlorobenzylamine.
4-Chlorobenzylamine was less reactive towards the
reaction with 1,2-phenylenediamine than 2-
chlorobenzylamine and  3-chlorobenzylamine,
though 74% yield of 2-(4-chlorophenyl)-1H-
benzo[d]imidazole was still obtained. The exist-
ence of an electron-donating substituent in benzyl-
amine structure caused a decline in the yield of
expected product. Indeed, 74% yield of 2-(2-
methoxyphenyl)-1H-benzo[d]imidazole, 79% yield
of  2-(3-methoxyphenyl)-1H-benzo[d]imidazole,
and 66% yield of 2-(4-methoxyphenyl)-1H-
benzo[d]imidazole were obtained for the reaction
of 1,2-phenylenediamine with 2-
methoxybenzylamine, 3-methoxybenzylamine, and
4-methoxybenzylamine, respectively. In a second
experiment series, the reaction between benzyla-
mine and 4-methyl-1,2-phenylenediamine, 4-nitro-
1,2-phenylenediamine, and 2-aminobenzenethiol,
respectively, was also investigated, and reasonable
isolated yields were achieved (Table 1).

4 CONCLUSIONS

Iron-organic framework MOF-235 was synthe-
sized, and subsequently used as a productive heter-
ogeneous catalyst for the synthesis of benzimidaz-
oles via oxidative condensation of primary amines
with 1,2-diaminoarenes. The nature of solvent
exhibited a significant impact on the formation of
benzimidazoles, and chlorobenzene emerged as the
most suitable solvent for the reaction. The MOF-
235 was found to be more catalytically active for
the oxidative condensation of primary amines with
1,2-diaminoarenes than other MOFs including
FesO(BPDC)s, Ni(BDC)(DABCO), Cu(OBA),
Cu3(BTC),, and Cuz(OBA)2(BPY). Leaching tests
verified  that the cyclization of 1,2-
phenylenediamine with benzylamine to generate 2-
phenyl-1H-benzo[d]imidazole was only possible in
the presence of the iron-based framework catalyst,
thus indicating that the transformation progressed
via truly heterogeneous catalysis. The feature that
numerous benzimidazoles could be achieved using
the MOF-based catalyst would be profitable to the
pharmaceutical and chemical industry.
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