Thai Le Truong Giang , Quang Thi Hue Minh , Thai Nguyen Trieu Nguyen , Cu Hoang Minh , Le Ky Anh , Mai Hai Nghi , Le Huy Hoang , Nguyen Quang Long * and Ngo Tran Hoang Duong

* Corresponding author (nqlong@hcmut.edu.vn)

Main Article Content

Abstract

A zeolite Y was modified by the microwave-assisted method (MWA) for generating mesopores and was mechanically mixed with TiO2 for photocatalytic application. The external surface area, which is represented to the mesopore, was significantly increased about 5 to 10 times in the modified zeolites compared to the parent zeolite. The catalysts were used to catalyze the gas phase photodegradation of toluene, a volatile organic compound (VOC). The photocatalytic activity and stability of the catalyst were improved when the mesoporous zeolite was presented. The mechanical mixture contained 30 wt%. TiO2 and 70 wt%. mesoporous zeolite showed the highest toluene removal efficiency.

Keywords: Mesoporous zeolite, Photocatalyst, TiO2, Toluene, Microwave-Assisted method

Article Details

References

Bari, M.A. & Kindzierski, W. B. (2018). Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Science of The Total Environment, 631-632, 627-640. DOI: 10.1016/j.scitotenv.2018.03.023

Berezina E., Moiseenko K., Skorokhod A., Pankratova N. V., Belikov I., Belousov V. & Elansky N. F. (2020). Impact of VOCs and NOx on Ozone Formation in Moscow. Atmosphere, 11(11), 1262. DOI: 10.3390/atmos11111262

Binas, V., Venieri, D., Kotzias, D. & Kiriakidis, G. (2017). Modified TiO2 based photocatalysts for improved air and health quality. Journal of Materiomics, 3(1), 3-16. DOI: 10.1016/j.jmat.2016.11.002

Dinh, V. T., Thu, P. A., An, N. T., Nhan, D. N. T. & Long, N. Q. (2018). Toluene removal under humid conditions by synergistic adsorption–photocatalysis using nano TiO2 supported on ZSM-5 synthesized from rice-husk without structuredirecting agent. Reaction Kinetics, Mechanisms and Catalysis, 125, 1039-1054. DOI: 10.1007/s11144-018-1452-7

EPA (n.d.). Volatile Organic Compound (VOC) Control Regulations. https://www3.epa.gov/region1/airquality/voc.html?fbclid=IwAR1FD7Ll7LdwH6LDXwIaTnPgaclx0rk2xhnwPk17qdIGv5GxXVjGK0NiO-0

Huang, B., Lei, C., Wei, C. & Zeng G. (2014). Chlorinated volatile organic compounds (Cl-VOCs) in environment – sources, potential human health impacts, and current remediation technologies. Environment International, 71, 118-138. DOI: 10.1016/j.envint.2014.06.013

Kamal, M. S., Razzak, S. A. & Hossain, M. M. (2016). Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment, 140, 117-134.

DOI: 10.1016/j.atmosenv.2016.05.031

Kovalevskiy, N.S., Lyulyukin, M.N., Selishchev, D.S. & Kozlov, D.V. (2018). Analysis of air photocatalytic purification using a total hazard index: Effect of the composite TiO2/zeolite photocatalyst. Journal of Hazardous Materials, 358, 302-309. DOI: 10.1016/j.jhazmat.2018.06.035

Kutluay, S. & Temel, F. (2020). Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, 125848. DOI: 10.1016/j.colsurfa.2020.125848

Li, X., Zhang, L., Yang, Z., Wang, Yan, P., Y. & Ran, J. (2020). Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology, 235, 116213. DOI: 10.1016/j.seppur.2019.116213

Mamaghani, A. H., Haghighat, F. & Lee, C. S. (2017). Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental, 203, 247-269. DOI: 10.1016/j.apcatb.2016.10.037

Molhave, L. (1991). Volatile Organic Compounds, Indoor Air Quality and Health. Indoor Air, 1(4), 357-376. DOI: 10.1111/j.1600-0668.1991.00001.x

Mombello, D., Pira, N. L., Belforte, L., Perlo, P., Innocenti, G., Bossi, S. & Maffei, M. E. (2009). Porous anodic alumina for the adsorption of volatile organic compounds. Sensors and Actuators B: Chemical, 137(1), 76–82. DOI: 10.1016/j.snb.2008.11.046

Takeuchi, M., Hidaka, M. & Anpo, M. (2012). Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst. Journal of Harzardous Materials, 237-238, 133-139.DOI: 10.1016/j.jhazmat.2012.08.011

Talaiekhozani, A., Rezania, S., Kim, K., Sanaye, R. & Amani, A. M. (2021). Recent advances in photocatalytic removal of organic and inorganic pollutants in air. Journal of Cleaner Production, 278, 123895. DOI: 10.1016/j.jclepro.2020.123895

Tu, L.N.Q., Nhan, N.V.H., Dung, N. Van, An, N.T. & Long, N. Q. (2019). Enhanced photocatalytic performance and moisture tolerance of nano-sized Me/TiO2–zeolite Y (Me = Au, Pd) for gaseous toluene removal: activity and mechanistic investigation. Journal of Nanoparticle Research, 21(9), 1-19. DOI: 10.1007/s11051-019-4642-y

Zhang, F., Zhu, X., Ding, J., Qi, Z., Wang, M., Sun, S., Bao, J. & Gao, C. (2014). Mechanism study of photocatalytic degradation of gaseous toluene on TiO2 with weak-bond adsorption analysis using in situ far infrared spectroscopy. Catalysis Letters, 144(6), 995–1000. DOI: 10.1007/s10562-014-1213-9