Ho The Anh , Luu Trong Hieu and Nguyen Chi Ngon *

* Corresponding author (ncngon@ctu.edu.vn)

Main Article Content

Abstract

The digital soil electrical conductivity (EC) map has been widely applied in agriculture globally due to its ability to explain various soil characteristics. However, the Mekong Delta lacks comprehensive data on soil EC. This study aims to address this gap by using the common interpolation method —K-Nearest Neighbors (KNN), Inverse Distance Weighting (IDW), Kriging interpolation, and Convolutional Neural Networks (CNN)—to map soil EC over an area of approximately 1.4 hectares. Using 228 data samples, the study found that the Gaussian model within Kriging was the most effective for interpolating soil EC, achieving the highest R-squared values (0.79 with test data and 0.96 with full data) and the lowest RMSE values (0.049 with test data and 0.022 with full data). Additionally, GPS data collection using the U-blox ZED-F9P-01B GPS module, paired with the U-blox ANN-MB-00 antenna, yielded better accuracy and reliability under rice field conditions (Q=1) compared to the performance in orchard settings. This research provides valuable insights into soil management and agricultural practices in the Mekong Delta.

Keywords: CNN, digital soil mapping, KNN, Kriging, IDW, soil electrical conductivity

Article Details

References

Book, D. L. (2017). Ian Goodfellow, Yoshua Bengio, Aaron Courville. MIT Press. http://www.deeplearningbook.org-March.

Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.

Chen, J., Han, C., Peng, Y., Wang, M., & Zhao, Y. (2023). Improved three-dimensional mapping of soil chromium pollution with sparse borehole data: Incorporating multisource auxiliary data into IDW-based interpolation. Soil Use and Management, 39(2), 933–947. https://doi.org/https://doi.org/10.1111/sum.12899

Chiles, J.-P., & Delfiner, P. (2012). Geostatistics: modeling spatial uncertainty (Vol. 713). John Wiley & Sons.

Chollet, F. (2021). Deep learning with Python. Simon and Schuster.

Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1), 11–43. https://doi.org/https://doi.org/10.1016/j.compag.2004.10.005

Corwin, D. L., & Plant, R. E. (2005). Applications of apparent soil electrical conductivity in precision agriculture. Computers and Electronics in Agriculture, 46(1), 1–10. https://doi.org/https://doi.org/10.1016/j.compag.2004.10.004

Corwin, D. L., & Scudiero, E. (2020). Field-scale apparent soil electrical conductivity. Soil Science Society of America Journal, 84(5), 1405–1441. https://doi.org/https://doi.org/10.1002/saj2.20153

Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.

Dooley, J. C. (1976). Two-dimensional interpolation of irregularly spaced data using polynomial splines. Physics of the Earth and Planetary Interiors, 12(2), 180–187. https://doi.org/https://doi.org/10.1016/0031-9201(76)90046-7

Ho, T. A., Bui, V. H., Nguyen, V. K., Nguyen, V. K., & Nguyen, C. N. (2024). An application of soil electrical conductivity measurement by Wenner Method in paddy field. International Journal of Engineering Trends and Technology, 72(2), 58–68. https://doi.org/10.14445/22315381/IJETT-V72I2P107

Ismain, S. H. A., Salleh, S. A., Mohammad Sham, N., Wan Azmi, W. N. F., Zulkiflee, A. L., & Ab Rahman, A. Z. (2023). Spatial distribution of particulate matter (PM2.5) in Klang Valley using Inverse Distance Weighting Interpolation Model. IOP Conference Series: Earth and Environmental Science, 1217(1), 12033. https://doi.org/10.1088/1755-1315/1217/1/012033

Liu, Z.-N., Yu, X.-Y., Jia, L.-F., Wang, Y.-S., Song, Y.-C., & Meng, H.-D. (2021). The influence of distance weight on the inverse distance weighted method for ore-grade estimation. Scientific Reports, 11(1), 2689. https://doi.org/10.1038/s41598-021-82227-y

Loonis, V., & de Bellefon, M. P. (2018). Handbook of Spatial Analysis: Theory and practical application with R. Insee Méthodes, 131(2).

Magno, J. L., & Budianta, W. (2023). Land transportation influence on the spatial distribution of Lead (Pb) in urban soils of Yogyakarta, Indonesia. IOP Conference Series: Earth and Environmental Science, 1233(1), 12038. https://doi.org/10.1088/1755-1315/1233/1/012038

Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). Determination Press San Francisco, CA, USA.

Olaojo, A. A., & Oladunjoye, M. A. (2022). Field-scale apparent electrical conductivity mapping of soil properties in precision agriculture. Brazilian Journal of Geophysics, 40(3), 1–31. https://doi.org/10.22564/brjg.v40i3.2171

Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: the variogram and kriging. Springer.

Pacheco, A. D., Junior, J. A., Ruiz-Armenteros, A. M., & Henriques, R. F. (2021). Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. In Remote Sensing (Vol. 13, Issue 7). https://doi.org/10.3390/rs13071345

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.

Peterson, L. (2009). K-nearest neighbor. Scholarpedia, 4, 1883. https://doi.org/10.4249/scholarpedia.1883

Premakantha, K., Chandani, R., Silva, G., Gunatilaka, R., & Pushpakumara, D. (Gamini). (2023). Tree Cover Assessment : Assessment of tree cover density of Sri Lanka using visual interpretation of open-source high-resolution imagery and geographic information system interface mapping. https://doi.org/10.4038/jnsfsr.v51i4.11429

Rhoades, J. D., & Corwin, D. L. (1990). Soil electrical conductivity: Effects of soil properties and application to soil salinity appraisal. Communications in Soil Science and Plant Analysis, 21(11–12), 837–860. https://doi.org/10.1080/00103629009368274

Sharma, R. P., Chattaraj, S., Jangir, A., Tiwari, G., Dash, B., Daripa, A., & Naitam, R. K. (2022). Geospatial variability mapping of soil nutrients for site specific input optimization in a part of central India. Agronomy Journal, 114(2), 1489–1499. https://doi.org/https://doi.org/10.1002/agj2.21025

Shukla, K., Kumar, P., Mann, G. S., & Khare, M. (2020). Mapping spatial distribution of particulate matter using Kriging and Inverse Distance Weighting at supersites of megacity Delhi. Sustainable Cities and Society, 54, 101997. https://doi.org/https://doi.org/10.1016/j.scs.2019.101997

Tran, N.-T., Huynh-Nhu-Y, N., Nguyen, C.-N., & Nguyen, C.-N. (2023). A Combination of Low-cost, Dual-frequency, Multi-GNSS Receiver and CORS Network for Precise Positioning Applications in Vietnam. IOP Conference Series: Earth and Environmental Science, 1170(1), 12012.

Tsangaratos, P., Ilia, I., Chrysafi, A.-A., Matiatos, I., Chen, W., & Hong, H. (2023). Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece. Remote Sensing, 15(14). https://doi.org/10.3390/rs15143471

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., & Bright, J. (2020). Fundamental algorithms for scientific computing in python and SciPy 1.0 contributors. SciPy 1.0. Nat. Methods, 17, 261–272.

Wadoux, A. M. J.-C., Minasny, B., & McBratney, A. B. (2020). Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science Reviews, 210, 103359. https://doi.org/https://doi.org/10.1016/j.earscirev.2020.103359

Yuan, Y., Yang, K., Cheng, L., Bai, Y., Wang, Y., Hou, Y., & Ding, A. (2022). Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant. International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192315470

Most read articles by the same author(s)