Using U-Net models in deep learning for brain tumor detection from MRI scans
Main Article Content
Abstract
Tumor diseases in the nervous system are both dangerous and complex. Magnetic Resonance Imaging (MRI) is crucial for detecting brain disease; however, identifying the presence of tumors from these is time-consuming and requires a professional doctor. Utilizing deep learning for tumor detection in MRI images can reduce waiting times and enhance detection accuracy. We propose a method employing two U-Net models: ResNeXt-50 and EfficientNet architectures, integrated with a Feature Pyramid Network (FPN) for segmenting brain tumor. The models were trained on the BraTS 2021 dataset, consisting of 3,929 MRI scan images with 3,929 corresponding masks, divided into training, testing, and evaluation sets in a 70:15:15 ratio. The results indicate that the hybrid model, which combines EfficientNet and FPN, delivers superior performance, with an average Intersection over Union (IoU) accuracy of 0.90 on the test set compared to 0.50 for ResNeXt-50, and Dice accuracy of 0.92 compared to 0.66 for ResNeXt-50. Furthermore, we developed a web application that implements the EfficientNet with FPN model, facilitating convenient tumor detection from uploaded MRI images for doctors.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ahmed, T., & Sabab, N. H. N.(2022).Classification and Understanding of Cloud Structures via Satellite Images with EfficientUNet. SN Computer Science, 3(99). https://doi.org/10.1007/s42979-021-00981-2
Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., ... & Bakas, S. (2021). The RSNA-ASNR-MICCAI BRATS 2021 benchmark on brain tumor segmentation and radiogenomic classification. https://arxiv.org/abs/2107.02314
Chen, Y., Wang, H., Yu, K., & Zhou, R. (2024). Artificial intelligence methods in natural language processing: A comprehensive review. Highlights in Science. Engineering and Technology, 85, 545-550. https://doi.org/10.54097/vfwgas09
Chavan, T. A.; Lokhande, D., & Patil, D. P. (2022). Use of a Feature Pyramid Network for object detection-a deep learning technology. Journal of Emerging Technologies and Innovative Research, 9(12), 2022.
Daimary, D., Bora, M., Amitab, K., & Kandar, D. (2020). Brain Tumor Segmentation from MRI Images using Hybrid Convolutional Neural Networks. Procedia Computer Science, 167, 2419-2428. https://doi.org/10.1016/j.procs.2020.03.295
Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302 (1945). https://doi.org/10.2307/1932409
Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2015).The PASCAL Visual Object Classes Challenge: A Retrospective International Journal of Computer Vision, 111(1), 98-136. https://doi.org/10.1007/s11263-014-0733-5
Fatih, U., Firat, H., Ozan, P., Tolga, T., & Nil, T. (2021). Classification of Shoulder X-ray Images with Deep Learning Ensemble Models. Applied Sciences, 11(6). https://doi.org/10.3390/app11062723
Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. (2015). Magnetic resonance imaging: Principles and techniques: Lessons for clinicians. Journal of Clinical and Experimental Hepatology, 5(3), 246-55. https://doi.org/10.1016/j.jceh.2015.08.001
Ghosh, S., & Santosh, K. C. (2021). Tumor Segmentation in Brain MRI: U-Nets versus Feature Pyramid Network. In IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 202 (pp. 31-36). https://doi.org/10.1109/CBMS52027.2021.00013
Krizhevsky, I. S. G. E. H. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386
Lin, T. -Y. P., Dollár, R., Girshick, K. He, Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA (pp. 936-944). https://doi.org/10.1109/CVPR.2017.106
Mingxing, Q. V. L. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (ICML) (pp. 5-46). https://doi.org/10.48550/arXiv.1905.11946
Michal, D., Ethan, V., Gabriel, C., Samuel, K., & Chris, P. (2016). The importance of skip connections in biomedical image segmentation. In Deep Learning and Data Labeling for Medical Applications. Springer.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
Quyen, T. V., & Min, Y. K. (2023). Feature pyramid network with multi-scale prediction fusion for real-time semantic segmentation. Neurocomputing, 519, 104-113. https://doi.org/10.1016/j.neucom.2022.11.062
Ronneberger, P. F. T. B (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv (Computer Science). https://doi.org/10.48550/arXiv.1505.04597
Saddam, H., Syed, M., & Anwar, M. M. (2018). Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing, 282, 248-261.
Tanwar, S., & Singh, J. (2023). ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimedia Tools and Applications, 82(1), 1-19. https://doi.org/10.1007/s11042-023-14851-x
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach (pp. 9-15). http://proceedings.mlr.press/v97/tan19a.html
Wu, T., Zhu, H., Fan, H., & Zhou, H. (2021). An improved target detection algorithm based on EfficientNet. Journal of Physics: Conference Series, 1983(1). https://doi.org/10.1088/1742-6596/1983/1/012017
Yin, X. X., Sun, L., Fu, Y., Lu, R., & Zhang, Y. (2022). U-Net-Based Medical Image Segmentation. Journal of Healthcare Engineering, 15(1). https://doi.org/10.1155/2022/4189781
Zoph, Q. V. L. B. (2017). Neural architecture search with reinforcement learning. In Proceedings of the International Conference on Learning Representations (ICLR).
Zhao, X., Zhang, P., Song, F., Fan, G., Sun, Y., Wang, Y., Tian, Z., Zhang, L., & Zhang, G. (2021). D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution. Computers in Biology and Medicine, 135(104526). https://doi.org/10.1016/j.compbiomed.2021.104526
Zhenghua, X., Xudong, Z., Hexiang, Z., Yunxin, L., Yuefu, Z., & Thomas, L. (2023) EFPN: Effective medical image detection using feature pyramid fusion enhancement. Computers in Biology and Medicine, 163(1). https://doi.org/ 10.1016/j.compbiomed.2023.107149