Nguyen Minh Khiem * , Tran Phuoc Huy and Phan Tan Tai

* Corresponding author (nmkhiem@cit.ctu.edu.vn)

Main Article Content

Abstract

Tumor diseases in the nervous system are both dangerous and complex. Magnetic Resonance Imaging (MRI) is crucial for detecting brain disease; however, identifying the presence of tumors from these is time-consuming and requires a professional doctor. Utilizing deep learning for tumor detection in MRI images can reduce waiting times and enhance detection accuracy. We propose a method employing two U-Net models: ResNeXt-50 and EfficientNet architectures, integrated with a Feature Pyramid Network (FPN) for segmenting brain tumor. The models were trained on the BraTS 2021 dataset, consisting of 3,929 MRI scan images with 3,929 corresponding masks, divided into training, testing, and evaluation sets in a 70:15:15 ratio. The results indicate that the hybrid model, which combines EfficientNet and FPN, delivers superior performance, with an average Intersection over Union (IoU) accuracy of 0.90 on the test set compared to 0.50 for ResNeXt-50, and Dice accuracy of 0.92 compared to 0.66 for ResNeXt-50. Furthermore, we developed a web application that implements the EfficientNet with FPN model, facilitating convenient tumor detection from uploaded MRI images for doctors.

Keywords: EfficiencyNet FPN, ResneXt-50, Tumor disease

Article Details

References

Ahmed, T., & Sabab, N. H. N.(2022).Classification and Understanding of Cloud Structures via Satellite Images with EfficientUNet. SN Computer Science, 3(99). https://doi.org/10.1007/s42979-021-00981-2

Baid, U., Ghodasara, S., Mohan, S., Bilello, M., Calabrese, E., Colak, E., ... & Bakas, S. (2021). The RSNA-ASNR-MICCAI BRATS 2021 benchmark on brain tumor segmentation and radiogenomic classification. https://arxiv.org/abs/2107.02314

Chen, Y., Wang, H., Yu, K., & Zhou, R. (2024). Artificial intelligence methods in natural language processing: A comprehensive review. Highlights in Science. Engineering and Technology, 85, 545-550. https://doi.org/10.54097/vfwgas09

Chavan, T. A.; Lokhande, D., & Patil, D. P. (2022). Use of a Feature Pyramid Network for object detection-a deep learning technology. Journal of Emerging Technologies and Innovative Research, 9(12), 2022.

Daimary, D., Bora, M., Amitab, K., & Kandar, D. (2020). Brain Tumor Segmentation from MRI Images using Hybrid Convolutional Neural Networks. Procedia Computer Science, 167, 2419-2428. https://doi.org/10.1016/j.procs.2020.03.295

Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297-302 (1945). https://doi.org/10.2307/1932409

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2015).The PASCAL Visual Object Classes Challenge: A Retrospective International Journal of Computer Vision, 111(1), 98-136. https://doi.org/10.1007/s11263-014-0733-5

Fatih, U., Firat, H., Ozan, P., Tolga, T., & Nil, T. (2021). Classification of Shoulder X-ray Images with Deep Learning Ensemble Models. Applied Sciences, 11(6). https://doi.org/10.3390/app11062723

Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. (2015). Magnetic resonance imaging: Principles and techniques: Lessons for clinicians. Journal of Clinical and Experimental Hepatology, 5(3), 246-55. https://doi.org/10.1016/j.jceh.2015.08.001

Ghosh, S., & Santosh, K. C. (2021). Tumor Segmentation in Brain MRI: U-Nets versus Feature Pyramid Network. In IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 202 (pp. 31-36). https://doi.org/10.1109/CBMS52027.2021.00013

Krizhevsky, I. S. G. E. H. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386

Lin, T. -Y. P., Dollár, R., Girshick, K. He, Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA (pp. 936-944). https://doi.org/10.1109/CVPR.2017.106

Mingxing, Q. V. L. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (ICML) (pp. 5-46). https://doi.org/10.48550/arXiv.1905.11946

Michal, D., Ethan, V., Gabriel, C., Samuel, K., & Chris, P. (2016). The importance of skip connections in biomedical image segmentation. In Deep Learning and Data Labeling for Medical Applications. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Quyen, T. V., & Min, Y. K. (2023). Feature pyramid network with multi-scale prediction fusion for real-time semantic segmentation. Neurocomputing, 519, 104-113. https://doi.org/10.1016/j.neucom.2022.11.062

Ronneberger, P. F. T. B (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv (Computer Science). https://doi.org/10.48550/arXiv.1505.04597

Saddam, H., Syed, M., & Anwar, M. M. (2018). Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing, 282, 248-261.

Tanwar, S., & Singh, J. (2023). ResNext50 based convolution neural network-long short term memory model for plant disease classification. Multimedia Tools and Applications, 82(1), 1-19. https://doi.org/10.1007/s11042-023-14851-x

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach (pp. 9-15). http://proceedings.mlr.press/v97/tan19a.html

Wu, T., Zhu, H., Fan, H., & Zhou, H. (2021). An improved target detection algorithm based on EfficientNet. Journal of Physics: Conference Series, 1983(1). https://doi.org/10.1088/1742-6596/1983/1/012017

Yin, X. X., Sun, L., Fu, Y., Lu, R., & Zhang, Y. (2022). U-Net-Based Medical Image Segmentation. Journal of Healthcare Engineering, 15(1). https://doi.org/10.1155/2022/4189781

Zoph, Q. V. L. B. (2017). Neural architecture search with reinforcement learning. In Proceedings of the International Conference on Learning Representations (ICLR).

Zhao, X., Zhang, P., Song, F., Fan, G., Sun, Y., Wang, Y., Tian, Z., Zhang, L., & Zhang, G. (2021). D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution. Computers in Biology and Medicine, 135(104526). https://doi.org/10.1016/j.compbiomed.2021.104526

Zhenghua, X., Xudong, Z., Hexiang, Z., Yunxin, L., Yuefu, Z., & Thomas, L. (2023) EFPN: Effective medical image detection using feature pyramid fusion enhancement. Computers in Biology and Medicine, 163(1). https://doi.org/ 10.1016/j.compbiomed.2023.107149