Selection, identification, and application in yogurt fermentation of lactic acid bacteria isolated from guava (Psidium guajava L.) fruits
Main Article Content
Abstract
Lactic acid bacteria (LAB) can be isolated from different natural sources such as plants, fruits, or vegetables. The organic acid-producing capacity and antibacterial activity of each LAB strain are highly dependent on its isolation source. In the study, LAB strains were isolated from guava (Psidium guajava L.), identified for organic acid production and antibacterial activity. Twenty LAB isolates showed rod, oval, or cocci shape, Gram-positive, catalase-negative, oxidase-negative, the ability to degrade CaCO3, and could not produce indole from tryptophan. Especially, the strain TN2 produced the highest organic acid content (8.7±0.14 g/L) as well as exhibited the strongest antibacterial activity against Escherichia coli (E. coli) with the inhibition zone diameter of 12.33±2.08 mm. The bacteria strain TN2 was applied to ferment yogurt with 8% guava juice, at a milk and condensed milk ratio of 2:1, giving the best lactic acid content and sensory evaluation. The strain TN2 was identified as Lactococcus lactis strain according to the 16S rRNA gene sequence analysis and registered on GenBank with code number MN860000.1. This strain can be a potent alternative to commercialized LAB strains in fermented food products.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abd-Ellatif, S. A., Bouqellah, N. A., Abu-Serie, M. M., Razik, E. S. A., Al-Surhanee, A. A., Askary, A. El, Daigham, G. E., & Mahfouz, A. Y. (2022). Assessment of probiotic efficacy and anticancer activities of Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1) isolated from dairy products. Environmental Science and Pollution Research, 29(26), 39684-39701. https://doi.org/10.1007/S11356-022-18537-Z
Ahmed, Z., Khan, S. S., Khan, M., Tanveer, A., & Lone, Z. A. (2010). Synergistic effect of Salvadora persica extracts, tetracycline and penicillin against Staphylococcus aureus. African Journal of Basic & Applied Sciences, 2(1-2), 25-29.
An, S. Y., Lee, M. S., Jeon, J. Y., Ha, E. S., Kim, T. H., Yoon, J. Y., Ok, C. O., Lee, H. K., Hwang, W. S., & Choe, S. J. (2013). Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Annals of Nutrition and Metabolism, 63(1-2), 111-119. https://doi.org/10.1159/000353583
Awaisheh, S. S., & Ibrahim, S. A. (2009). Screening of antibacterial activity of lactic acid bacteria against different pathogens found in vacuum-packaged meat products. Foodborne Pathogens and Disease, 6(9), 1125-1132. https://doi.org/10.1089/fpd.2009.0272
Ayyash, M., Abushelaibi, A., Al-Mahadin, S., Enan, M., El-Tarabily, K., & Shah, N. (2018). In-vitro investigation into probiotic characterization of Streptococcus and Enterococcus isolated from camel milk. LWT - Food Science and Technology, 87, 478-487. https://doi.org/10.1016/j.lwt.2017.09.019
Barakat, O. S., Ibrahim, G. A., Tawfik, N. F., El-Kholy, W.I., & El-Rab, G. D. A. (2011). Identification and probiotic characteristics of Lactobacillus strains isolated from traditional Domiati cheese. International Journal of Microbiology Research, 3(1), 59-66.
Barbosa, M. S., Jurkiewicz, C., Landgraf, M., Todorov, S. D., & Franco, B. D. G. D. M. (2018). Effect of proteins, glucose and NaCl on growth, biosynthesis and functionality of bacteriocins of Lactobacillus sakei subsp. sakei 2a in foods during storage at 4°C: Tests in food models. LWT-Food Science and Technology, 95, 167-171. https://doi.org/10.1016/j.lwt.2018.04.082
Belcher, W. (2019). Writing your journal article in twelve weeks: A guide to academic publishing success (2nd ed.). University of Chicago Press.
Bodaszewska-Lubas, M., Brzychczy-Włoch, M., Gosiewski, T., & Heczko, P. (2012). Antibacterial activity of selected standard strains of lactic acid bacteria producing bacteriocins-pilot study. Postepy Hig Med Dosw (online), 66, 787-794. https://doi.org/10.5604/17322693.1015531
Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1-10. https://doi.org/10.1016/j.fm.2012.09.003
Enan, G., Abdel-Shafi, S., Ouda, S., & Negm, S. (2013). Novel antibacterial activity of Lactococcus lactis subspecies lactis Z11 isolated from zabady. International Journal of Biomedical Science: IJBS, 9(3), 174-180. https://doi.org/10.59566/IJBS.2013.9174
Epand R. M., Walker C., Epand R. F., & Magarvey N. A. (2016). Molecular mechanisms of membrane-targeting antibiotics. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1858, 980-987. https://doi.org/10.1016/j.bbamem.2015.10.018
Garcia, E. F., Luciano, W. A., Xavier, D. E., da Costa, W. C., de Sousa Oliveira, K., Franco, O. L. & de Souza, E. L. (2016). Identification of lactic acid bacteria in fruit pulp processing byproducts and potential probiotic properties of selected Lactobacillus strains. Frontiers in Microbiology, 7, 1371. https://doi.org/10.3389/fmicb.2016.01371
Garsa, A. K., Kumariya, R., Sood, S. K., Kumar, A., & Kapila, S. (2014). Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, 6(1), 47-58. https://doi.org/10.1007/s12602-013-9153-z
Hofvendahl, K., & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and Microbial Technology, 26(2-4), 87-107. https://doi.org/10.1016/S0141-0229(99)00155-6
Hwanhlem, N., Biscola, V., El-Ghaish, S., Jaffrès, E., Dousset, X., Haertlé, T., & Chobert, J.-M. (2013). Bacteriocin-producing lactic acid bacteria isolated from mangrove forests in Southern Thailand as potential bio-control agents: purification and characterization of bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L. Probiotics and Antimicrobial Proteins, 5(4), 264-278. https://doi.org/10.1007/s12602-013-9150-2
Ismail, Y. S., Yulvizar, C., & Mazhitov, B. (2018). Characterization of lactic acid bacteria from local cow’s milk kefir. IOP Conference Series: Earth and Environmental Science, 130(1), 12019. https://doi.org/10.1088/1755-1315/130/1/012019
Iwasa, M., Aoi, W., Mune, K., Yamauchi, H., Furuta, K., Sasaki, S., Takeda, K., Harada, K., Wada, S., & Nakamura, Y. (2013). Fermented milk improves glucose metabolism in exercise-induced muscle damage in young healthy men. Nutrition Journal, 12(1), 1-7. https://doi.org/10.1186/1475-2891-12-83
Ju, H., Chen, H., Xiang, A., Wang, Y., Yue, T., & Yuan, Y. (2021). Identification and characterization of Lactobacillus paracasei strain MRS-4 antibacterial activity against Alicyclobacillus acidoterrestris. LWT - Food Science and Technology, 150, 111991. https://doi.org/10.1016/j.lwt.2021.111991
Kim, S., Lee, J. Y., Jeong, Y., & Kang, C. H. (2022). Antioxidant activity and probiotic properties of lactic acid bacteria. Fermentation, 8(1), 29. https://doi.org/10.3390/fermentation8010029
Koona, S., & Budida, S. (2011). Antibacterial potential of the extracts of the leaves of Azadirachta indica Linn. Notulae Scientia Biologicae, 3(1), 65-69. https://doi.org/10.15835/nsb315470
Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science and Technology, 110, 375-384. https://doi.org/10.1016/j.tifs.2021.02.014
Kuda, T., Kataoka, M., Nemoto, M., Kawahara, M., Takahashi, H., & Kimura, B. (2016). Isolation of lactic acid bacteria from plants of the coastal Satoumi regions for use as starter cultures in fermented milk and soymilk production. LWT-Food Science and Technology, 68, 202-207. https://doi.org/10.1016/j.lwt.2015.12.023
Lamont, J. R., Wilkins, O., Bywater-Ekegärd, M., & Smith, D. L. (2017). From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biology and Biochemistry, 111, 1-9. https://doi.org/10.1016/j.soilbio.2017.03.015
Le, V. T., Nguyen, N. K., Le, T. H., Vu, T. T. H., & Le, T. L. (2021). Changes in physiological and biochemical parameters during the growth and development of guava fruit (Psidium guajava) grown in Vietnam. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 53(2), 82-90. https://doi.org/10.48162/rev.39.042
Leska A., Nowal A., Szulc J., Motyl I. & Chrebelska K. H. C. (2020). Antagonistic activity of potentially probiotic lactic acid bacteria against Honeybee (Apis mellifera L.) pathogens. Pathogens, 11, 1367. https://doi.org/10.3390/pathogens11111367
Lim, J. H., Yoon, S. M., Tan, P. L., Yang, S., Kim, S. H., & Park, H. J. (2018). Probiotic properties of Lactobacillus plantarum LRCC5193, a plant-origin lactic acid bacterium isolated from kimchi and its use in chocolates. Journal of Food Science, 83(11), 2802-2811. https://doi.org/10.1111/1750-3841.14364
Liu, Q., Wu, J., Lim, Z. Y., Lai, S., Lee, N., & Yang, H. (2018). Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. International Journal of Food Microbiology, 271, 24-32. https://doi.org/10.1016/j.ijfoodmicro.2018.02.014
Mozaffarian, D., Hao, T., Rimm, E. B., Willett, W. C., & Hu, F. B. (2011). Changes in diet and lifestyle and long-term weight gain in women and men. New England Journal of Medicine, 364(25), 2392-2404. https://doi.org/10.1056/NEJMoa1014296
Mulaw, G., Sisay Tessema, T., Muleta, D., & Tesfaye, A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology, 2019(1), 7179514. https://doi.org/10.1155/2019/7179514
Mummed, B., Abraha, A., Feyera, T., Nigusse, A., & Assefa, S. (2018). In vitro antibacterial activity of selected medicinal plants in the traditional treatment of skin and wound infections in eastern Ethiopia. BioMed Research International, 2018(1), 1862401. https://doi.org/10.1155/2018/1862401
Naeem, M., Ilyas, M., Haider, S., Baig, S., & Saleem, M. (2012). Isolation, characterization, and identification of lactic acid bacteria from fruit juices and their efficacy against antibiotics. Pakistan Journal of Botany, 44, 323-328.
Noonpakdee, W., Santivarangkna, C., Jumriangrit, P., Sonomoto, K., & Panyim, S. (2003). Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. International Journal of Food Microbiology, 81(2), 137-145. https://doi.org/10.1016/S0168-1605(02)00219-2
Oguntoyinbo, F. A., & Narbad, A. (2015). Multifunctional properties of Lactobacillus plantarum strains isolated from fermented cereal foods. Journal of Functional Foods, 17, 621-631. https://doi.org/10.1016/j.jff.2015.06.022
Ong, Y. Y., Tan, W. S., Rosfarizan, M., Chan, E. S., & Tey, B. T. (2012). Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices. Journal of Food Science, 77(10), 560-564. https://doi.org/10.1111/j.1750-3841.2012.02894.x
Ruiz-Rodriguez, L. G., Mohamed, F., Bleckwedel, J., Medina, R., De Vuyst, L., Hebert, E. M., & Mozzi, F. (2019). Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in Northern Argentina. Frontiers in Microbiology, 10, 1091. https://doi.org/10.3389/fmicb.2019.01091
Saguibo, J. D., Mercado, M. A., Maldia, S. T., Jimeno, B. T., Perez, M. T. M., Calapardo, M. R., & Elegado, F. B. (2019). Identification and characterization of lactic acid bacteria isolated from some medicinal and/or edible Philippine plants. Food Research, 3(6), 698-712. https://doi.org/10.26656/FR.2017.3(6).148
Sakandar, H. A., Kubow, S., & Sadiq, F. A. (2019). Isolation and in-vitro probiotic characterization of fructophilic lactic acid bacteria from Chinese fruits and flowers. LWT-Food Science and Technology, 104, 70-75. https://doi.org/10.1016/j.lwt.2019.01.038
Salmerón, I., Thomas, K., & Pandiella, S. S. (2015). Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. Journal of Functional Foods, 15, 106-115. https://doi.org/10.1016/j.jff.2015.03.012
Sánchez, C., Neves, A. R., Cavalheiro, J., Santos, M. M., Nieves, G. Q., López, P., & Santos, H. (2008). Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Applied and Environmental Microbiology, 74(4), 1136-1144. https://doi.org/10.1128/AEM.01061-07
Şanlier, N., Gökcen, B. B., & Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506-527. https://doi.org/10.1080/10408398.2017.1383355
Sheeladevi, A., & Ramanathan, N. (2011). Lactic acid production using lactic acid bacteria under optimized conditions. International Journal of Pharmaceutical & Biological Archives, 2(6), 1686-1691.
Shields, P., & Cathcart, L. (2010). Oxidase test protocol. American Society for Microbiology, 4, 1-9.
Sifeeldein, A., Wang, S., Li, J., Dong, Z., Chen, L., Kaka, N. A., & Shao, T. (2019). Phylogenetic identification of lactic acid bacteria isolates and their effects on the fermentation quality of sweet sorghum (Sorghum bicolor) silage. Journal of Applied Microbiology, 126(3), 718-729. https://doi.org/10.1111/jam.14123
Singh, S. P. (2011). Guava (Psidium guajava L.). Postharvest biology and technology of tropical and subtropical fruits, 246e, 213-245. https://doi.org/10.1533/9780857092885.213
Tasdemir, S. S., & Sanlier, N. (2020). An insight into the anticancer effects of fermented foods: A review. Journal of Functional Foods, 75, 104281. https://doi.org/10.1016/j.jff.2020.104281
Trindade, D. P. de A., Barbosa, J. P., Martins, E. M. F., & Tette, P. A. S. (2022). Isolation and identification of lactic acid bacteria in fruit processing residues from the Brazilian Cerrado and its probiotic potential. Food Bioscience, 48, 101739. https://doi.org/10.1016/j.fbio.2022.101739
Umu, Ö. C., Rudi, K. & Diep, D. B. (2017). Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microbial Ecology in Health and Disease, 28, 1-12. https://doi.org/10.1080/16512235.2017.1348886
Xiao, P., Huang, Y., Yang, W., Zhang, B., & Quan, X. (2015). Screening lactic acid bacteria with high yielding-acid capacity from pickled tea for their potential uses of inoculating to ferment tea product. Journal of Food Science and Technology, 52(10), 6727-6734. https://doi.org/10.1007/s13197-015-1803-6