Ca Nguyen Anh Khoa * and Huynh Anh Huy

* Corresponding authorCa Nguyen Anh Khoa

Main Article Content

Abstract

Density Functional based Tight-Binding (DFTB) method is used to study the structural properties and electronic structure of heterojunction between anatase (100) and rutile (100) surface. The near coincidence site lattice (NCSL) theory is used to construct initial models. The interfaces have been annealed from 0K to 2250K in the linear ramp of 10 ps, followed by equilibration at the constant temperature of 2250 for 5 ps and cooled down 0K with an exponential ramp of 15 ps. Interface structures have been investigated via the partial radial distribution functions (PRDF), coordination number, bond-angle distributions and interatomic distances. We found that both structures have the slightly disorder at the interfaces and the presence of four-coordinate Ti atoms, band offsets are 0.45 eV in the conduction band (CB) and 0.51 eV in the valence band (VB) with rutile is higher than anatase. Electrons migrate  from rutile to anatase, while holes migrate in the opposite direction.
Keywords: DFTB method, molecular dynamics simulation, mixed phase, photocatalysis, rutile-anatase heterojunction

Article Details

References

Bickley, R.I., Gonzalez-Carreno, T., Lees, J.S., Palmisanod, L., Tilley, R.J.D., 1991. A structural investigation of Titanium Dioxide photocatalysts. Journal of Solid State Chemistry. 92(1): 178-190.

Carneiro, J.O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C.J., Lanceros-Mendéz, S., Teixeira, V., 2014. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. Journal of Materials Science. 49: 7476-7488.

Choi, J., Park, H., Hoffmann, M.R., 2009. Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C. 114: 783-792.

Deák, P., Aradi, B., Frauenheim, T., 2011. Band lineup and charge carrier separation in mixed rutile-anatase systems. The Journal of Physical Chemistry C. 115(8): 3443-3446.

Deskins, N.A., Kerisit, S., Rosso, K.M., Dupuis, M., 2007. Molecular dynamics characterization of rutile-anatase interfaces. The Journal of Physical Chemistry C. 111: 9290-9298.

Fisher, C.A.J., Matsubara, H., 2005. Molecular dynamics simulation of interfaces between NiO and cubic ZrO2. Philosophical Magazine. 85: 1067-1088.

Hurum, D.C., Agrios, A.G., Crist, S.E., Gray, K.A., Rajh, T., Thurnauer, M.C., 2006. Probing reaction mechanisms in mixed phase TiO2 by EPR. Journal of Electron Spectroscopy and Related Phenomena. 150: 155-163.

Kang, J., Wu, F., Li, S.S., Xia, J.B., Li, J., 2012. Calculating Band Alignment between Materials with Different Structures: The Case of Anatase and Rutile Titanium Dioxide. The Journal of Physical Chemistry C. 116: 20765-20768.

Kullgren, J., Huy, H.A., Aradi, B., Frauenheim, T., Deák, P., 2014. Theoretical study of charge separation at the rutile-anatase interface. Physics Status Solidi RRL 8. 6: 566-570.

Ming, G.J., Guangxu, S., Wang, J., Meng, Q., Liang, W., 2014, Origin of High Photocatalytic Properties in the Mixed-Phase TiO2: A First-Principles Theoretical Study, ACS Applied Materials & Interfaces. 6 (15): 12885-12892.

Park, Y., Kim, W., Park, H., Tachikawa, T., Majima, T., Choi, W., 2009 Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Applied Catalysis B: Enviromental. 91: 355-361.

Pelaez, M., de la Cruz, A. A., Stathatos, E., Falaras, P., Dionysiou, D.D., 2009. Visible light-activated NF-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water, Catal. Today 144: 19-25.

Sayle, T.X.T., Catlow, C.R.A., Sayle, D.C., Parker, S.C., Harding, J.H., 1993. Computer simulation of thin film heteroepitaxial ceramic interfaces using a near-coincidence-site lattice theory. Philosophical Magazine A. 68: 565-573.

Scotti, R., Bellobono, I.R., Canevali, C., Cannas, C., Catti, M., D’Arienzo, M., Musinu, A., Polizzi, S., Sommariva, M., Testino, A., Morazzoni, F., 2008. Sol-Gel Pure and Mixed-Phase Titanium Dioxide for Photocatalytic Purposes: Relations between Phase Composition, Catalytic Activity, and Charge-Trapped Sites. Chemistry of Materials. 20: 4051-4061.

Serpone, N., 2006. Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?. The Journal of Physical Chemistry B. 110: 24287-24293.

Tanaka, T., Teramura, K., Yamamoto, T., Takenaka, S., Yoshida, S., Funabiki, T., 2002. TiO2/SiO2 photocatalysts at low levels of loading: preparation, structure and photocatalysis. Journal of Photochemistry and Photobiology A. 148: 277-281.

Tang, H., Prasad, K., Sanjinès, R., Schmid, P.E., Lévy, F., 1994. Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics. 75: 2042-2047.

Umebayashi, T., Yamaki, T., Tanala, S., Asai, K., 2003. Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2. Chemistry Letters. 32: 330-331.

Xin, B., Jing, L., Ren, Z., Wang, B., Fu, H., 2005. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2. The Journal of Physical Chemistry B. 109: 2805-2809.