MobiTran-SE: Hybrid MobileNetV3Small-Transformer architecture with squeeze-and-excitation for tomato leaf disease classification
Main Article Content
Abstract
Diseases affecting tomato leaves represent a major risk to worldwide agricultural output and overall food security. In this study, we propose a innovative, lightweight and efficient deep learning (DL) approach for the classification of tomato leaf disease. Our architecture integrates the MobileNetV3Small backbone to extract multi-level features from input images, while Squeeze-and-Excitation (SE) blocks strengthen the focus on channel-wise features. A key component of our model is the incorporation of a Transformer-based module, which is applied to the fused features to extract long-range spatial interactions and contextual relationships. This hybrid approach enables the model to better distinguish between complex disease patterns in categories. The experimental findings indicate that the proposed model attains a high classification accuracy of 99.02%. The model also exhibits fast convergence and strong generalization, making it highly applicable for real-time deployment and resource-constrained agricultural environments. This work contributes a powerful and efficient solution to intelligent plant disease monitoring in the field of precision agriculture.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Agarwal, M., Gupta, S. K., & Biswas, K. K. (2020). Development of efficient CNN model for tomato crop disease identification. Sustainable Computing: Informatics and Systems, 28, 100407.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., ... & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53.
Basavaiah, J., & Arlene Anthony, A. (2020). Tomato leaf disease classification using multiple feature extraction techniques. Wireless Personal Communications, 115(1), 633-651.
Barman, S., Farid, F. A., Raihan, J., Khan, N. A., Hafiz, M. F. B., Bhattacharya, A., ... & Mansor, S. (2024). Optimized crop disease identification in Bangladesh: A deep learning and SVM hybrid model for rice, potato, and corn. Journal of Imaging, 10(8), 183.
Bhowmik, D., Kumar, K. S., Paswan, S., & Srivastava, S. (2012). Tomato-a natural medicine and its health benefits. Journal of Pharmacognosy and Phytochemistry, 1(1), 33-43.
Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y. A. (2020). Using deep transfer learning for image-based plant disease identification. Computers and Electronics in Agriculture, 173, 105393.
Chen, H. C., Widodo, A. M., Wisnujati, A., Rahaman, M., Lin, J. C. W., Chen, L., & Weng, C. E. (2022). AlexNet convolutional neural network for disease detection and classification of tomato leaf. Electronics, 11(6), 951.
Choi, H., Jo, Y., Cho, W. K., Yu, J., Tran, P. T., Salaipeth, L., ... & Kim, K. H. (2020). Identification of viruses and viroids infecting tomato and pepper plants in Vietnam by metatranscriptomics. International Journal of Molecular Sciences, 21(20), 7565.
Das, A., Pathan, F., Jim, J. R., Ouishy, M. R., Kabir, M. M., & Mridha, M. F. (2025). XLTLDisNet: A novel and lightweight approach to identify tomato leaf diseases with transparency. Heliyon, 11(4).
David, H. E., Ramalakshmi, K., Venkatesan, R., & Hemalatha, G. (2021). Tomato leaf disease detection using hybrid CNN-RNN model. Advances in Parallel Computing, 38, 593-597.
Duhan, S., Gulia, P., Gill, N. S., Shukla, P. K., Khan, S. B., Almusharraf, A., & Alkhaldi, N. (2024). Investigating attention mechanisms for plant disease identification in challenging environments. Heliyon, 10(9).
Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311-318
Hassaballah, M., & Hosny, K. M. (2019). Recent advances in computer vision. Studies in Computational Intelligence, 804(1-84), 3.
Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., & Jasińska, E. (2021). Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics, 10(12), 1388.
Jafar, A., Bibi, N., Naqvi, R. A., Sadeghi-Niaraki, A., & Jeong, D. (2024). Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations. Frontiers in Plant Science, 15, 1356260.
Lamba, S., Kukreja, V., Baliyan, A., Rani, S., & Ahmed, S. H. (2023). A novel hybrid severity prediction model for blast paddy disease using machine learning. Sustainability, 15(2), 1502.
Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers, 8(6), 58.
Mukti, I. Z., & Biswas, D. (2019, December). Transfer learning based plant diseases detection using ResNet50. In 2019 4th International Conference on Electrical Information and Communication Technology (EICT) (pp. 1-6). IEEE.
Osmenaj, Z., Tseliki, E. M., Kapellaki, S. H., Tselikis, G., & Tselikas, N. D. (2025). From pixels to diagnosis: Implementing and evaluating a CNN model for tomato leaf disease detection. Information, 16(3), 231.
Padhi, J., Mishra, K., Ratha, A. K., Behera, S. K., Sethy, P. K., & Nanthaamornphong, A. (2025). Enhancing paddy leaf disease diagnosis-a hybrid CNN model using simulated thermal imaging. Smart Agricultural Technology, 10, 100814.
Palozza, P., Simone, R. E., Catalano, A., & Mele, M. C. (2011). Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers, 3(2), 2333-2357.
Pandey, A., & Jain, K. (2022). A robust deep attention dense convolutional neural network for plant leaf disease identification and classification from smartphone captured real-world images. Ecological Informatics, 70, 101725.
Pandey, A., Gupta, A., Kumar, A., & Aggarwal, D. (2025, February). Hybrid CNN-RNN model for plant leaf disease detection. In AIP Conference Proceedings (Vol. 3224, No. 1, p. 020006). AIP Publishing LLC.
Panno, S., Davino, S., Caruso, A. G., Bertacca, S., Crnogorac, A., Mandić, A., ... & Matić, S. (2021). A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin. Agronomy, 11(11), 2188.
Paul, S. G., Biswas, A. A., Saha, A., Zulfiker, M. S., Ritu, N. A., Zahan, I., ... & Islam, M. A. (2023). A real-time application-based convolutional neural network approach for tomato leaf disease classification. Array, 19, 100313.
Rashid, R., Aslam, W., Aziz, R., & Aldehim, G. (2025). A modified MobileNetv3 coupled with inverted residual and channel attention mechanisms for detection of tomato leaf diseases. IEEE Access.
Rastogi, P., Dua, S., & Dagar, V. (2024). Early disease detection in plants using CNN. Procedia Computer Science, 235, 3468-3478.
Rivarez, M. P. S., Vučurović, A., Mehle, N., Ravnikar, M., & Kutnjak, D. (2021). Global advances in tomato virome research: current status and the impact of high-throughput sequencing. Frontiers in Microbiology, 12, 671925.
Sarkar, C., Gupta, D., Gupta, U., & Hazarika, B. B. (2023). Leaf disease detection using machine learning and deep learning: Review and challenges. Applied Soft Computing, 145, 110534.
Sakkarvarthi, G., Sathianesan, G. W., Murugan, V. S., Reddy, A. J., Jayagopal, P., & Elsisi, M. (2022). Detection and classification of tomato crop disease using convolutional neural network. Electronics, 11(21), 3618.
Shah, M., & Sureja, N. (2025). A comprehensive review of bias in deep learning models: Methods, impacts, and future directions. Archives of Computational Methods in Engineering, 32(1), 255-267.
Sultana, T., & Reza, M. (2022, December). Identification of potato leaf diseases using hybrid convolution neural network with support vector machine. In International Advanced Computing Conference (pp. 350-361). Cham: Springer Nature Switzerland.
Thangaraj, R., Anandamurugan, S., Pandiyan, P., & Kaliappan, V. K. (2022). Artificial intelligence in tomato leaf disease detection: A comprehensive review and discussion. Journal of Plant Diseases and Protection, 129(3), 469-488.
Trivedi, N. K., Gautam, V., Anand, A., Aljahdali, H. M., Villar, S. G., Anand, D., ... & Kadry, S. (2021). Early detection and classification of tomato leaf disease using high-performance deep neural network. Sensors, 21(23), 7987.
Wani, M. A., Ali, S., Sofi, M. A., & Sultan, B. (2025). Advances in Deep Learning, Volume 2 (Vol. 12). Springer Nature.
Wang, X., Zhao, Y., & Pourpanah, F. (2020). Recent advances in deep learning. International Journal of Machine Learning and Cybernetics, 11(4), 747-750.
Wang, Y., Zhang, P., & Tian, S. (2024). Tomato leaf disease detection based on attention mechanism and multi-scale feature fusion. Frontiers in Plant Science, 15, 1382802.
Yan, Z., Wolters, A. M. A., Navas-Castillo, J., & Bai, Y. (2021). The global dimension of tomato yellow leaf curl disease: Current status and breeding perspectives. Microorganisms, 9(4), 740.
Zhao, S., Peng, Y., Liu, J., & Wu, S. (2021). Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture, 11(7), 651.
Zheng, Y., Yang, Z., Xu, C., Wang, L., Huang, H., & Yang, S. (2020). The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. HortScience, 55(10), 1575-1583.