Phan Thi Ngoc Han * , Ho Quoc Ngoc , Nguyen Quoc Trung and Nguyen Thanh Binh

* Corresponding author: Phan Thi Ngoc Han (email: hanptn@huflit.edu.vn)

Main Article Content

Abstract

Traffic congestion is becoming an increasingly serious and challenging issue in major urban areas. This problem not only causes a waste of time and increased fuel consumption but also contributes to environmental pollution and deterioration of residents’ quality of life. In this study, a new method of predicting the average speed reported by traffic sensors across the city was proposed. In this method, we make the most of two core models: Graph Convolutional Networks and Long Short-Term Memory. The YOLO model is used to analyze images and video during data collection. By leveraging Graphe Convolution Networks ability to capture spatial information, Long Short-Term Memory capacity to model temporal dynamics, and YOLO’s strength in visual object detection, our integrated framework enhances the accuracy of traffic flow predictions at specific locations and time intervals. This comprehensive approach aims to support real-world applications such as adaptive traffic light control, traffic planning support, and congestion alerts. The proposed method outperforms other methods on the Caltrans PeMS dataset.

Keywords: Graph Convolutional Networks, Long Short-Term Memory, traffic flow prediction, YOLO

Article Details

References

Awan, F. M., Minerva, R., & Crespi, N. (2020). Improving road traffic forecasting using air pollution and atmospheric data: Experiments based on LSTM recurrent neural network. Sensors, 20(13), 3749. https://doi.org/10.3390/s20133749

Bengio, Y., Frasconi, P., & Simard, P. (2002 Aug 06). The problem of learning long-term dependencies in recurrent networks. In IEEE International Conference on Neural Networks, San Francisco, CA, USA (pp. 1183-1188) https://ieeexplore.ieee.org/document/298725).

Caltrans. (n.d.). Source performance measurement system data. https://dot.ca.gov/programs/traffic-operations/mpr/pems-source

Chandra, S. R., & Al-Deek, H. (2009). Predictions of freeway traffic speeds and volumes using vector autoregressive models. Taylor and Francis, 13(2), 53-72. https://www.tandfonline.com/journals/gits20

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of gated recurrent neural networks on sequence modeling. Arxiv, https://doi.org/10.48550/arXiv.1412.3555

Guan, Z. (2023). Real time object recognition based on yolo model. Theoretical and Natural Science, 137-143. https://doi.org/10.54254/2753-8818/28/20230450

Haghshenas, S. S., Astarita, V., Guido, G., Seraji, M. H. M. S., Gonzalez, P. A. A., Haghdadi, A., & Haghshenas, S. S. (2023). Assessment of machine learning techniques and traffic flow: Aqualitative and quantitative analysis. Semantic Scholar, 3, 119-129. https://doi.org/10.47852/bonviewjcce32021062

Huang, Z., Zhang, Z., Li, Y., & Zhao, D. (2024). Short-term traffic flow prediction: A method of MEA-LSTM model based on chaotic characteristics analysis. Journal of Sustainable Built Environment, 1(1), https://doi.org/10.70731/yk3fpz22

Johansson, U., Boström, H., Löfström, T., & Linusson, H. (2014). Regression conformal prediction with random forests. Springer Nature, 97, 55-176. http://dx.doi.org/10.1007/s10994-014-5453-0

Karim, A. A., & Nower, N. (2024). Probabilistic spatio-temporal graph convolutional network for traffic forecasting. Springer Nature Link, 54, 7070–7085.

Knol, D., Leeuw, F., Meirink, J. F., & Krzhizhanovskaya, V. (2021 Jun 09). Deep learning for solar irradiance nowcasting: A comparison of a recurrent neural network and two traditional methods. Computational Science – ICCS 2021 Conference paper. 12746, (pp. 309-322). Springer Nature Link.

Kumar, S., & Vanajakshi, L. (2015). Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Springer Nature link, https://link.springer.com/article/10.1007/s12544-015-0170-8

Li, S., Chang, F., Liu, C., & Li, N. (2020). Vehicle counting and traffic flow parameter estimation for dense traffic scenes. IET Research, 14, 1517-1523. https://doi.org/10.1049/iet-its.2019.0521

Li, Y., Chai, S., Ma, Z., & Wang, G. (2021). A hybrid deep learning framework for long-term traffic flow prediction. IEEE, 9, 11264-11271. https://doi.org/10.1109/access.2021.3050836

Ma, C., Sun, K., Chang, L., & Qu, Z. (2023). Enhanced information graph recursive network for traffic forecasting. Electronics, 12(11), 2519, 2519.https://doi.org/10.3390/electronics12112519

Ma, Q., Huang, G. H., & Ullah, S. (2020). A multi-parameter chaotic fusion approach for traffic flow forecasting. IEEE Xplore, 8, 222774-222781. https://doi.org/10.1109/access.2020.3043777

Manoel, C., Jeong, Y. , Jeong, M., & Han, L. (2009). Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Sciencedirct, 36(3), 6164-6173. https://doi.org/10.1016/j.eswa.2008.07.069

Ren, C., Chai, C., Yin, C., Ji, H., Cheng, X., Gao, G., & Zhang, H. (2021). Short-term traffic flow prediction: A method of combined deep learnings. Journal of Advanced Transportation, 2021(1), 9928073. https://doi.org/10.1155/2021/9928073

Shigemi, R., Ando, H., Wada, K., & Mukai, R. (2023). Predicting traffic breakdown on expressways using linear combination of vehicle detector data. Nonlinear Theory and Its Applications, IEICE, 14(2), 416-427. https://doi.org/10.1587/nolta.14.416

Singh, P. (2019). Wading through Graph Neural Networks. https://spraphul.github.io/blog/GCN

Tran, Q. H., Fang, Y., Chou, T., Hoang, T. V., Wang, C., Vu, V. T., Ho, T. L. H., Le, Q., & Chen M. (2022). Short-term traffic speed forecasting model for a parallel multi-lane arterial road using gps-monitored data based on deep learning approach. Sustainability, 14(10), 6351. Https://doi.org/10.3390/su14106351.

Turki, A. I., & Hasson, S. T. (2023). Study estimating hourly traffic flow using artificial neural network: A M25 motorway case. Samarra Journal of Pure and Applied Science, 5(1), 47-59. https://doi.org/10.54153/sjpas.2023.v5i1.448

Vaikunth, M., Dejey, D., Vishaal, C., & Balamurali, S. (2024). Optimizing helmet detection with hybrid yolo pipelines: A detailed analysis. Big Data, IOT and Blockchain Trends 2025, 83-93. https://doi.org/10.5121/csit.2024.142406

Viola, P., & Jones, M. (2001, December). Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 (Vol. 1, pp. I-I). IEEE. https://ieeexplore.ieee.org/document/990517

Wang, S., Zhang, X., Li, F., Yu, P. S., & Huang, Z. (2018). Efficient traffic estimation with multi-sourced data by parallel coupled hidden markov model. IEEE, 20(8), 3010-3023. Https://ieeexplore.ieee.org/Xplore/home.jsp

Yang, D., Chen, K., Yang, M., & Zhao, X. (2019). Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features. SemanticScholar, 13(10), 1475-1482. https://doi.org/10.1049%2Fiet-its.2018.5511

Yang, P., Chen, Z., Su, G., & Wang, B. (2024). Enhancing traffic flow monitoring with machine learning integration on cloud data warehousing. ResearchGate, 67, 1-7. Https://doi.org/10.54254/2755-2721/67/2024ma0058

Yu, B., Yin H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. ArXiv, 3634-3640. https://doi.org/10.24963/ijcai.2018/505

Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J. (2017). LSTM network: A deep learning approach for short‐term traffic forecast. IET intelligent transport systems, 11(2), 68-75. http://dx.doi.org/10.1049/iet-its.2016.0208

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., & Lin, T. (2019 Aug 22). T-GCN: A Temporal Graph Convolutional Network for Trafic Prediction. IEEE Transactions on Intelligent Transportation Systems (pp. 3848-3858. https://ieeexplore.ieee.org/document/8809901).

Zhu, H., Xie, Y., He, W., Sun, C., Zhu, K., Zhou, G., & Ma, N. (2020). A novel traffic flow forecasting method based on RNN-GCN and BRB. Journal of Advanced Transportation, 2020(1), 7586154. http://dx.doi.org/10.1155/2020/7586154