Nguyen Dinh Trung * and Truong Dong Phuong

* Corresponding author (trungnd@dlu.edu.vn)

Main Article Content

Abstract

Abstractγ-FeOOH nanorods adsorbent for As5+ removal was prepared by a chemical co-precipitation method. The maximum adsorption capacities for As5+was 63.75 mg/g at pH= 6.0, higher than of Fe2O3, Fe3O4... The adsorption data accorded with Freundlich isotherms. At study pH, for arsen, the adsorption equilibrium was gained after 90 min. Kinetic data fitted well to the pseudo-second-order reaction model. Competitive ions hindered the adsorption according to the decreasing sequence sulfate, ammonium and chloride. The high adsorption capability and good performance on other aspects make the γ-FeOOH nanorods a promissing adsorbent for the removal of As (V) from groundwater.Keywords:As ; sorption; kinetic; γ-FeOOH nanoTOM TATγ-FeOOH dang nano dung lam vat lieu hap phu As5+ duoc dieu che bang phuong phap dong ket tua. Tai pH = 6,0, dung luong hap phu cuc dai cua vat lieu doi voi As5+ la 63,75 mg/g, cao hon so voi mot so vat lieu lam chat hap phu asen nhu Fe2O3, Fe3O4. Mo hinh hap phu dang nhiet Freundlich phu hop mo ta qua trinh hap phu As5+ boi γ-FeOOH, thoi gian dat can bang hap phu la 90 phut. Dong hoc hap phu tuan theo phuong trinh dong hoc hap phu bac 2. Xuat hien canh tranh cua cac ion la voi As5+ trong qua trinh hap phu tuan theo trat tu giam dan tu sulfate, amonium va chloride. Dung luong hap phu cuc dai cua vat lieu, cung nhu viec dieu che de dang, gia thanh thap cua γ-FeOOH, lam cho no tro thanh chat hap phu hap dan va day hua hen trong viec xu ly asen trong nuoc ngam.Tu khoa: As; hap phu; dong hoc hap phu; γ-FeOOH nano
Keywords: As, kinetic, sorption, γ-FeOOH nano

Article Details

References

Chiou, M.S., Li, H.Y., 2003. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere. 50(8): 1095-1105.

Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. Chemical Review. 89(4): 713-764.

Deliyanni, E.A., Bakoyannakis, D.N., Zouboulis, A.I., Matis, K.A., 2003. Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere. 50(1): 155-163.

Elizalde-González, M.P., Mattusch, J., Wennrich, R., Porgenstern, P., 2001. Uptake of arsenite and arsenate by clinoptilolite-rich tuffs. Microporous & Mesoporous Mater. 46: 277- 286.

Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L., 1997. Arsenate and Chromate Retention Mechanisms on Goethite. 1. Surface Structure. Environmental science &Technology. 31(2): 315-320.

Ferguson, J.F., Gavis, J., 1972. A review of the arsenic cycle in natural waters. Water Research. 6(11): 1259-1274.

Ghosh, A., Saez, A.E., Ela, W., 2006. Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals. Science of the Total Environment. 363(1-3): 46-59.

Gu, Z., Fang, J., Deng, B., 2005. Preparation and Evaluation of GAC-Based Iron-Containing Adsorbents for Arsenic Removal. Environmental science & technology. 39(10): 3833-3843.

Guo, X., Chen, F., 2005. Removal of Arsenic by Bead Cellulose Loaded with Iron Oxyhydroxide from Groundwater. Environmental science &Technology. 39(17): 6808-6818.

Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34(5): 451-465.

Jain, A. K., Gupta, V. K., Bhatnagar A., Suhas, T. L., 2003. Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101(1): 31-42.

Jang, M., Min, S. H., Kim T. H., Park, J. K., 2006. Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environmental science &Technology. 40(5): 1636-1643.

Jia, Y., Demopoulos, G.P., 2005. Adsorption of Arsenate onto Ferrihydrite from Aqueous Solution: Influence of Media (Sulfate vs Nitrate), Added Gypsum, and pH Alteration. Environmental Science &Technology. 39(24): 9523-9527.

Kim, Y., Kim, C., Choi, I., Rengaraj, S., Yi, J., 2004. Arsenic Removal Using Mesoporous Alumina Prepared via a Templating Method. Environmental science &Technology. 38(3): 924-931.

Lehmann, M., Zouboulis, A.I., Matis, K.A., Grohmann, A., 2005. Sorption of arsenic oxyanions from aqueous solution on goethite: a study of process modelling. Microchim. Acta. 151: 269-275.

Leupin, O.X., Hug, S.J., Badruzzaman, A.B.M., 2005. Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand.Environ. Environmental science & Technology. 39: 8032-8037.

Lin, T.F., Wu, J. K., 2001. Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Wat. Res. 35: 2049-2057.

Maity, S., Chakravarty, S., Bhattacharjee, S., Roy, B.C., 2005. A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Research. 39(12): 2579-2590.

Manning, B.A., Hunt, M.L., Amrhein, C., Yarmoff, J.A., 2002. Arsenic(III) and Arsenic(V) Reactions with Zerovalent Iron Corrosion Products. Environmental science &Technology. 36(24): 5455-5461.

Matis, K.A., Zouboulis, A.I., Zamboulis, D., Valtadorou, A.V., 1999. Sorption of As (V) by goethite particles and study of their flocculation. Water, Air &Soil Pollution. 111: 297-316.

Melichová, Z., Hromada, L., 2013. Adsorption of Pb2+ and Cu2+ Ions from Aqueous Solutions on Natural Bentonite. Polish Journal of Environmental Studies. 22(2): 457-464.

Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott L., Meng X., 2005. Adsorption of As (V) and As(III) by nanocrystalline titanium dioxide. Water Research. 39: 2327-2337.

Schwertmann, U., Fechter, H., 1994. The formation of green rust and its transformation to lepidocrocite. Clay Minerals. 29: 87-92.

Smedley, P. L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry. 17(5): 517-568.

Stalidis G.A., Matis, K.A., Lazaridis, N.K., 1989. Selective separation of Cu, Zn and As from solutions by flotation techniques.Separation Science and Technology. 24: 97-109.

Zhang, G., Qu, J., Liu, H., Liu, R., Wu, R., 2007. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Research. 41(9): 1921-1928.