Stability and well-posedness in vector lexicographic equilibrium problems
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Ait Mansour, M. and Riahi, H., 2005. Sensitivity analysis for abstract equilibrium problems. Journal of Mathematical Analysis and Applications, 306: 684-691.
Anh, L.Q. and Khanh, P.Q., 2004. Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. Journal of Mathematical Analysis and Applications, 294: 699-711.
Anh, L.Q. and Khanh, P.Q., 2007. Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces. Journal of Global Optimization, 37: 449-465.
Anh, L.Q. and Khanh, P.Q., 2008. Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: Hölder continuity of solutions. Journal of Global Optimization, 42: 515-531.
Anh, L.Q., Khanh, P.Q., Van, D.T.M. and Yao, J.C., 2009. Well-posedness for vector quasiequilibria. Taiwanese Journal of Mathematics, 13: 713-737.
Anh, L.Q. and Khanh, P.Q., 2010. Continuity of solution maps of parametric quasiequilibrium problems. Journal of Global Optimization, 46: 247-259.
Anh, L.Q., Khanh, P.Q. and Van, D.T.M., 2011. Well-posedness without semicontinuity for parametric quasiequilibria and quasioptimization. Computers and Mathematics with Applications, 62: 2045-2057.
Anh, L.Q., Khanh, P.Q. and Van, D.T.M., 2012. Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. Journal of Optimization Theory and Applications, 153: 42-59.
Anh, L.Q., Duy, T.Q., Kruger, A.Y. and Thao, N.H., 2014. Well-posedness for lexicographic vector equilibrium problems. V. F. Demyanov et al. (eds.), Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications, 87: 159-174.
Anh, L.Q., Duy, T. Q. and Khanh, P. Q., 2015. Continuity properties of solution maps of parametric lexicographic equilibrium problems. Positivity, online first.
Aubin, J.P. and Frankowska, H., 1990. Set-valued analysis, Birkhäuser, Boston. 480 pp.
Bianchi, M. and Pini, R., 2003. A note on stability for parametric equilibrium problems. Operations Research Letters, 31: 445-450.
Bianchi, M., Kassay, G. and Pini, R., 2005. Existence of equilibria via Ekeland’s principle. Journal of Mathematical Analysis and Applications, 305: 502-512.
Bianchi, M., Pini, R., 2006. Sensitivity for parametric vector equilibria. Optimization, 55: 221-230.
Bianchi, M., Konnov, I.V. and Pini, R., 2007. Lexicographic variational inequalities with applications. Optimization, 56: 355-367.
Bianchi, M., Konnov, I.V. and Pini, R., 2010. Lexicographic and sequential equilibrium problems. Journal of Global Optimization, 46: 551-560.
Blum, E. and Oettli, W., 1994. From optimization and variational inequalities to equilibrium problems. The Mathematics Student, 63: 123-145.
Burachik, R. and Kassay, G., 2012. On a generalized proximal point method for solving equilibrium problems in Banach spaces. Nonlinear Analysis, 75: 6456-6464.
Carlson, E., 2010. Generalized extensive measurement for lexicographic orders. Journal of Mathematical Psychology, 54: 345-351.
Djafari Rouhani, B., Tarafdar, E. and Watson, P.J., 2005. Existence of solutions to some equilibrium problems. Journal of Optimization Theory and Applications, 126: 97-107.
Emelichev, V.A., Gurevsky, E.E. and Kuzmin, K.G., 2010. On stability of some lexicographic integer optimization problem. Control and Cybernetics 39: 811-826.
Fang, Y.P., Hu, R. and Huang, N.J., 2008. Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Computers and Mathematics with Applications, 55: 89-100.
Flores-Bazán, F., 2001. Existence theorems for generalized noncoercive equilibrium problems: the quasi-convex case. SIAM Journal on Optimization, 11: 675-690.
Freuder, E.C., Heffernan, R., Wallace, R.J. and Wilson, N., 2010. Lexicographically-ordered constraint satisfaction problems. Constraints, 15: 1-28.
Hai, N.X. and Khanh, P.Q., 2007. Existence of solutions to general quasiequilibrium problems and applications. Journal of Optimization Theory and Applications, 133: 317-327.
Iusem, A.N. and Sosa, W., 2003. Iterative algorithms for equilibrium problems. Optimization, 52: 301-316.
Konnov, I.V., 2003. On lexicographic vector equilibrium problems. Journal of Optimization Theory and Applications, 118: 681-688.
Küçük, M., Soyertem, M. and Küçük, Y., 2011. On constructing total orders and solving vector optimization problems with total orders. Journal of Global Optimization, 50: 235-247.
Li, S.J., Li, X.B. and Teo, K.L., 2009. The Hölder continuity of solutions to generalized vector equilibrium problems. European Journal of Operational Reseach, 199: 334-338.
Li, X.B. and Li, S.J., 2011. Continuity of approximate solution mappings for parametric equilibrium problems. Journal of Global Optimization, 51: 541-548.
Mäkelä, M.M., Nikulin, Y. and Mezei, J., 2012. A note on extended characterization of generalized trade-off directions in multiobjective optimization. Journal of Convex Analysis, 19: 91-111.
Morgan, J. and Scalzo, V., 2004. Pseudocontinuity in optimization and nonzero sum games. Journal of Optimization Theory and Applications, 120: 181-197.
Morgan, J. and Scalzo, V., 2006. Discontinuous but well-posed optimization problems. SIAM Journal on Optimization,17: 861-870.
Muu, L.D. and Oettli, W., 1992. Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Analysis, 18: 1159-1166.
Noor, M.A. and Noor, K.I., 2005: Equilibrium problems and variational inequalities. Mathematica 47: 89-100.
Sadeqi, I. and Alizadeh, C.G., 2011. Existence of solutions of generalized vector equilibrium problems in reflexive Banach spaces. Nonlinear Analysis 74: 2226-2234.