Tam Vo Dinh Le * , Minh Tran Cao , Hoai Le Duc , Khang Duong Lap and Anh Nguyen Ngoc Quynh

* Corresponding author (vdlt@hcmut.edu.vn)

Main Article Content

Abstract

This study is aimed to bring baby clam broth (BCB) into antioxidant proteolysate utilizing enzymatic hydrolysis. Chemical compositions of BCB were firstly analyzed, followed by investigating the effects of enzymatic hydrolysis parameters involving in enzyme type, pH, temperature, enzyme:substrate (E:S) ratio and hydrolysis time on antioxidant of BCB proteolysate. It can be seen from the result that the BCB owned the moisture content, protein content, lipid content, and ash content of 97.55±0.89%, 1.52±0.16%, 0.09±0.02%, and 0.37±0.04%, respectively. The BCB proteolysate, under the hydrolysis condition including Flavourzyme, pH 7, 50°C, E:S ratio of 5 U/g protein and hydrolysis time of 50 min, exhibited the highest 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) cation ratio (ABTS●+) scavenging activity of 770.67±28.33 µM Trolox Equivalent (µM TE) (7.1 and 2.5 times lower than those of vitamin C and butylated hydroxytoluene (BHT), in order) and ferric reducing antioxidant power (FRAP) value of 245.26±7.37 µM TE (11.6 and 4.0 folds lower than those of vitamin C and BHT, respectively). This study suggests a new use of the BCB, antioxidant proteolysate which could be applied as a functional food or natural antioxidant additive, substituting for synthetic compounds.

Keywords: Antioxidant activity, baby clam broth, hydrolysis, protein hydrolysate, proteolysate, proteolysis

Article Details

References

AOAC. (2000). Official Methods of Analysis of the Association of Official Analytical Chemists. The association of official analytical chemists.

Bordbar, S., Ebrahimpour, A., Hamid, A. A., Manap, M. Y. A., Anwar, F., & Saari, N. (2013). The Improvement of The Endogenous Antioxidant Property of Stone Fish (Actinopyga lecanora) Tissue Using Enzymatic Proteolysis. BioMed Research International, 2013, 1-9. https://doi.org/10.1155/2013/849529.

Castro, R. J. S. d., & Sato, H. H. (2015). A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology, 4, 55–62. https://doi.org/10.1016/j.bcab.2014.07.001.

Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509.

Gunasekaran, J., Kannuchamy, N., Kannaiyan, S., Chakraborti, R., & Gudipatti, V. (2015). Protein Hydrolysates from Shrimp (Metapenaeus dobsoni) Head Waste: Optimization of Extraction Conditions by Response Surface Methodology. Journal of Aquatic Food Product Technology, 24(5), 429-442. https://doi.org/10.1080/10498850.2013.787134.

Kim, S.-K., & Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods, 2(1), 1-9. https://doi.org/10.1016/j.jff.2010.01.003.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. LWT - Food Science and Technology, 97, 269-278. https://doi.org/10.1016/j.lwt.2018.07.003.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3.

Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., & Xue, S. J. (2008). Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT - Food Science and Technology, 41, 1624-1632. https://doi.org/10.1016/j.lwt.2007.11.005.

Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020.

Shu, G., Zhang, B., Zhang, Q., Wan, H., & Li, H. (2017). Effect of Temperature, pH, Enzyme to Substrate Ratio, Substrate Concentration and Time on the Antioxidative Activity of Hydrolysates from Goat Milk Casein by Alcalase. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(2), 29-38. https://doi.org/10.1515/aucft-2016-0013.

Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2006). Antioxidative Activity of Protein Hydrolysate from Round Scad Muscle Using Alcalase and Flavourzyme. Journal of Food Biochemistry, 31(2), 266-287. https://doi.org/10.1111/j.1745-4514.2007.00111.x.

Tsai, J. S., Lin, T. C., Chen, J. L., & Pan, B. S. (2006). The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin I converting enzyme. Process Biochemistry, 41(11), 2276-2281. https://doi.org/10.1016/j.procbio.2006.05.023.

Vo, T. D. L. (2018). Investigation of antioxidant activity of proteolysate derived from Acetes japonicus. Journal of science and Technology (JST-UD), 11(132), 137-141.

Vo, T. D. L., Bui, A. N. N., Nguyen, T. V. V., Nguyen, N. N. P., & Dang, H. V. (2019). Investigation into antioxidant activity of protein hydrolysate derived from white leg shrimp head (Litopenaeus vannamei). Journal of science and Technology (JST-UD), 17(1.2), 75-79.

Wang, L. S., Huang, J. C., Chen, Y. L., Huang, M., & Zhou, G. H. (2015). Identification and Characterization of Antioxidant Peptides from Enzymatic Hydrolysates of Duck Meat. Journal of Agricultural and Food Chemistry, 63(13), 3437-3444. https://doi.org/10.1021/jf506120w.

Zeng, Y., Guan, Y., Han, W., & Sun, Y. (2014). Antioxidant peptides from freshwater clam extract using enzymatic hydrolysis. African Journal of Food Science, 8(3), 148-154. 10.5897/AJFS2013.1027.

Zhang, Y., Duan, X., & Zhuang, Y. (2012). Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides, 38(1), 13–21. https://doi.org/10.1016/j.peptides.2012.08.014.