Duong Thi Ngoc Diep * , Hoang Quang Binh and Do Le Hanh Trang

* Correspondence: Duong Thi Ngoc Diep (email: diepngocduong@yahoo.com)

Main Article Content


In this study, the optimal conditions for spray drying of the extract made from flesh and peel of red pitaya were tested using the central composite design (CCD). The response surface methodology was used to evaluate the effect of inlet air drying temperature (145 – 155°C) and concentration of maltodextrin (13-17% w/w) on the physicochemical properties of the powder. The regression models accurately predicted the retention of betacyanin (R2=0.94) and total phenolic (R2=0.95). The optimal conditions for spray drying were determined as inlet air drying temperature at 148  and 14.62% maltodextrin. Under these conditions, the spray-dried powder achieved retention of betacyanin of 68.04% and retention of total phenolic of 84.17%. The optimized sample achieved a moisture content of 4.41%, the water activity of 0.39, and the water solubility index of 97.41%.

Keywords: optimization, maltodextrin, spray dried pitaya powder, inlet temperature

Article Details


Anderson, R.A.; Conway, H.F.; Pfeifer, V.F., & Griffin, J.R. (1969). Gelatinization of corn

grits by roll and extrusion cooking. Cereal Science Today, 14, 4–12.

Bakar, J., Ee, S. C., Muhammad, K., Hashim, D. M., & Adzahan, N. (2013). Spray-drying

optimization for red pitaya peel (Hylocereus polyrhizus). Food and Bioprocess Technology, 6(5), 1332-1342. https://doi.org/10.1007/s11947-012-0842-5

Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., &Cal-Vidal, J. (2005). Effect of the carriers

on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies, 6(4), 420-428. https://doi.org/10.1016/j.ifset.2005.05.003

Del Castillo, E. (2007). Process optimization: a statistical approach (Vol. 105). Springer

Science & Business Media.

Goula, A. M., & Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray

drying of tomato pulp in dehumidified air: II. Powder properties. Drying Technology, 26(6), 726-737. https://doi.org/10.1080/07373930802046377

Herbach, K.M., Maier, C., Stintzing, F.C. & Carle, R. (2007). Effects of processing and storage

on juice colour and betacyanin stability of purple pitaya (Hylocereus polyrhizus) juice. European Food Research and Technology, 224(5), 649–658. https://doi.org/10.1007/s00217-006-0354-5

Labuza, T. P. (1970). Water content and stability of low moisture and intermediate moisture

foods. Food Technology, 24, 543-550.

Lee, K. H., Wu, T. Y., & Siow, L. F. (2013). Spray drying of red (Hylocereus polyrhizus) and

white (Hylocereus undatus) dragon fruit juices: Physicochemical and antioxidant properties of the powder. International journal of Food Science and Technology, 48(11), 2391-2399. https://doi.org/10.1111/ijfs.12230

Liaotrakoon, W., De Clercq, N., Van Hoed, V., Van de Walle, D., Lewille, B., & Dewettinck,

(2013). Impact of thermal treatment on physicochemical, antioxidative and rheological properties of white-flesh and red-flesh dragon fruit (Hylocereus spp.) purees. Food and Bioprocess Technology, 6(2), 416-430. https://doi.org/10.1007/s11947-011-0722-4

Lim, Y. Y., Lim, T. T., & Tee, J. J. (2007). Antioxidant properties of several tropical fruits: A

comparative study. Food Chemistry, 103(3), 1003–1008. https://doi.org/10.1016/j.foodchem.2006.08.038

Lingua, M. S., Salomón, V., Baroni, M. V., Blajman, J. E., Maldonado, L. M., & Páez, R.

(2020). Effect of Spray Drying on the Microencapsulation of Blueberry Natural Antioxidants. In Multidisciplinary Digital Publishing Institute Proceedings 70(1), 26. https://doi.org/10.3390/foods_2020-07683

Liu, Y., Chen, F., & Guo, H. (2017). Optimization of bayberry juice spray drying process

using response surface methodology. Food Science and Biotechnology, 26(5), 1235-1244. https://doi.org/10.1007/s10068-017-0169-0

Nurul, S. R., & Asmah, R. (2014). Variability in nutritional composition and phytochemical

properties of red pitaya (Hylocereus polyrhizus) from Malaysia and Australia. International Food Research Journal, 21(4), 1689-1697.

Phisut, N. (2012). Spray drying technique of fruit juice powder: some factors influencing the

properties of product. International Food Research Journal, 19(4), 1297-1306.

Pittia, P., & Antonello, P. (2016). Safety by control of water activity: Drying, smoking, and salt

or sugar addition. In Regulating safety of traditional and ethnic foods (pp. 7-28). Academic Press. https://doi.org/10.1016/B978-0-12-800605-4.00002-5

Ribeiro, C. M. C. M., Magliano, L. C. D. S. A., Costa, M. M. A. D., Bezerra, T. K. A., Silva,

L. H. D., & Maciel, M. I. S. (2018). Optimization of the spray drying process conditions for acerola and seriguela juice mix. Food Science and Technology, 39, 48-55. https://doi.org/10.1590/fst.36217

Stintzing, F. C., Schieber, A., & Carle, R. (2002). Betacyanins in fruits from red-purple pitaya,

Hylocereus polyrhizus (Weber) Britton & Rose. Food Chemistry, 77(1), 101–106, https://doi.org/10.1016/S0308-8146(01)00374-0

Tan, S. P., Kha, T. C., Parks, S., Stathopoulos, C., & Roach, P. D. (2015). Optimising the

encapsulation of an aqueous bitter melon extract by spray-drying. Foods, 4(3), 400-419, DOI: 10.3390/foods4030400. https://doi.org/10.3390/foods4030400

Tze, N. L., Han, C. P., Yusof, Y. A., Ling, C. N., Talib, R. A., Taip, F. S., & Aziz, M. G.,

(2012). Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Science and Biotechnology, 21(3), 675-682. https://doi.org/10.1007/s10068-012-0088-z

Wong, Y. M., & Siow, L. F. (2015). Effects of heat, pH, antioxidant, agitation and light on

betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. Journal of Food Science and Technology, 52(5), 3086-3092. https://doi.org/10.1007/s13197-014-1362-2

Wu, L. C., Hsu, H. W., Chen, Y. C., Chiu, C. C., Lin, Y. I., & Ho, J. A. (2006). Antioxidant and antiproliferative activities of red pitaya. Food Chemistry, 95(2), 2319–327. https://doi.org/10.1016/j.foodchem.2005.01.002