Nguyen Duy Khanh , Nguyen Thi Hong Hue , Nguyen Thanh Tien and Vo Van On *

* Correspondence: Vo Van On (email: onvv@tdmu.edu.vn)

Main Article Content

Abstract

Structural and electronic properties of armchair germanene nanoribbons functionalized by hydrogen atoms (H-AGeNR) are studied through density functional theory (DFT) method. The DFT quantities for analyzing the structural and electronic properties are fully developed through the DFT calculations, including the functionalization energy, relaxed geometric parameters, orbital- and atom-decomposed energy bands, electronic density of states, charge density, and charge density difference. Under hydrogen functionalization, the functionalization energy is achieved at -2.59 eV, and the structural parameters are slightly distorted. This provides evidence of good structural stability of the functionalized system. Besides, the very strong bonds of H-Ge are created because the electrons are transfered from Ge atoms to H adatoms, which induces hole density in the functionalized system, which is regarded as p-type doping. As a result, the π bonds of 4pz orbitals at low-lying energy are fully terminated by the strong H-Ge covalent bonds, in which the strong hybridizations of H-1s and Ge-(4s, 4px, 4py, and 4pz) orbitals have occurred at deep valence band. The termination of π bonds leads to the opened energy gap of 2.01 eV in the H-functionalized system that belongs to the p-type semiconductor. The enriched properties of the H-functionalized system identify that the H-functionalized system...

Keywords: Armchair germanene nanoribbons, band structure, charge transfer, DFT calculation, graphene, germanene, and hydrogen functionalization

Article Details

References

Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M. V., van Houselt, A., Rudenko, A. N & Zandvliet, H. J. (2015). Germanene: the germanium analog of graphene. Journal of Physics: Condensed Matter, 27(44), 443002.

https://doi.org/10.1088/0953-8984/27/44/443002

Arjmand, T., Tagani, M. B., & Soleimani, H. R. (2018). Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study. Superlattices and Microstructures, 113, 657-666.

https://doi.org/10.1016/j.spmi.2017.11.052

Balendhran, S., Walia, S., Nili, H., Sriram, S., & Bhaskaran, M. (2015). Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 11(6), 640-652.

https://doi.org/10.1002/smll.201402041

Hattori, A., Yada, K., Araidai, M., Sato, M., Shiraishi, K., & Tanaka, Y. (2019). Influence of edge magnetization and electric fields on zigzag silicene, germanene and stanene nanoribbons. Journal of Physics: Condensed Matter, 31(10), 105302.

https://doi.org/10.1088/1361-648X/aaf8ce

He, J., Liu, G., Wei, L., & Li, X. (2021). Effect of Al doping on the electronic structure and optical properties of germanene. Molecular Physics, e2008540.

https://doi.org/10.1080/00268976.2021.2008540

Hoat, D. M., Nguyen, D. K., Ponce-Pérez, R., Guerrero-Sanchez, J., Van On, V., Rivas-Silva, J. F., & Cocoletzi, G. H. (2021). Opening the germanene monolayer band gap using halogen atoms: An efficient approach studied by first-principles calculations. Applied Surface Science, 551, 149318.

https://doi.org/10.1016/j.apsusc.2021.149318

Kaloni, T. P., & Schwingenschlögl, U. (2013). Stability of germanene under tensile strain. Chemical Physics Letters, 583, 137-140.

https://doi.org/10.1016/j.cplett.2013.08.001

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169.

https://doi.org/10.1103/PhysRevB.54.11169

Liu, J., Yu, G., Shen, X., Zhang, H., Li, H., Huang, X., & Chen, W. (2017). The structures, stabilities, electronic and magnetic properties of fully and partially hydrogenated germanene nanoribbons: A first-principles investigation. Physica E: Low-dimensional Systems and Nanostructures, 87, 27-36.

https://doi.org/10.1016/j.physe.2016.11.018

Matthes, L., & Bechstedt, F. (2014). Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations. Physical Review B, 90(16), 165431.

https://doi.org/10.1103/PhysRevB.90.165431

Monshi, M. M., Aghaei, S. M., & Calizo, I. (2017). Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules. Surface Science, 665, 96-102.

https://doi.org/10.1016/j.susc.2017.08.012

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.

https://www.science.org/doi/10.1126/science.1102896

Nguyen, D. K., Tran, N. T. T., Chiu, Y. H., Gumbs, G., & Lin, M. F. (2020). Rich essential properties of Si-doped graphene. Scientific Reports, 10(1), 1-16.

https://doi.org/10.1038/s41598-020-68765-x

Nguyen, D. K., Tran, N. T. T., Chiu, Y. H., & Lin, M. F. (2019). Concentration-diversified magnetic and electronic properties of halogen-adsorbed silicene. Scientific Reports, 9(1), 1-15.

https://doi.org/10.1038/s41598-019-50233-w

Nijamudheen, A., Bhattacharjee, R., Choudhury, S., & Datta, A. (2015). Electronic and chemical properties of germanene: the crucial role of buckling. The Journal of Physical Chemistry C, 119(7), 3802-3809.

https://doi.org/10.1021/jp511488m

Pang, Q., Li, L., Zhang, L. L., Zhang, C. L., & Song, Y. L. (2015). Functionalization of germanene by metal atoms adsorption: a first-principles study. Canadian Journal of Physics, 93(11), 1310-1318.

https://doi.org/10.1139/cjp-2015-0206

Pang, Q., Zhang, Y., Zhang, J. M., Ji, V., & Xu, K. W. (2011). Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale, 3(10), 4330-4338.

https://doi.org/10.1039/C1NR10594A

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865.

https://doi.org/10.1103/PhysRevLett.77.3865

Qin, Z., Pan, J., Lu, S., Shao, Y., Wang, Y., Du, S., & Cao, G. (2017). Direct evidence of Dirac signature in bilayer germanene islands on Cu (111). Advanced Materials, 29(13), 1606046.

https://doi.org/10.1002/adma.201606046

Samipour, A., Dideban, D., & Heidari, H. (2020a). Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: A first principles study. Journal of Physics and Chemistry of Solids, 138, 109289.

https://doi.org/10.1016/j.jpcs.2019.109289

Samipour, A., Dideban, D., & Heidari, H. (2020b). Impact of substitutional metallic dopants on the physical and electronic properties of germanene nanoribbons: A first principles study. Results in Physics, 18, 103333.

https://doi.org/10.1016/j.rinp.2020.103333

Sharma, V., & Srivastava, P. (2021). Silicene and Germanene Nanoribbons for Interconnect Applications. In Nanoelectronic Devices for Hardware and Software Security (pp. 85-100). CRC Press.

https://doi.org/10.1201/9781003126645

Sharma, V., Srivastava, P., & Jaiswal, N. K. (2018). Edge-oxidized germanene nanoribbons for nanoscale metal interconnect applications. IEEE Transactions on Electron Devices, 65(9), 3893-3900.

https://doi.org/10.1109/TED.2018.2858006

Sharma, V., Srivastava, P., & Jaiswal, N. K. (2017). Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application. Applied Surface Science, 396, 1352-1359.

https://doi.org/10.1016/j.apsusc.2016.11.161

Shiraz, A. K., Goharrizi, A. Y., & Hamidi, S. M. (2019). The electronic and optical properties of armchair germanene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures, 107, 150-153.

https://doi.org/10.1016/j.physe.2018.11.019

Yao, Q., Zhang, L., Kabanov, N. S., Rudenko, A. N., Arjmand, T., Rahimpour Soleimani, H., & Zandvliet, H. J. W. (2018). Bandgap opening in hydrogenated germanene. Applied Physics Letters, 112(17), 171607.

https://doi.org/10.1063/1.5026745

Zhang, L., Bampoulis, P., Rudenko, A. N., Yao, Q. V., Van Houselt, A., Poelsema, B., & Zandvliet, H. J. W. (2016). Structural and electronic properties of germanene on MoS2. Physical Review Letters, 116(25), 256804.

https://doi.org/10.1103/PhysRevLett.116.256804