Structural and electronic properties of hydrogen - functionalized armchair germanene nanoribbons: A first-principles study
Main Article Content
Abstract
Structural and electronic properties of armchair germanene nanoribbons functionalized by hydrogen atoms (H-AGeNR) are studied through density functional theory (DFT) method. The DFT quantities for analyzing the structural and electronic properties are fully developed through the DFT calculations, including the functionalization energy, relaxed geometric parameters, orbital- and atom-decomposed energy bands, electronic density of states, charge density, and charge density difference. Under hydrogen functionalization, the functionalization energy is achieved at -2.59 eV, and the structural parameters are slightly distorted. This provides evidence of good structural stability of the functionalized system. Besides, the very strong bonds of H-Ge are created because the electrons are transfered from Ge atoms to H adatoms, which induces hole density in the functionalized system, which is regarded as p-type doping. As a result, the π bonds of 4pz orbitals at low-lying energy are fully terminated by the strong H-Ge covalent bonds, in which the strong hybridizations of H-1s and Ge-(4s, 4px, 4py, and 4pz) orbitals have occurred at deep valence band. The termination of π bonds leads to the opened energy gap of 2.01 eV in the H-functionalized system that belongs to the p-type semiconductor. The enriched properties of the H-functionalized system identify that the H-functionalized system...
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M. V., van Houselt, A., Rudenko, A. N & Zandvliet, H. J. (2015). Germanene: the germanium analog of graphene. Journal of Physics: Condensed Matter, 27(44), 443002.
https://doi.org/10.1088/0953-8984/27/44/443002
Arjmand, T., Tagani, M. B., & Soleimani, H. R. (2018). Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study. Superlattices and Microstructures, 113, 657-666.
https://doi.org/10.1016/j.spmi.2017.11.052
Balendhran, S., Walia, S., Nili, H., Sriram, S., & Bhaskaran, M. (2015). Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 11(6), 640-652.
https://doi.org/10.1002/smll.201402041
Hattori, A., Yada, K., Araidai, M., Sato, M., Shiraishi, K., & Tanaka, Y. (2019). Influence of edge magnetization and electric fields on zigzag silicene, germanene and stanene nanoribbons. Journal of Physics: Condensed Matter, 31(10), 105302.
https://doi.org/10.1088/1361-648X/aaf8ce
He, J., Liu, G., Wei, L., & Li, X. (2021). Effect of Al doping on the electronic structure and optical properties of germanene. Molecular Physics, e2008540.
https://doi.org/10.1080/00268976.2021.2008540
Hoat, D. M., Nguyen, D. K., Ponce-Pérez, R., Guerrero-Sanchez, J., Van On, V., Rivas-Silva, J. F., & Cocoletzi, G. H. (2021). Opening the germanene monolayer band gap using halogen atoms: An efficient approach studied by first-principles calculations. Applied Surface Science, 551, 149318.
https://doi.org/10.1016/j.apsusc.2021.149318
Kaloni, T. P., & Schwingenschlögl, U. (2013). Stability of germanene under tensile strain. Chemical Physics Letters, 583, 137-140.
https://doi.org/10.1016/j.cplett.2013.08.001
Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169.
https://doi.org/10.1103/PhysRevB.54.11169
Liu, J., Yu, G., Shen, X., Zhang, H., Li, H., Huang, X., & Chen, W. (2017). The structures, stabilities, electronic and magnetic properties of fully and partially hydrogenated germanene nanoribbons: A first-principles investigation. Physica E: Low-dimensional Systems and Nanostructures, 87, 27-36.
https://doi.org/10.1016/j.physe.2016.11.018
Matthes, L., & Bechstedt, F. (2014). Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations. Physical Review B, 90(16), 165431.
https://doi.org/10.1103/PhysRevB.90.165431
Monshi, M. M., Aghaei, S. M., & Calizo, I. (2017). Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules. Surface Science, 665, 96-102.
https://doi.org/10.1016/j.susc.2017.08.012
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
https://www.science.org/doi/10.1126/science.1102896
Nguyen, D. K., Tran, N. T. T., Chiu, Y. H., Gumbs, G., & Lin, M. F. (2020). Rich essential properties of Si-doped graphene. Scientific Reports, 10(1), 1-16.
https://doi.org/10.1038/s41598-020-68765-x
Nguyen, D. K., Tran, N. T. T., Chiu, Y. H., & Lin, M. F. (2019). Concentration-diversified magnetic and electronic properties of halogen-adsorbed silicene. Scientific Reports, 9(1), 1-15.
https://doi.org/10.1038/s41598-019-50233-w
Nijamudheen, A., Bhattacharjee, R., Choudhury, S., & Datta, A. (2015). Electronic and chemical properties of germanene: the crucial role of buckling. The Journal of Physical Chemistry C, 119(7), 3802-3809.
https://doi.org/10.1021/jp511488m
Pang, Q., Li, L., Zhang, L. L., Zhang, C. L., & Song, Y. L. (2015). Functionalization of germanene by metal atoms adsorption: a first-principles study. Canadian Journal of Physics, 93(11), 1310-1318.
https://doi.org/10.1139/cjp-2015-0206
Pang, Q., Zhang, Y., Zhang, J. M., Ji, V., & Xu, K. W. (2011). Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale, 3(10), 4330-4338.
https://doi.org/10.1039/C1NR10594A
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865.
https://doi.org/10.1103/PhysRevLett.77.3865
Qin, Z., Pan, J., Lu, S., Shao, Y., Wang, Y., Du, S., & Cao, G. (2017). Direct evidence of Dirac signature in bilayer germanene islands on Cu (111). Advanced Materials, 29(13), 1606046.
https://doi.org/10.1002/adma.201606046
Samipour, A., Dideban, D., & Heidari, H. (2020a). Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: A first principles study. Journal of Physics and Chemistry of Solids, 138, 109289.
https://doi.org/10.1016/j.jpcs.2019.109289
Samipour, A., Dideban, D., & Heidari, H. (2020b). Impact of substitutional metallic dopants on the physical and electronic properties of germanene nanoribbons: A first principles study. Results in Physics, 18, 103333.
https://doi.org/10.1016/j.rinp.2020.103333
Sharma, V., & Srivastava, P. (2021). Silicene and Germanene Nanoribbons for Interconnect Applications. In Nanoelectronic Devices for Hardware and Software Security (pp. 85-100). CRC Press.
https://doi.org/10.1201/9781003126645
Sharma, V., Srivastava, P., & Jaiswal, N. K. (2018). Edge-oxidized germanene nanoribbons for nanoscale metal interconnect applications. IEEE Transactions on Electron Devices, 65(9), 3893-3900.
https://doi.org/10.1109/TED.2018.2858006
Sharma, V., Srivastava, P., & Jaiswal, N. K. (2017). Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application. Applied Surface Science, 396, 1352-1359.
https://doi.org/10.1016/j.apsusc.2016.11.161
Shiraz, A. K., Goharrizi, A. Y., & Hamidi, S. M. (2019). The electronic and optical properties of armchair germanene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures, 107, 150-153.
https://doi.org/10.1016/j.physe.2018.11.019
Yao, Q., Zhang, L., Kabanov, N. S., Rudenko, A. N., Arjmand, T., Rahimpour Soleimani, H., & Zandvliet, H. J. W. (2018). Bandgap opening in hydrogenated germanene. Applied Physics Letters, 112(17), 171607.
https://doi.org/10.1063/1.5026745
Zhang, L., Bampoulis, P., Rudenko, A. N., Yao, Q. V., Van Houselt, A., Poelsema, B., & Zandvliet, H. J. W. (2016). Structural and electronic properties of germanene on MoS2. Physical Review Letters, 116(25), 256804.