Nguyen Duy Khanh , Nguyen Thi Hong Hue , Nguyen Thanh Tien and Vo Van On *

* Correspondence: Vo Van On (email:

Main Article Content


Structural and electronic properties of armchair germanene nanoribbons functionalized by hydrogen atoms (H-AGeNR) are studied through density functional theory (DFT) method. The DFT quantities for analyzing the structural and electronic properties are fully developed through the DFT calculations, including the functionalization energy, relaxed geometric parameters, orbital- and atom-decomposed energy bands, electronic density of states, charge density, and charge density difference. Under hydrogen functionalization, the functionalization energy is achieved at -2.59 eV, and the structural parameters are slightly distorted. This provides evidence of good structural stability of the functionalized system. Besides, the very strong bonds of H-Ge are created because the electrons are transfered from Ge atoms to H adatoms, which induces hole density in the functionalized system, which is regarded as p-type doping. As a result, the π bonds of 4pz orbitals at low-lying energy are fully terminated by the strong H-Ge covalent bonds, in which the strong hybridizations of H-1s and Ge-(4s, 4px, 4py, and 4pz) orbitals have occurred at deep valence band. The termination of π bonds leads to the opened energy gap of 2.01 eV in the H-functionalized system that belongs to the p-type semiconductor. The enriched properties of the H-functionalized system identify that the H-functionalized system...

Keywords: Armchair germanene nanoribbons, band structure, charge transfer, DFT calculation, graphene, germanene, and hydrogen functionalization

Article Details


Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M. V., van Houselt, A., Rudenko, A. N & Zandvliet, H. J. (2015). Germanene: the germanium analog of graphene. Journal of Physics: Condensed Matter, 27(44), 443002.

Arjmand, T., Tagani, M. B., & Soleimani, H. R. (2018). Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study. Superlattices and Microstructures, 113, 657-666.

Balendhran, S., Walia, S., Nili, H., Sriram, S., & Bhaskaran, M. (2015). Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 11(6), 640-652.

Hattori, A., Yada, K., Araidai, M., Sato, M., Shiraishi, K., & Tanaka, Y. (2019). Influence of edge magnetization and electric fields on zigzag silicene, germanene and stanene nanoribbons. Journal of Physics: Condensed Matter, 31(10), 105302.

He, J., Liu, G., Wei, L., & Li, X. (2021). Effect of Al doping on the electronic structure and optical properties of germanene. Molecular Physics, e2008540.

Hoat, D. M., Nguyen, D. K., Ponce-Pérez, R., Guerrero-Sanchez, J., Van On, V., Rivas-Silva, J. F., & Cocoletzi, G. H. (2021). Opening the germanene monolayer band gap using halogen atoms: An efficient approach studied by first-principles calculations. Applied Surface Science, 551, 149318.

Kaloni, T. P., & Schwingenschlögl, U. (2013). Stability of germanene under tensile strain. Chemical Physics Letters, 583, 137-140.

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169.

Liu, J., Yu, G., Shen, X., Zhang, H., Li, H., Huang, X., & Chen, W. (2017). The structures, stabilities, electronic and magnetic properties of fully and partially hydrogenated germanene nanoribbons: A first-principles investigation. Physica E: Low-dimensional Systems and Nanostructures, 87, 27-36.

Matthes, L., & Bechstedt, F. (2014). Influence of edge and field effects on topological states of germanene nanoribbons from self-consistent calculations. Physical Review B, 90(16), 165431.

Monshi, M. M., Aghaei, S. M., & Calizo, I. (2017). Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules. Surface Science, 665, 96-102.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.

Nguyen, D. K., Tran, N. T. T., Chiu, Y. H., Gumbs, G., & Lin, M. F. (2020). Rich essential properties of Si-doped graphene. Scientific Reports, 10(1), 1-16.

Nguyen, D. K., Tran, N. T. T., Chiu, Y. H., & Lin, M. F. (2019). Concentration-diversified magnetic and electronic properties of halogen-adsorbed silicene. Scientific Reports, 9(1), 1-15.

Nijamudheen, A., Bhattacharjee, R., Choudhury, S., & Datta, A. (2015). Electronic and chemical properties of germanene: the crucial role of buckling. The Journal of Physical Chemistry C, 119(7), 3802-3809.

Pang, Q., Li, L., Zhang, L. L., Zhang, C. L., & Song, Y. L. (2015). Functionalization of germanene by metal atoms adsorption: a first-principles study. Canadian Journal of Physics, 93(11), 1310-1318.

Pang, Q., Zhang, Y., Zhang, J. M., Ji, V., & Xu, K. W. (2011). Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale, 3(10), 4330-4338.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865.

Qin, Z., Pan, J., Lu, S., Shao, Y., Wang, Y., Du, S., & Cao, G. (2017). Direct evidence of Dirac signature in bilayer germanene islands on Cu (111). Advanced Materials, 29(13), 1606046.

Samipour, A., Dideban, D., & Heidari, H. (2020a). Impact of an antidote vacancy on the electronic and transport properties of germanene nanoribbons: A first principles study. Journal of Physics and Chemistry of Solids, 138, 109289.

Samipour, A., Dideban, D., & Heidari, H. (2020b). Impact of substitutional metallic dopants on the physical and electronic properties of germanene nanoribbons: A first principles study. Results in Physics, 18, 103333.

Sharma, V., & Srivastava, P. (2021). Silicene and Germanene Nanoribbons for Interconnect Applications. In Nanoelectronic Devices for Hardware and Software Security (pp. 85-100). CRC Press.

Sharma, V., Srivastava, P., & Jaiswal, N. K. (2018). Edge-oxidized germanene nanoribbons for nanoscale metal interconnect applications. IEEE Transactions on Electron Devices, 65(9), 3893-3900.

Sharma, V., Srivastava, P., & Jaiswal, N. K. (2017). Prospects of asymmetrically H-terminated zigzag germanene nanoribbons for spintronic application. Applied Surface Science, 396, 1352-1359.

Shiraz, A. K., Goharrizi, A. Y., & Hamidi, S. M. (2019). The electronic and optical properties of armchair germanene nanoribbons. Physica E: Low-dimensional Systems and Nanostructures, 107, 150-153.

Yao, Q., Zhang, L., Kabanov, N. S., Rudenko, A. N., Arjmand, T., Rahimpour Soleimani, H., & Zandvliet, H. J. W. (2018). Bandgap opening in hydrogenated germanene. Applied Physics Letters, 112(17), 171607.

Zhang, L., Bampoulis, P., Rudenko, A. N., Yao, Q. V., Van Houselt, A., Poelsema, B., & Zandvliet, H. J. W. (2016). Structural and electronic properties of germanene on MoS2. Physical Review Letters, 116(25), 256804.