Automatic identification of Dong Son antique glass artifacts using evolving learning
Main Article Content
Abstract
Regarding the Dong Son culture, given the diverse range of artifacts discovered, we propose the utilization of an artificial intelligence system for the automated and comprehensive identification of Dong Son glass jewelry through SEM gemological analysis. This approach, which has gained prominence in the field of archaeology worldwide over the past five years, aims to integrate advanced technology into Vietnamese archaeology. Our research is motivated by the unique conditions present in archaeology, where we seek to employ evolving learning algorithms to archaeological databases, comparing and selecting the most suitable model that aligns with the archeological dataset's performance. We have developed the Recognition Automatic System for Dong Son Antique Glasses (RAS-DSA), capable of accurately distinguishing between Dong Son and non-Dong Son glass ornaments, and is freely distributed to experts and archaeologists. This collaborative research involves Nam Can Tho University, Hanoi University of Mining and Geology, the Vietnamese Institute of Archaeology, and the UNESCO Center for Research and Conservation of Vietnamese Antiquities.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Bhuvaneswari, S., & Sabarathinam, J. (2013). Defect analysis using artificial neural network. IJ Intelligent Systems and Applications, 5, 33-38.
Bickler, S. H. (2018). Machine learning identification and classification of historic ceramics. Archaeology, 20, 20-32.
Bifet, A., & Gavalda, R. (2007, April). Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM international conference on data mining (pp. 443-448). Society for Industrial and Applied Mathematics.
Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
Chan, T. F., Golub, G. H., & LeVeque, R. J. (1982). Updating formulae and a pairwise algorithm for computing sample variances. In COMPSTAT 1982 5th Symposium held at Toulouse 1982: Part I: Proceedings in Computational Statistics (pp. 30-41). Physica-Verlag HD.
Freestone, I. C., Greenwood, R., & Gorin-Rosen, Y. (2002). Byzantine and early Islamic glassmaking in the Eastern Mediterranean: production and distribution of primary glass. In Hyalos-Vitrum-Glass: Proceedings of the First Hellenic Glass Conference. Athens: Glasnet Publications (pp. 167-174).
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3-42.
Goldberger J., Roweis S., Hinton G., Salakhutdinov R. (2005). Neighbourhood Components Analysis. Advances in Neural Information Processing Systems, 17, 513-520.
Henderson, J. (1990). Chemical characterization of Roman glass vessels, enamels and tesserae. MRS Online Proceedings Library (OPL), 185, 601.
Hinton, G. E. (1990). Connectionist learning procedures. Artificial Intelligence, 40(1-3), 185 234, 1989. reprinted in j. carbonell, editor. Machine Learning: Paradigms and Methods", MIT Press.
Ho, A. K. N., Ragot, N., Ramel, J. Y., Eglin, V., & Sidere, N. (2013, August). Document classification in a non-stationary environment: A one-class SVM approach. In 2013 12th International Conference on Document Analysis and Recognition (pp. 616-620). IEEE.
Ho, A. K. N., Ragot, N., Eglin, V., & Ramel, J. Y. (2014, July). Multi one-class incremental SVM for both stationary and non-stationary environment. In 16ème Conférence d’Aprentissage automatique (Cap’2014).
Ho, N., Khoi, A. (2015). Méthodes de classifications dynamiques et incrémentales: application à la numérisation cognitive d'images de documents (Doctoral dissertation, Tours).
Karamitrou, A., Sturt, F., Bogiatzis, P., & Beresford-Jones, D. (2022). Towards the use of artificial intelligence deep learning networks for detection of archaeological sites. Surface Topography: Metrology and Properties, 10(4), 044001.
Karlik, B., & Olgac, A. V. (2011). Performance analysis of various activation functions in generalized MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems, 1(4), 111-122.
Jones, B., & Bickler, S. H. (2019). Multi-scalar and semi-automatic approaches to detect archaeological features in NZ using Airborne LiDAR data. Archaeology, 10.
Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. example weighting. Intelligent data analysis, 8(3), 281-300.
Last, M. (2002). Online classification of nonstationary data streams. Intelligent data analysis, 6(2), 129-147..
Lazarescu, M. M., Venkatesh, S., & Bui, H. H. (2004). Using multiple windows to track concept drift. Intelligent data analysis, 8(1), 29-59.
Lewis, D. D. (1998, April). Naive (Bayes) at forty: The independence assumption in information retrieval. In European conference on machine learning (pp. 4-15). Berlin, Heidelberg: Springer Berlin Heidelberg.
Ngo-Ho, A.-K., Bui, H.-B., Nguyen, K.-G., Trinh, T.-L. (2019b). Ancient glass stone in history. International Conference on philosophy therapy and lithotherapy (ICPTL 2019). HCM city.
Ngo-Ho, A. K., Eglin, V., Ragot, N., & Ramel, J. Y. (2017). A multi-one-class dynamic classifier for adaptive digitization of document streams. International Journal on Document Analysis and Recognition (IJDAR), 20, 137-154.
Ngo-Ho, A.-K., Nguyen, T.-C., Doan, N.-K., Bui, H.-B., & Trinh, T.-L. (2019a). Distinct gemological properties of Sa Huynh glass ornaments. International Workshop On Heritage Values of Ly Son - Sa Huynh Geopark, Vietnam.
Ngo-Ho, A.-K., Vo, V.-P., Pham, V.-T., Le, D.-P., Nguyen, T.-C., Doan, N.-K., & Tran, T.-T. (2019c). Artificial intelligence system for automatic identification of antique Oc Eo Glass jewelry. National Conference on Oc Eo Runes. An Giang, Vietnam.
Ngo-Ho, A.-K., Vo, V.-P., Pham, V.-T., Le, D.-P., Nguyen, T.-C., Doan, N.-K., & Tran, T.-T. (2022). Automatic identification of Oc Eo Glass jewelry. Journal of Vietnam Gemology (accepted).
Ngo-Ho, A.-K., Bui, H.-B., & Pham, V.-T. (2023a). Continuous learning for automatic identification of Oc Eo antique glass jewelry. The 15th IEEE International Conference on Knowledge and Systems Engineering (KSE 2023). (accepted).
Ngo-Ho, A.-K., Bui, H.-B., & Nguyen, A.-D. (2023b). Identification between the Dong Son and Sa Huynh Antique Glass Jewelry Using the Evolving Learning. Vietnamese National Conference on Information & Communication Technologies (VNICT @ 2023). (accepted).
Ngo-Ho, A.-K., Pham, V.-T., Nguyen, T.-C., & Le, D.-P. (2020). Evidence of New Artifacts for The Existence of Glass-Making Furnaces in Óc Eo – Culture Area. Journal of Vietnam Archeaology, Volumn 2 (2020). Vietnam.
Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061.
Rehren, T., & Freestone, I. C. (2015). Ancient glass: from kaleidoscope to crystal ball. Journal of Archaeological Science, 56, 233-241.
Sayre, E. V., & Smith, R. W. (1961). Compositional categories of ancient glass. Science, 133(3467), 1824-1826.
Tait, H. (1991). Five thousand years of glass. University of Pennsylvania Press.
Tran, B. V., Vo, N. D., & Nguyen, K. (2022). An object detection method for aerial hazy images. Can Tho University Journal of Science, 14(1), 91-98.
Truong, Q.-B., Dao, T.-X., & Vo, V.-P. (2014). New features set for signature recognition using neural network. Vietnam Conference on Mechatronics (VCM’14), 2014.
Wedepohl, K. H., & Baumann, A. (2000). The use of marine molluskan shells for Roman glass and local raw glass production in the Eifel area (Western Germany). Naturwissenschaften, 87, 129-132.
Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine learning, 23, 69-101.