Isolation and characterization of Vietnamese medicinal plant (Nhân trần tía, Adenosma bracteosum Bonati) bacterial endophytes displaying in vitro antagonistic activities
Main Article Content
Abstract
Adenosma bracteosum Bonati has been utilized in traditional and modern Vietnamese medicine for the treatment of hepatitis, lung, and liver diseases. Bacteria that reside within the cells of medicinal plants, utilizing unique strategies to enhance the growth and survival of their host plants, often through distinctive secondary metabolites, are known as symbiotic or endophytic bacteria. In this study, 58 endophytic isolates were obtained from the wild medicinal plant Adenosma bracteosum Bonati and were assessed for their in vitro antibacterial activities against common pathogenic bacteria including Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, Vibrio parahaemolyticus, and Dickeya dadantii. Twelve isolates with broad antibacterial activity produced siderophores and lytic enzymes, with SB1R13.2 showing the greatest resistance against all five pathogenic bacterial strains, producing siderophores and synthesizing digestive enzymes. According to the 16S rDNA sequences, the SB1R13.2, SB4R5, and SB5T2 isolates demonstrated the most similar genetic affinity to Bacillus velezensis. Meanwhile, the SB4R2 isolate exhibits genetic similarity to Burkholderia sp. These findings suggest that this specific species could be a promising antibacterial agent, potentially offering resistance against other pathogens
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abd-Elgawad, M. M., & Askary, T. H. (2020). Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egyptian Journal of Biological Pest Control, 30(1), 1-11.
Akinsanya, M. A., Goh, J. K., Lim, S. P., & Ting, A. S. Y. (2015). Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiology Letters, 362(23), 184. https://doi.org/10.1093/femsle/fnv184
Alenezi, F. N., Slama, H. B., Bouket, A. C., Cherif-Silini, H., Silini, A., Luptakova, L., Nowakowska, J. A., Oszako, T., & Belbahri, L. J. F. (2021). Bacillus velezensis: A treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. 12(12), 1714. doi.org/10.3390/f12121714
Aloo, B. N., Makumba, B., & Mbega, E. R. (2019). The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 219, 26-39. doi.org/10.1016/j.micres.2018.10.011
Alvarez, F., Castro, M., Príncipe, A., Borioli, G., Fischer, S., Mori, G., & Jofré, E. (2012). The plant‐associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of Applied Microbiology, 112(1), 159-174. doi.org/10.1111/j.1365-2672.2011.05182.x
Alvionita, D. N., Rahayu, S., & Mubarik, N. R. (2020). Characterization, identification, and analysis of bioactive compound of endophytic bacteria from Hoya multiflora Blume. Biodiversitas Journal of Biological Diversity, 21(1).
Bacon, C., Hinton, D., & Snook, M. (2005). Tentative identification of Bacillus mojavensis antifungal inhibitor. Phytopathology, 95(6), S5.
Bacon, C. W., & Hinton, D. M. (2002). Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control, 23(3), 274-284. https://doi.org/10.1006/bcon.2001.1016
Bacon, C. W., & White, J. (2000). Microbial endophytes: CRC press.
Bakker, P. A., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C., & Pieterse, C. M. (2013). The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 4, 165.
Bhoonobtong, A., Sawadsitang, S., Sodngam, S., & Mongkolthanaruk, W. (2012). Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents production. International Proceedings of Chemical, Biological Environmental Engineering, 40, 6-11.
Bhuvaneswari, S., Madhavan, S., & Panneerselvam, A. (2013). Enumertion of endophytic bacteria from Solanum trilobatum L. World Journal of Pharmaceutical Research, 3, 2270-2279.
Bisi-Johnson, M. A., Obi, C. L., Samuel, B. B., Eloff, J. N., & Okoh, A. I. (2017). Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea. BMC complementary alternative medicine, 17(1), 1-9.
Buatong, J., Phongpaichit, S., Rukachaisirikul, V., & Sakayaroj, J. (2011). Antimicrobial activity of crude extracts from mangrove fungal endophytes. World Journal of Microbiology Biotechnology, 27, 3005-3008.
Cariño-Cortés, R., Hernández-Ceruelos, A., Torres-Valencia, J., González-Avila, M., Arriaga-Alba, M., & Madrigal-Bujaidar, E. (2007). Antimutagenicity of Stevia pilosa and Stevia eupatoria evaluated with the Ames test. Toxicology in vitro, 21(4), 691-697. https://doi.org/10.1016/j.tiv.2006.12.001
Cazorla, F., Romero, D., Pérez‐García, A., Lugtenberg, B., Vicente, A. D., & Bloemberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 103(5), 1950-1959. doi.org/10.1111/j.1365-2672.2007.03433.x
Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218, 41-48. https://doi.org/10.1016/j.micres.2018.10.002
Chernin, L., & Chet, I. (2002). Microbial enzymes in biocontrol of plant pathogens and pests. Enzymes in the environment: Activity, Ecology, Applications, 171-225.
Cho, S. J., Park, S. R., Kim, M. K., Lim, W. J., Ryu, S. K., An, C. L., Hong, S. Y., Lee, Y. H., Jeong, S. G., & Cho, Y. U. (2002). Endophytic Bacillus sp. isolated from the interior of balloon flower root. Bioscience, Biotechnology, Biochemistry, 66(6), 1270-1275. doi.org/10.1271/bbb.66.1270
Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied Environmental Microbiology, 71(9), 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
De Souza, J. T., De Boer, M., De Waard, P., Van Beek, T. A., & Raaijmakers, J. M. (2003). Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied Environmental Microbiology, 69(12), 7161-7172. https://doi.org/10.1128/AEM.69.12.7161-7172.2003
Djavaheri, M., Mercado‐Blanco, J., Versluis, C., Meyer, J. M., Van Loon, L., & Bakker, P. A. (2012). Iron‐regulated metabolites produced by Pseudomonas fluorescens WCS 374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis. Microbiology Open, 1(3), 311-325. https://doi.org/10.1002/mbo3.32
Dos Santos, P. J. C., Savi, D. C., Gomes, R. R., Goulin, E. H., Senkiv, C. D. C., Tanaka, F. A. O., Almeida, Á. M. R., Galli-Terasawa, L., Kava, V., & Glienke, C. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186, 153-160. https://doi.org/10.1016/j.micres.2016.04.002
Ebrahimi, A., Asgharian, S., & Habibian, S. (2010). Antimicrobial activities of isolated endophytes from some Iranian native medicinal plants. Iranian Journal of Pharmaceutical Sciences, 6(3), 217-222.
Egamberdieva, D., Wirth, S., Behrendt, U., Ahmad, P., & Berg, G. (2017). Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology, 8, 199. https://doi.org/10.3389/fmicb.2017.00199
Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887. https://doi.org/10.3389/fmicb.2017.01887
Eljounaidi, K., Lee, S. K., & Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control, 103, 62-68. doi.org/10.1016/j.biocontrol.2016.07.013
Elmansy, E. A., Asker, M. S., El-Kady, E. M., Hassanein, S. M., & El-Beih, F. M. (2018). Production and optimization of α-amylase from thermo-halophilic bacteria isolated from different local marine environments. Bulletin of the National Research Centre, 42(1), 1-9.
Erdogan, O., & Benlioglu, K. (2010). Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions. Biological Control, 53(1), 39-45. doi.org/10.1016/j.biocontrol.2009.11.011
Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., & Bahl, H. (2001). Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology, 176, 421-426.
Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27-39. doi.org/10.1016/j.biocontrol.2016.11.007
Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agriculture, 2(1), 1127500.
Gouda, S., Das, G., Sen, S. K., Shin, H.-S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in microbiology, 7, 1538. https://doi.org/10.3389/fmicb.2016.01538
Gunatilaka, A. L. (2006). Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69(3), 509-526.
Guo, Y., Huang, E., Yang, X., Zhang, L., Yousef, A. E., & Zhong, J. (2016). Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control, 60, 511-518. https://doi.org/10.1016/j.foodcont.2015.08.029
Hiếu, T. T., & Hiệp, N. H. (2016). Phân lập và khảo sát đặc tính của vi khuẩn nội sinh ở cây trinh nữ (Mimosa pudica L.) tại tỉnh Trà Vinh. Tạp chí Khoa học Trường Đại học Cần Thơ, 23-29.
Jiang, C.-H., Wu, F., Yu, Z.-Y., Xie, P., Ke, H.-J., Li, H.-W., Yu, Y.-Y., & Guo, J.-H. (2015). Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiological Research, 170, 95-104. https://doi.org/10.1016/j.micres.2014.08.009
Kumar, J., Sharma, V. K., Singh, D. K., Mishra, A., Gond, S. K., Verma, S. K., Kumar, A., & Kharwar, R. N. (2016). Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. Plos One, 11(2), e0147876.
Kusari, S., Pandey, S. P., & Spiteller, M. (2013). Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry, 91, 81-87. doi.org/10.1016/j.phytochem.2012.07.021
Lacava, P. T., Li, W., Arauˊjo, W. L., Azevedo, J. L. c., & Hartung, J. S. (2007). The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. The Journal of Microbiology, 45(5), 388-393.
Landa, P., Kokoska, L., Pribylova, M., Vanek, T., & Marsik, P. (2009). In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E 2 biosynthesis. Archives of Pharmacal Research, 32, 75-78.
Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., Musa, Z., Liu, Y., Hedlund, B. P., & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek, 111, 1735-1748.
Lin, T., Zhao, L., Yang, Y., Guan, Q., & Gong, M. (2013). Potential of endophytic bacteria isolated from 'Sophora alopecuroides' nodule inbiological control against Verticillium wilt disease. Australian Journal of Crop Science, 7(1), 139-146.
Liu, Y., Guo, J.-W., Salam, N., Li, L., Zhang, Y.-G., Han, J., Mohamad, O. A., & Li, W.-J. (2016). Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech, 6, 1-9.
Liu, Y., Guo, J., Li, L., Asem, M. D., Zhang, Y., Mohamad, O. A., Salam, N., & Li, W. (2017). Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: diversity and plant growth-promoting traits. Journal of Arid Land, 9, 432-445.
Lopes, R., Cerdeira, L., Tavares, G. S., Ruiz, J. C., Blom, J., Horácio, E. C. A., Mantovani, H. C., & Queiroz, M. V. d. (2017). Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World Journal of Microbiology and Biotechnology, 33(10), 185. doi:10.1007/s11274-017-2347-x
Mathiyazhagan, S., Kavitha, K., Nakkeeran, S., Chandrasekar, G., Manian, K., Renukadevi, P., Krishnamoorthy, A., & Fernando, W. (2004). PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Archives of Phytopathology Plant Protection, 37(3), 183-199.
Mohamad, O. A., Li, L., Ma, J.-B., Hatab, S., Xu, L., Guo, J.-W., Rasulov, B. A., Liu, Y.-H., Hedlund, B. P., & Li, W.-J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology, 9, 924. https://doi.org/10.3389/fmicb.2018.00924
Mugiastuti, E., Suprayogi, Prihatiningsih, N., & Soesanto, L. (2020). Isolation and characterization of the endophytic bacteria, and their potential as maize diseases control. Biodiversitas, 21(5), 1809-1815.
Nagarajkumar, M., Bhaskaran, R., & Velazhahan, R. (2004). Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiological Research, 159(1), 73-81. https://doi.org/10.1016/j.micres.2004.01.005
Nejatzadeh-Barandozi, F. (2013). Antibacterial activities and antioxidant capacity of Aloe vera. Organic Medicinal Chemistry Letters, 3, 1-8.
Newman, D. J. (2018). Are microbial endophytes the ‘actual’ producers of bioactive antitumor agents? Trends in Cancer, 4(10), 662-670.
Nguyen, Q. H., Nguyen, H. V., Vu, T. H.-N., Chu-Ky, S., Vu, T. T., Hoang, H., Quach, N. T., Bui, T. L., Chu, H. H., & Khieu, T. N. (2019). Characterization of endophytic Streptomyces griseorubens MPT42 and assessment of antimicrobial synergistic interactions of its extract and essential oil from host plant Litsea cubeba. Antibiotics, 8(4), 197. doi.org/10.3390/antibiotics8040197
Nxumalo, C. I., Ngidi, L. S., Shandu, J. S. E., & Maliehe, T. S. (2020). Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complementary Medicine Therapies, 20(1), 1-11.
Ollinger, J., Song, K.-B., Antelmann, H., Hecker, M., & Helmann, J. D. (2006). Role of the Fur regulon in iron transport in Bacillus subtilis. Journal of Bacteriology, 188(10), 3664-3673.
Rabbee, M. F., Hwang, B.-S., & Baek, K.-H. J. A. (2023). Bacillus velezensis: A Beneficial Biocontrol Agent or Facultative Phytopathogen for Sustainable Agriculture. 13(3), 840.
Ravel, J., & Cornelis, P. (2003). Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol, 11(5), 195-200.
Ren, Z., Xie, L., Okyere, S. K., Wen, J., Ran, Y., Nong, X., & Hu, Y. (2022). Antibacterial activity of two metabolites isolated from endophytic bacteria Bacillus velezensis Ea73 in Ageratina adenophora. Frontiers in Microbiology, 13, 860009.
Saikkonen, K., Wäli, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte–plant symbioses. Trends in Plant Science, 9(6), 275-280. doi.org/10.1016/j.tplants.2004.04.005
Sendi, Y., Pfeiffer, T., Koch, E., Mhadhbi, H., & Mrabet, M. (2020). Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection, 127(4), 453-462. doi:10.1007/s41348-020-00338-6
Senthil, M., & Kumar, A. (2020). Plant-Microbe Interactions: Laboratory Techniques: Springer-Verlag New York.
Shastry, R. P., Rekha, P., & Rai, V. R. (2019). Biofilm inhibitory activity of metallo-protein AHL-lactonase from cell-free lysate of endophytic Enterobacter species isolated from Coscinium fenestratum Gaertn. Biocatalysis Agricultural Biotechnology, 18, 101009.
Singh, K., Gera, R., & Kumar, R. (2018). Isolation and characterization of siderophore producing rhizobia from Sesbania sesban using different types of Indian soils. Int J Chem Stud, 6(3), 797-880.
Singh, M., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, 7, 1-14.
Srinivasan, T. (2017). Studies on antifungal activity of siderophores produced by Rhizobium spp isolated from groundnut (Arachis hypogaea). Journal of Agricultural Science Food Research, 8(4), 1-2.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology Evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
Truong, H. V., Tu, H. M., Bao, H. G., Hau, T. D., Nhut, L. Q., & Dien, D. V. (2023). Isolation of the endophytic bacteria in Andrographis paniculata Nees growing wild in Hau Giang province. International Journal of Innovation Scientific Research and Review, 05(06), 4702-4705.
Vinayarani, G., & Prakash, H. (2018). Growth promoting rhizospheric and endophytic bacteria from Curcuma longa L. as biocontrol agents against rhizome rot and leaf blight diseases. The Plant Pathology Journal, 34(3), 218.
Vy, N. H. Á., & Hiệp, N. H. (2019). Phân lập và tuyển chọn vi khuẩn nội sinh có khả năng kháng khuẩn trong cây chùm ngây (Moringa oleifera Lam.) tại huyện Châu Thành, tỉnh Đồng Tháp. Tạp chí Khoa học Đại học cần Thơ, 55(CĐ Công nghệ Sinh học), 81-88.
Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H. M., Zubair, M., & Iqbal, M. (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology, 8, 1895.
Yu, F., Shen, Y., Qin, Y., Pang, Y., Fan, H., Peng, J., Pei, X., & Liu, X. J. F. i. N. (2022). Isolation and purification of antibacterial lipopeptides from Bacillus velezensis YA215 isolated from sea mangroves. Frontiers in Nutrition, 9, 1064764. doi.org/10.3389/fnut.2022.1064764
Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23(5), 753-771.
Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49, 269-278. https://doi.org/10.1016/j.bjm.2017.06.007