Effects of Titanium Dioxide nanoparticles on salinity tolerance of rice (Oryza sativa L.) at the seedling stage
Main Article Content
Abstract
This study aimed to evaluate the effects of titanium dioxide nanoparticles on the salinity tolerance of rice. The effects of five nano titanium dioxide concentrations (0 mg/L, 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L) on the physiological and biochemical parameters of rice were evaluated. The results showed that among three rice varieties (ST24, ST25, OM18), only ST25 grew in a better manner with the application of TiO2 nanoparticles and the optimal concentration of TiO2 nanoparticles was 50 mg/mL. It increased the shoot height by 20.07% and the survival rate of rice compared to the control. These growth-promoting effects were simultaneous with increased levels of chlorophyll, carotenoid and proline. The activities of antioxidant enzymes were improved. While activities of enzymes catalase and peroxidase increased significantly, no change in the activities of ascorbate peroxidase was observed. Finding of this study showed that titanium dioxide nanoparticles increased the salinity tolerance of rice by promoting the photosynthetic and anti-oxidative processes in rice seedlings.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abdel, L., A., Srivastava, A., Abd El-sadek, M. S., Kordrostami, M., & Tran, L.-S. (2017). Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions. Land Degradation and Development, 29. https://doi.org/10.1002/ldr.2780
Amirjani, M. R. (2010). Effect of NaCl on some physiological parameters of rice. Eur J Biol Sci, 3(1), 6-16.
A Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant physiology, 141(2), 391-396.
Ashraf, M. H. P. J. C., & Harris, P. J. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163-190.
Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.
Damanik, R. I., Maziah, M., Ismail, M. R., Ahmad, S., & Zain, A. M. (2010). Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiologiae Plantarum, 32, 739-747.
Dat, J., Vandenabeele, S., Vranova, E. V. M. M., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57, 779-795.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930.
Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. J. S. r. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific reports, 10(1), 1-14.
Gregorio, G., Senadhira, D., & Mendoza, R. (1997). Screening rice for salinity tolerance, vol 22, IRRI discussion paper series. International Rice Research Institute.
Hasanuzzaman, M., Fujita, M., Islam, M., Ahamed, K., & Nahar, K. J. I. J. o. I. B. (2009). Performance of four irrigated rice varieties under different levels of salinity stress. International Journal of Integrative Biology, 6(2), 85-90.
Herzog, V. (1973). Determination of the activity of peroxidase. Anal Biochem, 55, 554-562.
Karim, B. H., Christian, M., & Chedly, A. (2012). Antioxidant enzyme activities as a tool to discriminate ecotypes of Crithmum maritimum L. differing in their capacity to withstand salinity. Water stress, 166-175.
Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A., & Siddiqui, Z. H. (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 110, 194-209.
Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, cell & environment, 25(2), 275-294.
Liu, G., Yang, H. G., Pan, J., Yang, Y. Q., Lu, G. Q., & Cheng, H. M. (2014). Titanium dioxide crystals with tailored facets. Chemical reviews, 114(19), 9559-9612.
Minh, T. N., Nobukazu, N., & Xuan, T. D. (2016). The Potential Use of a Food-Dyeing Plant Peristrophe bivalvis (L.) Merr. in Northern Vietnam. International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 14.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410.
Mittova, V., Guy, M., Tal, M., & Volokita, M. (2004). Salinity up‐regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt‐tolerant tomato species Lycopersicon pennellii. Journal of experimental botany, 55(399), 1105-1113.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880.
Nyamukamba, P., Okoh, O., Mungondori, H., Taziwa, R., & Zinya, S. (2018). Synthetic methods for titanium dioxide nanoparticles: a review. Titanium dioxide-material for a sustainable environment, 8, 151-175.
Oidaira, H., Sano, S., Koshiba, T., & Ushimaru, T. (2000). Enhancement of antioxidative enzyme activities in chilled rice seedlings. Journal of plant physiology, 156(5-6), 811-813.
Polash, M. A. S., Sakil, M. A., & Hossain, M. A. (2019). Plants responses and their physiological and biochemical defense mechanisms against salinity: A review. Trop. Plant Res, 6, 250-274.
Rahman, A., Nahar, K., Al Mahmud, J., Hasanuzzaman, M., Hossain, M. S., & Fujita, M. (2017). Salt stress tolerance in rice: Emerging role of exogenous phytoprotectants. Advances in international rice research, 9(3), 139-174.
Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of plant interactions, 13(1), 73-82.
Rui, M., Ma, C., White, J. C., Hao, Y., Wang, Y., Tang, X., ... & Xing, B. (2018). Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano, 5(9), 2088-2102.
Sanoubar, R., Cellini, A., Gianfranco, G., & Spinelli, F. (2020). Osmoprotectants and antioxidative enzymes as screening tools for salinity tolerance in radish (Raphanus sativus). Horticultural Plant Journal, 6(1), 14-24.
Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., ... & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207.
Sharma, P. K., & Hall, D. O. (1991). Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. Journal of Plant Physiology, 138(5), 614-619.
Tiwari, M., Sharma, N. C., Fleischmann, P., Burbage, J., Venkatachalam, P., & Sahi, S. V. (2017). Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Frontiers in plant science, 8, 633.
Thakur, M., Sharma, P., & Anand, A. (2019). Seed priming-induced early vigor in crops: an alternate strategy for abiotic stress tolerance. Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants, 163-180.
Wang, Z. Q., Yuan, Y. Z., Ou, J. Q., Lin, Q. H., & Zhang, C. F. (2007). Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Journal of Plant Physiology, 164(6), 695-701.
Yoshida, S. (1976). Routine procedures for growing rice plants in culture solution. Laboratory manual for physiological studies of rice, 61-66.
Zhou, M., Wei, Y., Wang, J., Liang, M., & Zhao, G. (2021). Salinity-induced alterations in physiological and biochemical processes of blessed thistle and peppermint. Journal of Soil Science and Plant Nutrition, 21(4), 2857-2870.