Isolation and characterization of Vietnamese medicinal plant (Nhân trần tía, Adenosma bracteosum Bonati) bacterial endophytes displaying in vitro antagonistic activities
Main Article Content
Abstract
In both traditional and modern Vietnamese medicine, Adenosma bracteosum Bonati is employed for the treatment of hepatitis, lung ailments, and liver disorders. Bacteria that reside within the cells of medicinal plants, use unique strategies to enhance the growth and survival of their host plants, often through distinctive secondary metabolites, are known as symbiotic or endophytic bacteria. In this study, the objective was to find bacterial endophytes with antibacterial properties. Fifty-eight endophytic isolates were obtained from the wild medicinal plant A. bracteosum. They were assessed for their in vitro antibacterial activities against common pathogenic bacteria, including Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila, Vibrio parahaemolyticus, and Dickeya dadantii. Twelve isolates with broad antibacterial activity produced siderophores and lytic enzymes, with SB1R13.2 showing the greatest resistance against all five pathogenic bacterial strains, producing siderophores and synthesizing digestive enzymes. According to the 16S rDNA sequences, the SB1R13.2, SB4R5, and SB5T2 isolates demonstrated the most similar genetic affinity to Bacillus velezensis. Meanwhile, the SB4R2 isolate exhibits genetic similarity to Burkholderia sp. These findings suggest that this specific species, with its broad-spectrum antibacterial properties, holds significant potential as a promising agent for biological control and the treatment of diseases in humans and other organisms.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abd-Elgawad, M. M., & Askary, T. H. (2020). Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egyptian Journal of Biological Pest Control, 30(1), 1-11. https://doi.org/10.1186/s41938-020-00215-2.
Ahmad, M. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, M., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., & Kambal, N. (2024). Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon, 10(7), e29128. https://doi.org/10.1016/j.heliyon.2024.e2912.
Akinsanya, M. A., Goh, J. K., Lim, S. P., & Ting, A. S. Y. (2015). Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera. FEMS Microbiology Letters, 362(23), 184. https://doi.org/10.1093/femsle/fnv184.
Alenezi, F. N., Slama, H. B., Bouket, A. C., Cherif-Silini, H., Silini, A., Luptakova, L., Nowakowska, J. A., Oszako, T., & Belbahri, L. J. F. (2021). Bacillus velezensis: A treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. Forests, 12(12), 1714. https://doi.org/10.3390/f12121714.
Allonsius, C. N., Vandenheuvel, D., Oerlemans, E. F., Petrova, M. I., Donders, G. G., Cos, P., Delputte, P., & Lebeer, S. (2019). Inhibition of Candida albicans morphogenesis by chitinase from Lactobacillus rhamnosus GG. Scientific Reports, 9(1), 2900. https://doi.org/10.1038/s41598-019-39625-0.
Aloo, Makumba, B., Mbega, E., & Tumuhairwe, J. (2022). Rhizosphere Bacteria and Rhizobacterial Formulations: Small Weapons in the Big Battle of Plant Disease Management. In Microbial Biocontrol: Sustainable Agriculture and Phytopathogen Management: Volume 1 (pp. 151-186): Springer.
Alvionita, D. N., Rahayu, S., & Mubarik, N. R. (2020). Characterization, identification, and analysis of bioactive compound of endophytic bacteria from Hoya multiflora Blume. Biodiversitas Journal of Biological Diversity, 21(1), 195-202. https://doi.org/10.13057/biodiv/d210125.
Bacon, & White, J. (2000). Microbial endophytes: CRC press.
Bhoonobtong, A., Sawadsitang, S., Sodngam, S., & Mongkolthanaruk, W. (2012). Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents production. International Proceedings of Chemical, Biological Environmental Engineering, 40, 6-11.
Bisi-Johnson, M. A., Obi, C. L., Samuel, B. B., Eloff, J. N., & Okoh, A. I. (2017). Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea. BMC Complementary Alternative Medicine, 17(1), 1-9.
Britigan, B., Hassett, D., Rosen, G., Hamill, D., & Cohen, M. (1989). Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques. Biochemical Journal, 264(2), 447-455.
Buatong, J., Phongpaichit, S., Rukachaisirikul, V., & Sakayaroj, J. (2011). Antimicrobial activity of crude extracts from mangrove fungal endophytes. World Journal of Microbiology Biotechnology, 27, 3005-3008.
Cariño-Cortés, R., Hernández-Ceruelos, A., Torres-Valencia, J., González-Avila, M., Arriaga-Alba, M., & Madrigal-Bujaidar, E. (2007). Antimutagenicity of Stevia pilosa and Stevia eupatoria evaluated with the Ames test. Toxicology in vitro, 21(4), 691-697.
Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus velezensis LDO2. Microbiological Research, 218, 41-48.
Chernin, L., & Chet, I. (2002). Microbial enzymes in biocontrol of plant pathogens and pests. Enzymes in the environment: Activity, Ecology, Applications, 306, 171-225.
De Souza, J. T., De Boer, M., De Waard, P., Van Beek, T. A., & Raaijmakers, J. M. (2003). Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied Environmental Microbiology, 69(12), 7161-7172.
Dilfuza, E., Wirth, S., Behrendt, U., Ahmad, P., & Berg, G. (2017). Antimicrobial activity of medicinal plants correlates with the proportion of antagonistic endophytes. Frontiers in Microbiology, 8, 199.
Dos Santos, P. J. C., Savi, D. C., Gomes, R. R., Goulin, E. H., Senkiv, C. D. C., Tanaka, F. A. O., Almeida, Á. M. R., Galli-Terasawa, L., Kava, V., & Glienke, C. (2016). Diaporthe endophytica and D. terebinthifolii from medicinal plants for biological control of Phyllosticta citricarpa. Microbiological Research, 186, 153-160.
Duong, B., Nguyen, H. X., Phan, H. V., Colella, S., Trinh, P. Q., Hoang, G. T., Nguyen, T. T., Marraccini, P., Lebrun, M., & Duponnois, R. (2021). Identification and characterization of Vietnamese coffee bacterial endophytes displaying in vitro antifungal and nematicidal activities. Microbiological Research, 242, 126613.
Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2004). Botrytis: biology, pathology and control: Springer.
Eljounaidi, K., Lee, S. K., & Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control, 103, 62-68.
Elmansy, E. A., Asker, M. S., El-Kady, E. M., Hassanein, S. M., & El-Beih, F. M. (2018). Production and optimization of α-amylase from thermo-halophilic bacteria isolated from different local marine environments. Bulletin of the National Research Centre, 42(1), 1-9.
Essghaier, B., Hedi, A., Hajlaoui, M. R., Boudabous, A., & Sadfi-Zouaoui, N. (2012). In vivo and in vitro evaluation of antifungal activities from a halotolerant Bacillus subtilis strain J9. African Journal of Microbiology Research, 6(19), 4073-4083.
Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., & Bahl, H. (2001). Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology, 176, 421-426.
Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27-39.
Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food Agriculture, 2(1), 1127500.
Gouda, S., Das, G., Sen, S. K., Shin, H.-S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.
Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10(4), 273-290.
Hieu, T. T., & Hiep, N. H. (2016). Isolation and characterization of endophytic bacteria in Mimosa pudica L. collected in Tra Vinh province. CTU Journal of Science, 46, 23-29.
Jalil, S., M, M., & MI, A. (2015). Current view on chitinase for plant defense. Trends in Biosciences, 8(24), 6733–6743.
Jiang, C.-H., Wu, F., Yu, Z.-Y., Xie, P., Ke, H.-J., Li, H.-W., Yu, Y.-Y., & Guo, J.-H. (2015). Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiological Research, 170, 95-104.
Kalai-Grami, L., Ben Slimane, I., Mnari-Hattab, M., Rezgui, S., Aouani, M., Hajlaoui, M., & Limam, F. (2014). Protective effect of Bacillus amyloliquefaciens against infections of Citrus aurantium seedlings by Phoma tracheiphila. World Journal of Microbiology Biotechnology, 30, 529-538.
Kumar, J., Sharma, V. K., Singh, D. K., Mishra, A., Gond, S. K., Verma, S. K., Kumar, A., & Kharwar, R. N. (2016). Epigenetic activation of antibacterial property of an endophytic Streptomyces coelicolor strain AZRA 37 and identification of the induced protein using MALDI TOF MS/MS. Plos One, 11(2), e0147876.
Kusari, S., Pandey, S. P., & Spiteller, M. (2013). Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry, 91, 81-87.
Landa, P., Kokoska, L., Pribylova, M., Vanek, T., & Marsik, P. (2009). In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E 2 biosynthesis. Archives of Pharmacal Research, 32, 75-78.
Leal Filho, W., Ternova, L., Parasnis, S. A., Kovaleva, M., & Nagy, G. J. (2022). Climate change and zoonoses: a review of concepts, definitions, and bibliometrics. International Journal of Environmental Research Public Health, 19(2), 893.
Lee, K.-J., Oh, B.-T., & Seralathan, K.-K. (2013). Advances in Plant Growth Promoting Rhizobacteria for Biological Control of Plant Diseases. In D. K. Maheshwari (Ed.), Bacteria in Agrobiology: Disease Management (pp. 1-13). Berlin, Heidelberg: Springer Berlin Heidelberg.
Li, L., Mohamad, O. A. A., Ma, J., Friel, A. D., Su, Y., Wang, Y., Musa, Z., Liu, Y., Hedlund, B. P., & Li, W. (2018). Synergistic plant–microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F. Antonie Van Leeuwenhoek, 111, 1735-1748.
Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M., & Schenk, P. M. (2017). Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8, 2552.
Liu, Y., Guo, J.-W., Salam, N., Li, L., Zhang, Y.-G., Han, J., Mohamad, O. A., & Li, W.-J. (2016). Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3 Biotech, 6, 1-9.
Liu, Y., Guo, J., Li, L., Asem, M. D., Zhang, Y., Mohamad, O. A., Salam, N., & Li, W. (2017). Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: diversity and plant growth-promoting traits. Journal of Arid Land, 9, 432-445.
Lopes, R., Cerdeira, L., Tavares, G. S., Ruiz, J. C., Blom, J., Horácio, E. C. A., Mantovani, H. C., & Queiroz, M. V. d. (2017). Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World Journal of Microbiology and Biotechnology, 33(10), 185. https://doi.org/10.1007/s11274-017-2347-x.
Mathiyazhagan, S., Kavitha, K., Nakkeeran, S., Chandrasekar, G., Manian, K., Renukadevi, P., Krishnamoorthy, A., & Fernando, W. (2004). PGPR mediated management of stem blight of Phyllanthus amarus (Schum and Thonn) caused by Corynespora cassiicola (Berk and Curt) Wei. Archives of Phytopathology Plant Protection, 37(3), 183-199.
Mohamad, O. A., Li, L., Ma, J.-B., Hatab, S., Xu, L., Guo, J.-W., Rasulov, B. A., Liu, Y.-H., Hedlund, B. P., & Li, W.-J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology, 9, 924.
Monika, S., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, 7, 1-14.
Mota, M., Gomes, C., Souza Júnior, I., & Moura, A. (2017). Bacterial selection for biological control of plant disease: criterion determination and validation. Brazilian Journal of Microbiol, 48, 62-70.
Mugiastuti, E., Suprayogi, Prihatiningsih, N., & Soesanto, L. (2020). Isolation and characterization of the endophytic bacteria, and their potential as maize diseases control. Biodiversitas, 21(5), 1809-1815.
Nejatzadeh-Barandozi, F. (2013). Antibacterial activities and antioxidant capacity of Aloe vera. Organic Medicinal Chemistry Letters, 3, 1-8.
Newman, D. J. (2018). Are microbial endophytes the ‘actual’ producers of bioactive antitumor agents? Trends in cancer, 4(10), 662-670.
Nghia, D. H., Dung, N. T., Trang, P. T., Bao, N. T. Q., Châu, N. T. N., Hieu, L. M., Hiep, N. H., Pha, N. T., & Thanh, N. H. (2024). Antibacterial activities of endophytic bacteria isolated from Adenosma bracteosum Bonati against Aeromonas hydrophyla. TNU Journal of Science Technology, 229(09), 459-468.
Nguyen, Q. H., Nguyen, H. V., Vu, T. H.-N., Chu-Ky, S., Vu, T. T., Hoang, H., Quach, N. T., Bui, T. L., Chu, H. H., & Khieu, T. N. (2019). Characterization of endophytic Streptomyces griseorubens MPT42 and assessment of antimicrobial synergistic interactions of its extract and essential oil from host plant Litsea cubeba. Antibiotics, 8(4), 197.
Nicot, P. C., Stewart, A., Bardin, M., & Elad, Y. (2016). Biological control and biopesticide suppression of Botrytis-incited diseases. Botrytis–the fungus, the Pathogen its Management in Agricultural Systems, 165-187. https://doi.org/10.1007/978-3-319-23371-0_9.
Nxumalo, C. I., Ngidi, L. S., Shandu, J. S. E., & Maliehe, T. S. (2020). Isolation of endophytic bacteria from the leaves of Anredera cordifolia CIX1 for metabolites and their biological activities. BMC Complementary Medicine Therapies, 20(1), 1-11.
Prihatiningsih, N., & Soesanto, L. (2020). Isolation and characterization of the endophytic bacteria, and their potential as maize diseases control. Biodiversitas Journal of Biological Diversity, 21(5), 1809-1815. https://doi.org/10.13057/biodiv/d210506.
Rabbee, M. F., Hwang, B.-S., & Baek, K.-H. J. A. (2023). Bacillus velezensis: A Beneficial Biocontrol Agent or Facultative Phytopathogen for Sustainable Agriculture. Agronomy, 13(3), 840.
Ren, Z., Xie, L., Okyere, S. K., Wen, J., Ran, Y., Nong, X., & Hu, Y. (2022). Antibacterial activity of two metabolites isolated from endophytic bacteria Bacillus velezensis Ea73 in Ageratina adenophora. Frontiers in Microbiology, 13, 860009.
Saha, M., & Sarkar, A. (2021). Review on multiple facets of drug resistance: a rising challenge in the 21st century. Journal of Xenobiotics, 11(4), 197-214.
Saikkonen, K., Wäli, P., Helander, M., & Faeth, S. H. (2004). Evolution of endophyte–plant symbioses. Trends in Plant Science, 9(6), 275-280.
Sendi, Y., Pfeiffer, T., Koch, E., Mhadhbi, H., & Mrabet, M. (2020). Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection, 127(4), 453-462. doi:10.1007/s41348-020-00338-6.
Senthil, M., & Kumar, A. (2020). Plant-Microbe Interactions: Laboratory Techniques: Springer-Verlag New York.
Shastry, R. P., Rekha, P., & Rai, V. R. (2019). Biofilm inhibitory activity of metallo-protein AHL-lactonase from cell-free lysate of endophytic Enterobacter species isolated from Coscinium fenestratum Gaertn. Biocatalysis Agricultural Biotechnology, 18, 101009.
Singh, K., Gera, R., & Kumar, R. (2018). Isolation and characterization of siderophore producing rhizobia from Sesbania sesban using different types of Indian soils. International Journal Chemical Studies, 6(3), 797-880.
Srinivasan, T. (2017). Studies on antifungal activity of siderophores produced by Rhizobium spp isolated from groundnut (Arachis hypogaea). Journal of Agricultural Science Food Research, 8(4), 1-2.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology Evolution, 30(12), 2725-2729.
Truong, H. V., Tu, H. M., Bao, H. G., Hau, T. D., Nhut, L. Q., & Dien, D. V. (2023). Isolation of the endophytic bacteria in Andrographis paniculata Nees growing wild in Hau Giang province. International Journal of Innovation Scientific Research and Review, 05(06), 4702-4705.
Verma, P. P., Shelake, R. M., Das, S., Sharma, P., & Kim, J.-Y. (2019). Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. Microbial Interventions in Agriculture Environment: Volume 1: Research Trends, Priorities Prospects, 1, 281-311.
Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, & S, d. l. S.-V. (2018). The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Revista Mexicana Fitopatologia, 36, 95-130.
Vinayarani, G., & Prakash, H. (2018). Growth promoting rhizospheric and endophytic bacteria from Curcuma longa L. as biocontrol agents against rhizome rot and leaf blight diseases. The Plant Pathology Journal, 34(3), 218.
Vy, N. H. A., & Hiep, N. H. (2019). Isolation and screening of antibacterial endophytic bacteria from Moringa oliefera Lam. in Chau Thanh district, Dong Thap province. CTU Journal of Science, 55, 81-88.
Yasmin, S., Hafeez, F. Y., Mirza, M. S., Rasul, M., Arshad, H. M., Zubair, M., & Iqbal, M. (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology, 8, 1895.
Yu, F., Shen, Y., Qin, Y., Pang, Y., Fan, H., Peng, J., Pei, X., & Liu, X. J. F. i. N. (2022). Isolation and purification of antibacterial lipopeptides from Bacillus velezensis YA215 isolated from sea mangroves. Frontiers in Nutrition, 9, 1064764. doi: 10.3389/fnut.2022.1064764.
Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23(5), 753-771. https://doi.org/10.1039/B609472B.
Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49, 269-278. https://doi.org/10.1016/j.bjm.2017.06.007.