Phuc Tran - Vinh , Hoang-Linh Vo , Nhut Thanh Tran , Nguyen Chi Ngon and Chanh Nghiem Nguyen *

* Corresponding author (ncnghiem@ctu.edu.vn)

Main Article Content

Abstract

This study investigates the impact of inner-loop pressure regulation on the dynamic performance of pneumatic artificial muscle (PAM) systems using a dual-loop control architecture. Three pressure control strategies – Proportional-Integral (PI), Proportional-Integral-Derivative (PID), and Radial Basis Function neural network-tuned PID (RBF-PID) – are experimentally evaluated in terms of tracking accuracy, transient response, and disturbance rejection. Results show that the RBF-PID controller achieves the highest pressure tracking accuracy, with a root mean square error (RMSE) of 0.067 bar under a modulated sinusoidal input, outperforming PID (0.088 bar) and PI (0.094 bar) controllers. In position control tasks, all dual-loop configurations improve stability over the single-loop setup. The RBF-PID controller further enhances performance, achieving a settling time of 3.04 seconds, zero overshoot, and the shortest recovery time of 2.73 seconds under a 10-kg load disturbance. Although the performance gap between PI and PID remains modest, suggesting PI remains a practical solution for resource-constrained applications, the RBF-PID controller provides significant benefits in adaptability and robustness. These findings underscore the importance of adaptive pressure regulation in improving the tracking accuracy and resilience of PAM-based actuators. The choice of control strategy should therefore be guided by the specific application context, balancing control performance with computational and hardware constraints.

Keywords: Dual-loop control scheme, pressure control, pneumatic artificial muscle, disturbance rejection, adaptive control, RBF neural network, real-time PID tuning

Article Details

References

Al Saaideh, M., & Al Janaideh, M. (2022). On Prandtl–Ishlinskii Hysteresis Modeling of a Loaded Pneumatic Artificial Muscle. ASME Letters in Dynamic Systems and Control, 2(3), 1–12. https://doi.org/10.1115/1.4054779

Arun Jayakar, S., & Tamilselvan, G. M. (2019). Mathematical modelling and robust PID controller design for compressed air pressure control process. Applied Mathematics and Information Sciences, 13(4), 561–567. https://doi.org/10.18576/amis/130407

Choi, T., Lee, J., & Lee, J. (2006). Control of Artificial Pneumatic Muscle for Robot Application. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 4896–4901. https://doi.org/10.1109/IROS.2006.282447

Flores, T. K. S., Villanueva, J. M. M., & Gomes, H. P. (2023). Fuzzy Pressure Control: A Novel Approach to Optimizing Energy Efficiency in Series-Parallel Pumping Systems. Automation, 4(1), 11–28. https://doi.org/10.3390/automation4010002

Hiển, H. T., Dũng, N. H., & Vũ, H. M. (2018). Bộ điều khiển PID dựa trên mạng nơ-ron hàm cơ sở xuyên tâm. Can Tho University, Journal of Science, 54(7), 9. https://doi.org/10.22144/ctu.jvn.2018.118

Hou, Q., Ma, L., Wang, H., & Ding, S. (2022). Fuzzy Disturbance Observer Design for a Class of Nonlinear SISO Systems. International Journal of Fuzzy Systems, 24(1), 147–158. https://doi.org/10.1007/s40815-021-01116-8

Jamian, S., Salim, S. N. S., Kamarudin, M. N., Zainon, M., Syed Mohamad, M. S., Abdullah, L., & Hanafiah, M. A. M. (2020). Review on controller design in pneumatic actuator drive system. Telkomnika (Telecommunication Computing Electronics and Control), 18(1), 332–342. https://doi.org/10.12928/TELKOMNIKA.V18I1.12626

Jiang-Jiang Wang, Chun-Fa Zhang, & You-Yin Jing. (2008). Self-adaptive RBF neural network PID control in exhaust temperature of micro gas turbine. 2008 International Conference on Machine Learning and Cybernetics, 2131–2136. https://doi.org/10.1109/ICMLC.2008.4620758

Kalita, B., Leonessa, A., & Dwivedy, S. K. (2022). A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application. Actuators, 11(10), 288. https://doi.org/10.3390/act11100288

Lin, C.-J. J., Sie, T.-Y. Y., Chu, W.-L. L., Yau, H.-T. T., & Ding, C.-H. H. (2021). Tracking Control of Pneumatic Artificial Muscle-Activated Robot Arm Based on Sliding-Mode Control. Actuators, 10(3), 66. https://doi.org/10.3390/act10030066

Liu, Y., Zang, X., Liu, X., & Wang, L. (2015). Design of a biped robot actuated by pneumatic artificial muscles. Bio-Medical Materials and Engineering, 26(1_suppl), S757–S766. https://doi.org/10.3233/BME-151367

Massoud, M. M., & Libby, J. (2024). Comparative Analysis of Evolutionary Algorithms for PID Controller Optimization in Pneumatic Soft Robotic Systems: A Simulation and Experimental Study. IEEE Access, 12(September), 151749–151769. https://doi.org/10.1109/ACCESS.2024.3480834

Plettenburg, D. H. (2005). Pneumatic actuators: a comparison of energy-to-mass ratio’s. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005., 2005, 545–549. https://doi.org/10.1109/ICORR.2005.1502022

Qi, W., Yang, B., & Chao, Y. (2022). Research on Hydraulic Servo Valve Control Based on Fuzzy RBF. Journal of Physics: Conference Series, 2417(1), 0–10. https://doi.org/10.1088/1742-6596/2417/1/012029

Ren, H. P., Jiao, S. S., Li, J., & Deng, Y. (2022). Adaptive neural network control of pneumatic servo system considering state constraints. Mechanical Systems and Signal Processing, 162(May 2021), 107979. https://doi.org/10.1016/j.ymssp.2021.107979

Robinson, R. M., Kothera, C. S., Sanner, R. M., & Wereley, N. M. (2016). Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles. IEEE/ASME Transactions on Mechatronics, 21(1), 55–68. https://doi.org/10.1109/TMECH.2015.2483520

Ruan, Z., & Yang, Q. (2020). Adaptive fuzzy output-constrained control of uncertain MISO nonlinear systems with actuator faults. IFAC-PapersOnLine, 53(2), 13739–13744. https://doi.org/10.1016/j.ifacol.2020.12.879

Shakiba, S., Ourak, M., Poorten, E. Vander, Ayati, M., & Yousefi-Koma, A. (2021). Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter. Mechanical Systems and Signal Processing, 154, 107532. https://doi.org/10.1016/j.ymssp.2020.107532

Takosoglu, J. (2020). Angular position control system of pneumatic artificial muscles. Open Engineering, 10(1), 681–687. https://doi.org/10.1515/eng-2020-0077

Tran, V. P., Nguyen, T. H. T., Ngo, H. N., Nguyen, M. K., Nguyen, C. N., & Nguyen, C. N. (2023). Position control of a pneumatic artificial muscle using a PID controller (in Vietnamese: Điều khiển vị trí cơ nhân tạo khí nén sử dụng bộ điều khiển PID),. Can Tho Univ. J. Sci., 59(ETMD), 45–49. https://doi.org/10.22144/ctu.jvn.2023.028

Tsai, T.-C., & Chiang, M.-H. (2023). A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Soft Robotics, 10(1), 1–16. https://doi.org/10.1089/soro.2020.0216

Vo, C. P., & Ahn, K. K. (2022). An Adaptive Finite-Time Force-Sensorless Tracking Control Scheme for Pneumatic Muscle Actuators by an Optimal Force Estimation. IEEE Robotics and Automation Letters, 7(2), 1542–1549. https://doi.org/10.1109/LRA.2021.3136300

Wang, W., Pang, H., Li, X., Wu, Y., & Song, X. (2022). Research on speed control of permanent magnet synchronous motor based on RBF neural network tuning PID. Journal of Physics: Conference Series, 2264(1). https://doi.org/10.1088/1742-6596/2264/1/012018

Zabihollah, S., Moezi, S. A., & Sedaghati, R. (2024). Development of enhanced force models to analyze the nonlinear hysteresis response of miniaturized pneumatic artificial muscles. Smart Materials and Structures, 33(8). https://doi.org/10.1088/1361-665X/ad6228

Zang, X., Liu, Y., Heng, S., Lin, Z., & Zhao, J. (2017). Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl–Ishlinskii model. Bio-Medical Materials and Engineering, 28(2), 131–140. https://doi.org/10.3233/BME-171662

Zhang, X., Sun, N., Liu, G., Yang, T., & Fang, Y. (2024). Hysteresis Compensation-Based Intelligent Control for Pneumatic Artificial Muscle-Driven Humanoid Robot Manipulators With Experiments Verification. IEEE Transactions on Automation Science and Engineering, 21(3), 2538–2551. https://doi.org/10.1109/TASE.2023.3263535

Zorro, J. F., Barrera, Y. C., Viancha, N. N., Totaitive, C. S., & Fernández-Samacá, L. (2022). Design and implementation of a PID controller for a didactic pneumatic levitation system monitored by smartphone. Automática y Robótica En Latinoamérica. Aportes Desde La Academia, October, 111–126. https://doi.org/10.2307/j.ctv2d6jrr4.9