Adaptive inner-loop pressure regulation using an RBF-tuned PID for position accuracy and disturbance rejection in PAM systems
Main Article Content
Abstract
This study investigates the impact of inner-loop pressure regulation on the dynamic performance of pneumatic artificial muscle (PAM) systems using a dual-loop control architecture. Three pressure control strategies – Proportional-Integral (PI), Proportional-Integral-Derivative (PID), and Radial Basis Function neural network-tuned PID (RBF-PID) – are experimentally evaluated in terms of tracking accuracy, transient response, and disturbance rejection. Results show that the RBF-PID controller achieves the highest pressure tracking accuracy, with a root mean square error (RMSE) of 0.067 bar under a modulated sinusoidal input, outperforming PID (0.088 bar) and PI (0.094 bar) controllers. In position control tasks, all dual-loop configurations improve stability over the single-loop setup. The RBF-PID controller further enhances performance, achieving a settling time of 3.04 seconds, zero overshoot, and the shortest recovery time of 2.73 seconds under a 10-kg load disturbance. Although the performance gap between PI and PID remains modest, suggesting PI remains a practical solution for resource-constrained applications, the RBF-PID controller provides significant benefits in adaptability and robustness. These findings underscore the importance of adaptive pressure regulation in improving the tracking accuracy and resilience of PAM-based actuators. The choice of control strategy should therefore be guided by the specific application context, balancing control performance with computational and hardware constraints.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Al Saaideh, M., & Al Janaideh, M. (2022). On Prandtl–Ishlinskii Hysteresis Modeling of a Loaded Pneumatic Artificial Muscle. ASME Letters in Dynamic Systems and Control, 2(3), 1–12. https://doi.org/10.1115/1.4054779
Arun Jayakar, S., & Tamilselvan, G. M. (2019). Mathematical modelling and robust PID controller design for compressed air pressure control process. Applied Mathematics and Information Sciences, 13(4), 561–567. https://doi.org/10.18576/amis/130407
Choi, T., Lee, J., & Lee, J. (2006). Control of Artificial Pneumatic Muscle for Robot Application. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 4896–4901. https://doi.org/10.1109/IROS.2006.282447
Flores, T. K. S., Villanueva, J. M. M., & Gomes, H. P. (2023). Fuzzy Pressure Control: A Novel Approach to Optimizing Energy Efficiency in Series-Parallel Pumping Systems. Automation, 4(1), 11–28. https://doi.org/10.3390/automation4010002
Hiển, H. T., Dũng, N. H., & Vũ, H. M. (2018). Bộ điều khiển PID dựa trên mạng nơ-ron hàm cơ sở xuyên tâm. Can Tho University, Journal of Science, 54(7), 9. https://doi.org/10.22144/ctu.jvn.2018.118
Hou, Q., Ma, L., Wang, H., & Ding, S. (2022). Fuzzy Disturbance Observer Design for a Class of Nonlinear SISO Systems. International Journal of Fuzzy Systems, 24(1), 147–158. https://doi.org/10.1007/s40815-021-01116-8
Jamian, S., Salim, S. N. S., Kamarudin, M. N., Zainon, M., Syed Mohamad, M. S., Abdullah, L., & Hanafiah, M. A. M. (2020). Review on controller design in pneumatic actuator drive system. Telkomnika (Telecommunication Computing Electronics and Control), 18(1), 332–342. https://doi.org/10.12928/TELKOMNIKA.V18I1.12626
Jiang-Jiang Wang, Chun-Fa Zhang, & You-Yin Jing. (2008). Self-adaptive RBF neural network PID control in exhaust temperature of micro gas turbine. 2008 International Conference on Machine Learning and Cybernetics, 2131–2136. https://doi.org/10.1109/ICMLC.2008.4620758
Kalita, B., Leonessa, A., & Dwivedy, S. K. (2022). A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application. Actuators, 11(10), 288. https://doi.org/10.3390/act11100288
Lin, C.-J. J., Sie, T.-Y. Y., Chu, W.-L. L., Yau, H.-T. T., & Ding, C.-H. H. (2021). Tracking Control of Pneumatic Artificial Muscle-Activated Robot Arm Based on Sliding-Mode Control. Actuators, 10(3), 66. https://doi.org/10.3390/act10030066
Liu, Y., Zang, X., Liu, X., & Wang, L. (2015). Design of a biped robot actuated by pneumatic artificial muscles. Bio-Medical Materials and Engineering, 26(1_suppl), S757–S766. https://doi.org/10.3233/BME-151367
Massoud, M. M., & Libby, J. (2024). Comparative Analysis of Evolutionary Algorithms for PID Controller Optimization in Pneumatic Soft Robotic Systems: A Simulation and Experimental Study. IEEE Access, 12(September), 151749–151769. https://doi.org/10.1109/ACCESS.2024.3480834
Plettenburg, D. H. (2005). Pneumatic actuators: a comparison of energy-to-mass ratio’s. 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005., 2005, 545–549. https://doi.org/10.1109/ICORR.2005.1502022
Qi, W., Yang, B., & Chao, Y. (2022). Research on Hydraulic Servo Valve Control Based on Fuzzy RBF. Journal of Physics: Conference Series, 2417(1), 0–10. https://doi.org/10.1088/1742-6596/2417/1/012029
Ren, H. P., Jiao, S. S., Li, J., & Deng, Y. (2022). Adaptive neural network control of pneumatic servo system considering state constraints. Mechanical Systems and Signal Processing, 162(May 2021), 107979. https://doi.org/10.1016/j.ymssp.2021.107979
Robinson, R. M., Kothera, C. S., Sanner, R. M., & Wereley, N. M. (2016). Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles. IEEE/ASME Transactions on Mechatronics, 21(1), 55–68. https://doi.org/10.1109/TMECH.2015.2483520
Ruan, Z., & Yang, Q. (2020). Adaptive fuzzy output-constrained control of uncertain MISO nonlinear systems with actuator faults. IFAC-PapersOnLine, 53(2), 13739–13744. https://doi.org/10.1016/j.ifacol.2020.12.879
Shakiba, S., Ourak, M., Poorten, E. Vander, Ayati, M., & Yousefi-Koma, A. (2021). Modeling and compensation of asymmetric rate-dependent hysteresis of a miniature pneumatic artificial muscle-based catheter. Mechanical Systems and Signal Processing, 154, 107532. https://doi.org/10.1016/j.ymssp.2020.107532
Takosoglu, J. (2020). Angular position control system of pneumatic artificial muscles. Open Engineering, 10(1), 681–687. https://doi.org/10.1515/eng-2020-0077
Tran, V. P., Nguyen, T. H. T., Ngo, H. N., Nguyen, M. K., Nguyen, C. N., & Nguyen, C. N. (2023). Position control of a pneumatic artificial muscle using a PID controller (in Vietnamese: Điều khiển vị trí cơ nhân tạo khí nén sử dụng bộ điều khiển PID),. Can Tho Univ. J. Sci., 59(ETMD), 45–49. https://doi.org/10.22144/ctu.jvn.2023.028
Tsai, T.-C., & Chiang, M.-H. (2023). A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Soft Robotics, 10(1), 1–16. https://doi.org/10.1089/soro.2020.0216
Vo, C. P., & Ahn, K. K. (2022). An Adaptive Finite-Time Force-Sensorless Tracking Control Scheme for Pneumatic Muscle Actuators by an Optimal Force Estimation. IEEE Robotics and Automation Letters, 7(2), 1542–1549. https://doi.org/10.1109/LRA.2021.3136300
Wang, W., Pang, H., Li, X., Wu, Y., & Song, X. (2022). Research on speed control of permanent magnet synchronous motor based on RBF neural network tuning PID. Journal of Physics: Conference Series, 2264(1). https://doi.org/10.1088/1742-6596/2264/1/012018
Zabihollah, S., Moezi, S. A., & Sedaghati, R. (2024). Development of enhanced force models to analyze the nonlinear hysteresis response of miniaturized pneumatic artificial muscles. Smart Materials and Structures, 33(8). https://doi.org/10.1088/1361-665X/ad6228
Zang, X., Liu, Y., Heng, S., Lin, Z., & Zhao, J. (2017). Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl–Ishlinskii model. Bio-Medical Materials and Engineering, 28(2), 131–140. https://doi.org/10.3233/BME-171662
Zhang, X., Sun, N., Liu, G., Yang, T., & Fang, Y. (2024). Hysteresis Compensation-Based Intelligent Control for Pneumatic Artificial Muscle-Driven Humanoid Robot Manipulators With Experiments Verification. IEEE Transactions on Automation Science and Engineering, 21(3), 2538–2551. https://doi.org/10.1109/TASE.2023.3263535
Zorro, J. F., Barrera, Y. C., Viancha, N. N., Totaitive, C. S., & Fernández-Samacá, L. (2022). Design and implementation of a PID controller for a didactic pneumatic levitation system monitored by smartphone. Automática y Robótica En Latinoamérica. Aportes Desde La Academia, October, 111–126. https://doi.org/10.2307/j.ctv2d6jrr4.9