Ngoc Bao Tram Tran , Thi Nhung Tran and Thi Nhu Phuong Hoang *

* Correspondence: Thi Nhu Phuong Hoang (email:

Main Article Content


Our present study is the first systematic survey on duckweed biodiversity in Vietnam. More than 100 samples of Spirodela, Lemna, and Wolffia were collected throughout Vietnam and maintained under laboratory conditions. In this report, the morphological variation, chromosome number, and DNA barcoding on Spirodela samples were investigated.  S. polyrhiza and S. intermedia are the only two species of Spirodela genus - the most ancient genus among the five duckweed genera. The obtained DNA sequences of atpF- atpH and psbK – psbI regions showed that all 29 Spirodela samples collected from different regions along Vietnam are S. polyrhiza. Specific SNPs of individual S. polyrhiza clones were identified in the psbK-psbI region. The differences in genome size (163 – 170 Mbp), frond size (0.80 – 1.25 cm2), frond shape (oval/circular symmetry/asymmetry), stomata (20.57 – 24.00 µm in length and 10.00 – 21.30 µm in width) and root number (4.75 – 6.69 roots) among six representatives S. polyrhiza clones were recorded. The chromosome number of these clones was uniformly 2n=40.

Keywords: Chromosome number, duckweed, DNA barcode, genome size

Article Details


Appenroth, K. J., Crawford, D. J., & Les, D. H. (2015). After the genome sequencing of duckweed–how to proceed with research on the fastest growing angiosperm?. Plant Biology, 17, 1-4.

Appenroth, K. J., Sree, K. S., Böhm, V., Hammann, S., Vetter, W., Leiterer, M., & Jahreis, G. (2017). Nutritional value of duckweeds (Lemnaceae) as human food. Food chemistry, 217, 266-273.

Bog, M., Baumbach, H., Schween, U., Hellwig, F., Landolt, E., & Appenroth, K. J. (2010). Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta, 232, 609-19.

Bog, M., Lautenschlager, U., Landrock, M. F., Landolt, E., Fuchs, J., S.K., S., Oberprieler, C., & Appenroth, K. J. (2015). Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (Lemnaceae) by three plastidic markers and amplified fragment length polymorphism (AFLP). Hydrobiologia, 749, 169-182.

Bog, M., Sree, K. S., Fuchs, J., Hoang, P. T. N., Schubert, I., Kuever, J., Rabenstein, A., Paolacci, S., Jansen, M. A. K., & Appenroth, K. J. (2020). A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon, 69, 56-66.

Borisjuk, N., Chu, P., Gutierrez, R., Zhang, H., Acosta, K., Friesen, N., ... & Lam, E. (2015). Assessment, validation and deployment strategy of a two‐barcode protocol for facile genotyping of duckweed species. Plant Biology, 17, 42-49.

Bui, X. (2009). Evaluation of integrated systems and uses of water plants in diets for duck production in the Mekong Delta. Can Tho University Journal of Science, 11, 228-236 (in Vietnamese).

Cao, H. X., Vu, G. T., Wang, W., Appenroth, K. J., Messing, J., & Schubert, I. (2016). The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol, 209, 354-63.

Chaudhuri, D., Majumder, A., Misra, A. K., & Bandyopadhyay, K. (2014) Cadmium removal by Lemna minor and Spirodela polyrhiza. Int J Phytoremediation, 16(7-12):1119-1132. doi: 10.1080/15226514.2013.821446

Cui, W., & Cheng, J. J. (2015). Growing duckweed for biofuel production: a review. Plant biology, 17, 16-23. doi: 10.1111/plb.12216

Dolezel, J. (2003). Nuclear DNA content and genome size of trout and human. Cytometry Part A, 51, 127-128.

Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature protocols, 2(9), 2233-2244.

Fujita, T., Nakao, E., Takeuchi, M., Tanimura, A., Ando, A., Kishino, S., ... & Shimizu, S. (2016). Characterization of starch-accumulating duckweeds, Wolffia globosa, as renewable carbon source for bioethanol production. Biocatalysis and agricultural biotechnology, 6, 123-127.

Goswami, C., Majumder, A., Misra, A. K., & Bandyopadhyay, K. (2014). Arsenic uptake by Lemna minor in hydroponic system. International journal of phytoremediation, 16(12), 1221-1227. doi: 10.1080/15226514.2013.821452

Hoang, P. N., Michael, T. P., Gilbert, S., Chu, P., Motley, S. T., Appenroth, K. J., ... & Lam, E. (2018). Generating a high‐confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. The Plant Journal, 96(3), 670-684.

Hoang, P. T., & Schubert, I. (2017). Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia. Chromosoma, 126(6), 729-739.

Hoang, P. T., Schubert, V., Meister, A., Fuchs, J., & Schubert, I. (2019). Variation in genome size, cell and nucleus volume, chromosome number and rDNA loci among duckweeds. Scientific reports, 9(1), 1-13.

Lam, E., Appenroth, K. J., Michael, T., Mori, K., & Fakhoorian, T. (2014). Duckweed in bloom: the 2nd International Conference on Duckweed Research and Applications heralds the return of a plant model for plant biology.

Landolt, E. (1986). The family of Lemnaceae–a monographic study: Vol. 1: Morphology, karyology, ecology, geographic distribution, systematic position, nomenclature, descriptions. Veroff. Geobot. Inst. ETH, Stiftung Rubel, Zurich, 71, 566.

Michael, T. P., Bryant, D., Gutierrez, R., Borisjuk, N., Chu, P., Zhang, H., ... & Lam, E. (2017). Comprehensive definition of genome features in Spirodela polyrhiza by high‐depth physical mapping and short‐read DNA sequencing strategies. The Plant Journal, 89(3), 617-635.

Nguyen, H. N. (2016). Evaluation of the influence and accumulation level of Copper, Alkin, and Cadmium on duckweed (Lemna gibba L.) in an exclusive test. Vietnam Academy of Agriculture (in Vietnamese).

Rusoff, L. L., Blakeney Jr, E. W., & Culley Jr, D. D. (1980). Duckweeds (Lemnaceae family): a potential source of protein and amino acids. Journal of Agricultural and Food Chemistry, 28(4), 848-850.

Shtein, I., Popper, Z. A., & Harpaz-Saad, S. (2017). Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns. Plant signaling & behavior, 12(7), 1021-33.

Sree, K. S., Adelmann, K., Garcia, C., Lam, E., & Appenroth, K. J. (2015). Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta, 241(6), 1395-1404. doi: 10.1007/s00425-015-2264-x

Teixeira, S., Vieira, M. N., Marques, J. E., & Pereira, R. (2014). Bioremediation of an iron-rich mine effluent by Lemna minor. International journal of phytoremediation, 16(12), 1228-1240. doi: 10.1080/15226514.2013.821454

Tippery, N. P., Les, D. H., & Crawford, D. J. (2015). Evaluation of phylogenetic relationships in L emnaceae using nuclear ribosomal data. Plant Biology, 17, 50-58.

Tran, T. D. (2009). Study on isolation control factors of ubiquitin gene expression from two species of duckweeds Lemna aequinoctialis DB1 and Spirodela polyrhiza DB2. Thai Nguyen University - University of Pedagogy (in Vietnamese).

Wang, W., Haberer, G., Gundlach, H., Gläßer, C., Nussbaumer, T. C. L. M., Luo, M. C., ... & Messing, J. (2014). The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nature communications, 5(1), 1-13.

Wang, W., Kerstetter, R. A. & Michael, T. P. 2011. Evolution of Genome Size in Duckweeds (Lemnaceae). Journal of Botany, 2011, 1-9.

Wang, W., Wu, Y., Yan, Y., Ermakova, M., Kerstetter, R., & Messing, J. (2010). DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biology, 10(1), 1-11.

Most read articles by the same author(s)