Duc Thang Nguyen , Le Lan Anh Hoang , Thi Thanh Van Pham , Minh Tuan Nguyen , Thanh Hang Nguyen , Huu Phuoc Nguyen , Thuy Van Anh Huynh , Thi Nhung Tran and Thi Nhu Phuong Hoang *

* Corresponding author (phuonghtn@dlu.edu.vn)

Main Article Content

Abstract

In this study, three clones of the duckweed genus Lemna, collected from three different regions of Vietnam Binh Thuan Bac Giang and Ben Tre were used to evaluate the growth and development in a culture medium containing different concentrations of As3+, Cd2+, or Pb2+. During 14 days of incubation, the growth rate was determined daily by measuring the surface area of all plants of each sample. Experimental results show that the three Lemna clones could grow in nutrient medium contaminated by heavy metal at a concentration of 0.3-0.5 mg/L for As3+, 0.15-0.3 mg/L for Cd2+, and 0.15 mg/L for Pb2+. At these concentrations, the division rate of the treated clones was several times higher than that of the controls. The highest increase in the surface area was recorded for Lemna BTN (68.47 times higher when cultured in medium supplemented in 0.3 mg/L Pb2+ than under control conditions). The surface area of Lemna BTR cultured in a medium supplemented with 0.3 mg/L As3+ was 54.65 times higher than in medium without arsenic. The obtained results showed that Lemna BGG and Lemna BTR can tolerate arsenic and cadmium pollution while Lemna BTN tolerates lead pollution.

Keywords: Aquatic plants, duckweed, heavy metal, Lemna.

Article Details

References

Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environ Toxicol Phar, 40(3), 828-846.

Ekperusi, A. O., Sikoki, F. D., & Nwachukwu, E. O. (2019). Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere, 223, 285-309.

Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F., & Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett., 28, 1867–1876.

Appenroth, K. J., Teller, S., & Horn, M. (1996). Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol Plantarum, 38(1), 95.

Axtell, N. R., Sternberg, S. P. K., & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol., 89(1), 41–48

Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz J Chem Eng., 31(4), 881–886. Doi:10.1590/0104-6632. 20140314s00002734.

Basile, A., Sorbo, S., Conte, B., Cobianchi, R.C., Trinchella, F., Carginale, V., Sorbo, S., Conte, B., Cobianchi, R. C., & Trinchella, F. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int. J. Phytoremediat. 14, 374–387. http://dx.doi.org/10.1080/15226514.2011.620653.

Bokhari SH, Mahmood – Ul – Hassan M, Ahmad M. (2019a). Phytoextraction of Ni, Pb and, Cd by duckweeds. Int J Phytoremediation, 21(8), 799-806.

Bokhari SH, Mahmood-Ul-Hassan M, Ahmad M. (2019b). Phytoextraction of Ni, Pb and, Cd by duckweeds. International Journal of Phytoremediation, 1-8.

Bonanno, G., Vymazal, J., Cirelli, G.L. (2018). Translocation, accumulation and bioindication of trace elements in wetland plants. Sci. Total Environ., 631e632, 252e261.

Chandra, R. (2015). Advances in Biodegradation and Bioremediation of Industrial Waste. CRC Press Taylor & Francis Group, Boca Raton, United States, p. 442.

Chen, L., Fang, Y., Jin, Y., Chen, Q., Zhao, Y., Xiao, Y., & Zhao, H. (2013). Biosorption of Pb2+ by dried powder of duckweed (Lemna aequinoctialis). Chin J Appl Environ Biol., 19, 1046–1052.

Chia, M. A., Lombardi, A. T., Melão, M., da, G. G., & Parrish, C. C. (2015). Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat. Toxicol., 160, 87–95.

Goswami, C., Majumder, A., Misra, A. K., & Bandyopadhyay, K. (2014). Arsenic uptake by Lemna minor in hydroponic system. Int J Phyto., 16(12), 1221-1227.

Grijalbo, L., Becerri, J.M., Barrutia, O., Gutierrez-Manero, J., Garcia, J.A.L. (2016). Lemna minor tolerance to metal-working fluid residues: implications for rhizoremediation. Plant Biol. 18, 695e702.

Gregor, M. (2004). Metal Availability, Uptake, Transport and Accumulation in Plants. Heavy Metal Stress in Plants. From Biomolecules to Ecosystems. Spinger-verlag, Berlin, pp. 1–27.

Gusman, G.. S., Alves, J.O., Farnese, F. S., & Cambraia, J. (2012). Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol Plant. 35, 1201–1209.

Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot, 53, 1-11

Imron, M., Ananta, A., Ramadhani, I., Kurniawan, S. B., & Abdullah, S. 2021. Potential of Lemna minor for removal of methylene blue in aqueous solution: Kinetics, adsorption mechanism, and degradation pathway. Environmental Technology & Innovation, 24, 101921.

Khellaf, N., & Zerdaoui, M. (2009). Growth response of the duckweed Lemna minor to heavy metal pollution. J Environ Heal Sci Eng., 6(3), 161-166.

Küpper, H., Götz, B., Mijovilovich, A., Küpper, F. C., & Meyer-Klaucke, W. (2009). Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol. 151, 702–714.

Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., & Kroneck, P.M.H. (2004). Tissue- and agedependent differences in the complexation of cadmium and zinc in the Cd/Zn hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol., 134, 748–757.

Keith, C., Borazjani, H., Diehl, S., Prewitt, M., Su, Y Han, F. & Baldwin, B. (2007). Aquatic Phytoremediation of CCA and Copper Contaminated Water. Poster session of 37th Annual Mississipi Water Resources Conference. USA.

Lin, Y. F., & Aarts, M. G. (2012). The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci., 69(19), 3187–3206. doi:10.1007/s00018-012-1089-z

Loveson, A., Sivalingam, R., & Syamkumar, R. (2013). Aquatic macrophyte Spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. Iosr-Jestft., 5(1), 51–58. doi:10.9790/2402-0515158.

Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol., 154, 29–43.

Megateli, S., Semsari, S., & Couderchet, M. (2009). Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ. Saf., 72, 1774-80. Doi: 10.1016/j.ecoenv.2009.05.004

Miretzky P, Saralegui A, Cirelli AF. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57, 997-1005.

Mohamed, S., Mahrous, A., Elshahat, R. & Kassem, M. 2021. Accumulation of Iron, Zinc and Lead by Azolla pinnata and Lemna minor and activity in contaminated water %J. Egyptian Journal of Chemistry, 64, 5017-5030.

Mohedano, R.A., Costa, R.H.R., Tavares, F.A., Filho, P.B. (2012). High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds, bioresour. Technol., 112, 98-104.

Nguyen, T. M. N. (2020) Situation of some heavy metal pollution in water environment, food, population health in a coastal area of Thuy Nguyen district, Hai Phong and testing of intervention solutions (Doctoral thesis). Hai Phong Medicine and Pharmacy University (in Vietnamese).

Pais, I., & Jones, J. B. (2000). The handbook of trace elements. CRC Press, Florida, p. 240.

Piotrowska, A., Bajguz, A., Godlewska-Żyłkiewicz, B., Zambrzycka, E. (2010). Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch Environ Con Tox., 58(3), 594-604.

Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci., 180(2), 169–181. doi:10.1016/j.plantsci.2010.08.016.

Rahmani, G. N. H., & Sternberg, S. P. K. (1999). Bioremoval of lead from water using Lemna minor. Bioresour Technol, 70(3), 225–230.

Saha, P., Banerjee, A., Sarkar, S. (2014). Phytoremediation potential of duckweed (Lemna minor L.) on steel wastewater. Int. J. Phytoremed., 17, 589e596.

Syeda, H. B., Iftikhar, A., Muhammad, M. U. H. & Ashiq, M. (2016). Phytoremediation potential of Lemna minor L. for heavy metals, International Journal of Phytoremediation, 18(1), 25-32, DOI: 10.1080/15226514.2015.1058331

Şeyda, F. E., Esra, Ü. T., Murat, K., & Evren, Tunca. (2017). Bioremediation of heavy metal contaminated medium using Lemna minor, Daphnia magna and their consortium. Chemistry and Ecology. DOI: 10.1080/02757540.2017.1393534

Syeda, H. B., Muhammad, M. U. H. & Munir, A. (2019). Phytoextraction of Ni, Pb and, Cd by duckweeds. International Journal of Phytoremediation, DOI: 10.1080/15226514.2019.1566882

Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57, 711–726.

Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U., Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Sci. 313, 1072-1075.

Singh, N., Kumar, D., & Sahu, A. P. (2007). Arsenic in the environment: effects on human health and possible prevention. J Environ Biol., 28(2), 359.

Sun, W., Van Montagu, M., & Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants, Biochim. Phys. Acta, 1577, 1-9.

Sun, R., Zhou, Q., & Jin, C. (2006). Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285, 125–134.

Tam N, Wong J, Wong Y. (2001). Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption. Environ Pollut., 114(1), 85-92.

Teixeira, S., Vieira, M. N., Espinha Marques, J., & Pereira, R. (2014). Bioremediation of an iron-rich mine effluent by Lemna minor. Int J Phytoremediat., 16(7-12), 1228-1240.

Ucuncu, E., Tunca, E., Fikirdesici, S., Ozkan, A. D., & Altindag, A. (2013). Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor. Bull Environ Contam Toxicol, 91(5), 600-604.

Ucuncu, E., Tunca, E., Fikirdesici, S., & Altindag, A. (2012). Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.). Int J Phytoremediation, 15(4), 376–384

Varga M, Horvatić J, Čelić A. (2013). Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium. Cent Eur J Biol., 8(11), 1083-1093.

Vinodhini, R., & Narayanan, M. (2009). The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L). Iran J Environ Health Sci Eng., 6(1), 23-28.

Wang, C., Sample, D. J., Bell, C. (2014a). Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds. Sci. Total Environ. 499, 384e393.

Wang, Y., Fang, L., Lin, L., Luan, T., Tam, N. F. (2014b). Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere, 99, 152e159.

Wang, W., Li, R., Zhu, Q., Tang, X., Zhao, Q. (2016). Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4þ toxicity. BMC Plant Biol. 16, 92. https://doi.org/10.1186/s12870-016-0774-8.

Xu, J., Zhu, Y., Ge, Q., Li, Y., Sun, J., Zhang, Y., & Liu, X. (2012). Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol., 196, 125–138.

Yilmaz, D. D., & Akbulut, H. (2011). Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes). Int J Phytoremediation., 13(10), 970–984.

Zhang, K., Chen, Y., Zhang, Y., Zhao, Y., Shen, Y., Huang, L., Gao, X., Guo, J. (2014a). The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake. Environ. Technol., 35, 562e567.

Zhang, C., Duan, P., Xu, Y., Wang, B., Wang, F., & Zhang, L. (2014b). Catalytic upgrading of duckweed biocrude in subcritical water. Bioresour. Technol. 166, 37e44.

Zhang, D.Q., Gersberg, R.M., Ng, W.J., Tan, S.K. (2014c). Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ. Pollut., 184, 620e639.