Le Uyen Thanh *

* Corresponding author (luthanh@dthu.edu.vn)

Main Article Content

Abstract

Three out of 203 bacterial isolates showed high antagonistic activity by in vitro screening against three strains of Xanthomonas spp. causing leaf spots from Rosa spp.. Antagonistic bacteria were collected from the rhizosphere substrate of potted rose in Sa Dec Flower Village of Dong Thap province, Viet Nam. While three pathogen strains of Xanthomonas spp. were stored at the Biochemistry Laboratory of Biotechnology Research and Development Institute of Can Tho university. Three effective isolates were identified by Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) and analysis of 16S rRNA gene sequence. Using MALDI-TOF, these antagonistic bacteria belong to Bacillus genera. The amplification of 16S rDNA gene was performed using 27F and 1492R primers. The nucleotide sequences of this gene were aligned using the GenBank database and BLAST-N program from the NCBI site. The isolates identity of BR16, BR37, and BR88 shared the highest similarity values in turn with Bacillus velezensis MN160320 (99.11%), Bacillus subtilis MN493770 (99.11%), Bacillus amyloliquefaciens KX871898 (99.41%). These Bacillus isolates were designed Bacillus velezensis MW677565 (from BR16), B. subtilis MW828613 (from BR37), B. amyloliquefaciens MW828656 (from BR88). These isolates have shown the ability to fight phytopathogenic bacteria of rose plants in Dong Thap of Viet Nam.

Keywords: 16S rRNA gene, Antagonistic bacteria, Isolation, Identification, MALDI-TOF, Xanthomonas spp.

Article Details

References

Azman, N. A., Sijam, K., Hata, E. M., Othman, R., & Saud, H. M. (2017). Screening of Bacteria as Antagonist against Xanthomonas oryzae pv. oryzae, the Causal Agent of Bacterial Leaf Blight of Paddy and as Plant Growth Promoter. Journal of Experimental Agriculture International, 16(4), 1-15. https://doi.org/10.9734/JEAI/2017/33697

Cuc, N. T. T., & Thuy, T. T. T. (2014). Epidemiology on rose, chrysanthemum, apricot blossom, marigold (1st ed.). Can Tho University Publisher.

Daughtrey, M. L., & Benson, D. M. (2005). Principles of plant health management for ornamental plants. Annual Review of Phytopathology, 43, 141–169. https://doi.org/10.1146/annurev.phyto.43.040204.140007

Das R., Mondal B., Mondal P., Khatua, M. L., & Mukherjee, N. (2014). Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India. Journal of Biopesticides, 7, 38-41.

Fira D., Dimkić I., Berić T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044

Huang, T.-P., Tzeng, D.D.-S., Wong, A.C.L., Chen, C.-H., Lu, K.-M., Lee, Y.-H., Huang, W.-D., Hwang, B.-F., & Tzeng, K.-C. (2012). DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with an indication of the interference of phyllosphere biofilms. PLoS ONE, 7, e42124. https://doi.org/10.1371/journal.pone.0042124

Lanna-Filho, R., Souza, R.M., Magalhães, M.M., Villela, L., Zanotto, E., Ribeiro-Júnior, P.M., & Resende, M.L.V. (2013). Induced defense responses in tomato against bacterial spot by proteins synthesized by endophytic bacteria. Trop Plant Pathol, 38, 295–302. https://doi.org/10.1590/S1982-56762013005000011.

Li, B., Xu, L.H., Lou, M.M., Li, F., Zhang, Y.D., & Xie, G.L. (2008). Isolation & characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima, Letters in Applied Microbiology, 46, 450–455. https://doi.org/10.1111/j.1472-765X.2008.02337.x

Li, B., Wang, X., Chen, R.X., Huangfu, W.G., & Xie, G. L. (2007). Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydrate Polymers, 72(2), 287-292. https://doi.org/​10.1016/j.carbpol.2007.08.012

Li, S.B., Fang, M., Zhou, R.C., & Huang, J. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. Diefenbachiae - Induced blight of Anthurium. Biological Control, 63(1), 9-16. https://doi.org/10.1016/j.biocontrol.2012.06.002

Liu, K., Garret, C., Fadamiro, H., & Kloepper, J.W. (2016). Antagonism of black rot in cabbage by mixture of plant growth-promoting rhizobacteria (PGPR). Biological Control, 61, 605–613. https://doi.org/10.1007/s10526-016-9742-3

Liu, K., McInroy J.A., Hu, C.H., & Kloepper, J.W. (2018). Mixtures of plant-growth-promoting Rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Disease, 102, 67–72. https://doi.org/10.1094/PDIS-04-17-0478-RE

Mirik, M., Aysan, Y., & Çinar, Ö. (2008). Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish Journal of Agriculture and Forestry, 32, 381–390.

Neelja, S., Manish, K., Pawan K. K., & Jugsharan S. V. (2015). MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology, 6, 791. doi: 10.3389/fmicb.2015.00791

Ribeiro, D.G., Carmo L.S.T., Santos, I.R., Almeida, R.F., Silva, L.P., Oliveira-Neto, O.B., Scherwinski-Pereira, E.J., & Mehta, A. (2019). MALDI TOF MS-profiling: Applications for bacterial and plant sample differentiation and biological variability assessment. Journal of Proteomics, 213, 103619. https://doi.org/10.1016/j.jprot.2019.103619

Strange, P.N., & Scott, P.R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43(1), 83-116. https://doi.org/10.1146/annurev.phyto.43.113004.133839

Strejcek, M., Smrhova, T., Junkova, P., & Uhlik, O. (2018). Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates. Frontiers in Microbiology, 9, 1294. https://doi.org/10.3389/fmicb.​2018.01294

Tam, H.N., Thanh, L.U., Phap, T.Q., Tung, T.T., Danh, L.T., & Nga, N.T.T. (2019). Isolation and virulent evaluation of Ralstonia solanacearum cause the bacterial wilt in chrysanthemum (Chrysanthemum sp.) from Mekong Delta and Lam Dong Province. Biological Forum, 11(1), 101-106.

Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D.J. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology, 173(2), 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

Wu, W.S., Wu, H.C., & Li, Y.L. (2007). Potential of Bacillus amyloliquefaciens for control of Alternaria cosmosa and A. patula of Cosmos sulfurous (Yellow Cosmos) and Tagetes patula (French Marigold). Jounal of Phytopathology, 155(11-12), 670–675. https://doi.org/10.1111/j.1439-0434.2007.01293.x

Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K., & Shirata, A. (2001). Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 91, 181–187. https://doi.org/10.1094/PHYTO.2001.91.2.181

Zeriouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla F. M., Vicente, A., & Perez-Garcia, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions Journal, 24, 1540–1552. https://doi.org/10.1146/annurev.phyto.43.040204.140007.