Pham Bich Nhu * and Nguyen Tu Thinh

* Corresponding author (pbnhu@ctu.edu.vn)

Main Article Content

Abstract

The hit problem, set up by F. Peterson, finds a minimal set of generators for the polynomial algebra P(s)=F_2 [x_1,x_2,…,x_s ], as a module over the mod-2 Steenrod algebra. We study the extended hit problem for the cohomology of the classifying space 〖BE〗_s over field F_3, P(s)=H^* 〖B(RP^∞ )〗^s=E(x_1,x_2,…,x_s )⨂F_p [y_1,y_2,…,y_s ], with s=3 at degrees d ≤10.

Keywords: Classifying space, exterior algebra, hit problem, polynomial algebra, Steenrod algebra

Article Details

References

Boardman, J. M. (1993). Modular representations on the homology of powers of real projective space. Contemporary Mathematics, 146, 49-49.

Bruner, R., Ha, L. M., & Hung, N. H. V. (2005). On the behavior of the algebraic transfer. Transactions of the American Mathematical Society, 357(2), 473-487.

Crossley, M. D. (1996). -annihilated elements in . Mathematical Proceedings of the Cambridge Philosophical Society, 120(3), 441–453.

Crossley, M. D. (1999). generators for and Singer's homological transfer. Mathematische Zeitschrift, 230(3), 401-411.

Giambalvo, V., & Peterson, F. P. (2001). A-generators for ideals in the Dickson algebra. Journal of Pure and Applied Algebra, 158(2-3), 161-182.

Ha, L. M. (2007). Sub-Hopf algebras of the Steenrod algebra and the Singer transfer. Geometry & Topology Monographs, 11, 81-105.

Hung, N. H. V. (2005). The cohomology of the Steenrod algebra and representations of the general linear groups. Transactions of the American Mathematical Society, 357(10), 4065-4089.

Hung, N. H.V., & Nam, T. N. (2001a). The hit problem for the Dickson algebra. Transactions of the American Mathematical Society, 353(12), 5029-5040.

Hung, N. H. V., & Nam, T. N. (2001b). The hit problem for the modular invariants of linear groups. Journal of Algebra, 246(1), 367-384.

Hung, N. H. V., & Peterson, F. P. (1995). A-generator for the Dickson algebra. Transactions of the American Mathematical Society, 347, 4687-4728, MR1316852.

Hung, N. H. V., & Peterson, F. P. (1998). Spherical classes and the Dickson algebra. In Mathematical Proceedings of the Cambridge Philosophical Society, 124, 253–264, MR1631123.

Janfada, A. S., & Wood, R. M. W. (2002). The hit problem for symmetric polynomials over the Steenrod algebra. In Mathematical Proceedings of the Cambridge Philosophical Society, 133(2), 295-303. Cambridge University Press.

Kameko, M. (1990). Products of projective spaces as Steenrod modules (PhD Thesis). The Johns Hopkins University.

Kameko, M. (2003). Generators of the cohomology of . Toyama University, Japan, Preprint.

Minami, N. (1999). The iterated transfer analogue of the new doomsday conjecture. Transactions of the American Mathematical Society, 351(6), 2325-2351.

Mothebe, M. F. (2013). Admissible monomials and generating sets for the polynomial algebra as a module over the Steenrod algebra. African Diaspora Journal of Mathematics, 16, 18-27, MR3091712.

Peterson, F. P. (1987). Generators of as a module over the Steenrod algebra. Abstracts the American Mathematical Society, 833.

Peterson, F. P. (1989). A-generators for certain polynomial algebras. Mathematical Proceedings of the Cambridge Philosophical Society, 105, 311–312, MR0974987.

Phuc, D. V. (2020). The “hit” problem of five variables in the generic degree and its application. Topology and its Applications, 282, 107321.

Phuc, D. V. (2022). On the hit problem for the polynomial algebra and the algebraic transfer. Authorea Preprints.

Phuc, D. V. (2023). A note on the hit problem for the polynomial algebra of six variables and the sixth algebraic transfer. Journal of Algebra, 613, 1-31.

Priddy, S. (1990). On characterizing summands in the classifying space of a group, I. American Journal of Mathematics, 112, 737-748, MR1073007.

Singer, W. M. (1989). The transfer in homological algebra, Mathematische Zeitschrift, 202, 493-523, MR1022818

Singer, W. M. (1991). On the action of Steenrod squares on polynomial algebras. Proceedings of the American Mathematical Society, 111(2), 577-583.

Steenrod, N. E. (1962). Cohomology operations (No. 50). Princeton University Press.

Sum, N. (2007). The hit problem for the polynomial algebra of four variables. Quy Nhon University, Vietnam, Preprint. http://arxiv.org/abs/1412.1709.

Sum, N. (2013). On the hit problem for the polynomial algebra. Proceedings of the Academy of Sciences, Paris (pp. 565-568).

Sum, N. (2014). On the Peterson hit problem of five variables and its applications to the fifth Singer transfer. East-West Journal of Mathematics, 16, 47-62.

Sum, N. (2023). The squaring operation and the hit problem for the polynomial algebra in a type of generic degree. Journal of Algebra, 622, 165-196.

Tin, N. K. (2022a). On the hit problem for the Steenrod algebra in the generic degree and its applications. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 116(2), 81.

Tin, N. K. (2022b). Hit problem for the polynomial algebra as a module over the Steenrod algebra in some degrees. Asian-European Journal of Mathematics, 15(01), 2250007.

Wood, R. M. W. (1989). Steenrod squares of polynomials and the Peterson conjecture, Mathematical Proceedings of the Cambridge Philosophical Society, 105, 307-309, MR0974986.

Wood, D. C. R. (1992). The boundedness conjecture for the action of the Steenrod algebra on polynomials. In Adams Memorial Symposium on Algebraic Topology: Manchester 1990 (Vol. 2, p. 203). Cambridge University Press.

Wood, R. M. W. (2000). Hit problems and the Steenrod algebras. In Proceedings of the summer school “Interactions between algebraic topology and invariant theory”, a satellite conference of the third European congress of mathematics, Lecture Course, Ioannina University, Greece (pp. 65-103).