Repurpose the antimicrobial peptide Buforin II for plasmid transformation into Escherichia coli
Main Article Content
Abstract
Antimicrobial peptides Buforin II, derived from histone H2A, demonstrates strong cell-penetrating activity without cell lysis and strong affinity for internal cellular nucleic acids, making it a potential candidate for macromolecule delivery into bacteria. Herein, we designed a peptide that is the fusion of Buforin II and a polycation tail (KH)6 and assessed its efficiency in delivering plasmid (pGEX-RG-(TAG)5, 7,142 bp) into Escherichia coli OmniMAX. The peptide and plasmid were incubated at 25°C to form the complexes at various peptide concentrations from 5 to 50 µg/mL. After that, the complexes were incubated with the E. coli competent cells at 25°C. In comparison with the transformation efficiency and normalized transformation efficiency of conventional heat-shock method, a 1.28 and 7.83 times higher transformation efficiency, correspondingly, was achieved by using novel peptide-based delivery system at peptide concentration of 5 µg/mL. The cell viability of over 90% was displayed at peptide concentration of 5 µg/mL. This study can lead to the development of a transformation approach under mild conditions and an ideal tool for gene delivery.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Alahakoon, A. U., Jayasena, D. D., Jung, S., Kim, H. J., Kim, S. H., & Jo, C. (2014). Antimicrobial effect of calcium chloride alone and combined with lactic acid injected into chicken breast meat. Korean Journal for Food Science of Animal Resources, 34(2), 221-229. https://doi.org/10.5851/kosfa.2014.34.2.221
Aune, T. E. V., & Aachmann, F. L. (2010). Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Applied Microbiology and Biotechnology, 85(5), 1301-1313. https://doi.org/10.1007/s00253-009-2349-1
Chang, A. Y., Chau, V., Landas, J. A., & Pang, Y. (2017). Preparation of calcium competent Escherichia coli and heat-shock transformation. Journal of Experimental Microbiology and Immunology Methods, 1(22-25).
Chen, C. -P., Chou, J. -C., Liu, B. R., Chang, M., & Lee, H. -J. (2007). Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. Federation of European Biochemical Societies Letters, 581(9), 1891-1897. https://doi.org/10.1016/j.febslet.2007.03.076
Choi, H. -A., Lee, Y. -C., Lee, J. -Y., Shin, H. -J., Han, H. -K., & Kim, G. -J. (2013). A simple bacterial transformation method using magnesium- and calcium-aminoclays. Journal of Microbiological Methods, 95(2), 97-101. https://doi.org/10.1016/j.mimet.2013.07.018
Farkhani, S. M., Valizadeh, A., Karami, H., Mohammadi, S., Sohrabi, N., & Badrzadeh, F. (2014). Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 57, 78-94. https://doi.org/10.1016/j.peptides.2014.04.015
Heiat, M., Aghamollaei, H., Moosazadeh Moghaddam, M., & Kooshki, H. (2014). Using CM11 peptide as a cell permeable agent for the improvement of conventional plasmid transformation methods in Escherichia coli and Bacillus subtilis. Minerva Biotecnologica, 26, 149-157.
Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.582779
Islam, M. M., Odahara, M., Yoshizumi, T., Oikawa, K., Kimura, M., Su’etsugu, M., & Numata, K. (2019). Cell-penetrating peptide-mediated transformation of large plasmid DNA into Escherichia coli. ACS Synthetic Biology, 8(5), 1215-1218. https://doi.org/10.1021/acssynbio.9b00055
Jeong, C., Yoo, J., Lee, D., & Kim, Y.-C. (2016). A branched TAT cell-penetrating peptide as a novel delivery carrier for the efficient gene transfection. Biomaterials Research, 20(1), 28. https://doi.org/10.1186/s40824-016-0076-0
Lee, C. Y., Li, J. F., Liou, J. S., Charng, Y. C., Huang, Y. W., & Lee, H. J. (2011). A gene delivery system for human cells mediated by both a cell-penetrating peptide and a piggyBac transposase. Biomaterials, 32(26), 6264-6276. https://doi.org/10.1016/j.biomaterials.2011.05.012
Lim, G., Lum, D., Ng, B., & Sam, C. (2015). Differential transformation efficiencies observed for pUC19 and pBR322 in E. coli may be related to calcium chloride concentration. Journal of Experimental Microbiology and Immunology, 20, 1-6.
Liu, J., Chang, W., Pan, L., Liu, X., Su, L., Zhang, W., Li, Q., & Zheng, Y. (2018). An improved method of preparing high efficiency transformation Escherichia coli with both plasmids and larger DNA fragments. Indian Journal of Microbiology, 58(4), 448-456. https://doi.org/10.1007/s12088-018-0743-z
Mendes, G. P., Kluskens, L. D., Lanceros-Méndez, S., & Mota, M. (2021a). Magnesium aminoclays as plasmid delivery agents for non-competent Escherichia coli JM109 transformation. Applied Clay Science, 204, 106010. https://doi.org/10.1016/j.clay.2021.106010
Mendes, G. P., Kluskens, L. D., Mota, M., Lanceros-Méndez, S., & Hatton, T. A. (2021b). Spherical and needle shaped magnetic nanoparticles for friction and magnetic stimulated transformation of microorganisms. Nano-Structures & Nano-Objects, 26, 100732. https://doi.org/10.1016/j.nanoso.2021.100732
Mimee, M., Citorik, R. J., & Lu, T. K. (2016). Microbiome therapeutics - Advances and challenges. Advanced Drug Delivery Reviews, 105(Pt A), 44-54. https://doi.org/10.1016/j.addr.2016.04.032
Pardee, K., Slomovic, S., Nguyen, P. Q., Lee, J. W., Donghia, N., Burrill, D., Ferrante, T., McSorley, F. R., Furuta, Y., Vernet, A., Lewandowski, M., Boddy, C. N., Joshi, N. S., & Collins, J. J. (2016). Portable, on-demand biomolecular manufacturing. Cell, 167(1), 248-259.e212. https://doi.org/10.1016/j.cell.2016.09.013
Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S., & Kim, S. C. (2000). Structure-activity analysis of Buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of Buforin II. Proceedings of the National Academy of Sciences, 97(15), 8245-8250. https://doi.org/10.1073/pnas.150518097
Rossi, J. J., June, C. H., & Kohn, D. B. (2007). Genetic therapies against HIV. Nature Biotechnology, 25(12), 1444-1454. https://doi.org/10.1038/nbt1367
Slomovic, S., Pardee, K., & Collins, J. J. (2015). Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of the National Academy of Sciences, 112(47), 14429-14435. https://doi.org/10.1073/pnas.1508521112
Tee, K. L., Grinham, J., Othusitse, A. M., González-Villanueva, M., Johnson, A. O., & Wong, T. S. (2017). An efficient transformation method for the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Biotechnology Journal, 12(11), 1700081.
https://doi.org/10.1002/biot.201700081