Compatibility and effect of capacity ratios between Na3V2(PO4)3 and hard carbon in highly concentrated sodium bis (fluorosulfonyl) imide electrolyte
Main Article Content
Abstract
From the standpoint of preserving the Earth's resources and ensuring the long-term viability of humanity, it is imperative to transition away from lithium-ion batteries. High-performance and safe sodium-ion batteries have recently emerged as promising advanced batteries for application in stationary energy storage, attributed to their low cost and abundance of sodium ion. We demonstrate the compatibility and effect of the negative-positive capacity ratio in full-cell Na3V2(PO4)3 and hard carbon in high-concentration electrolytes. Thanks to the excellent oxidation stability of the electrolyte, during 100 cycles, the full cell with a negative-positive capacity ratio of 1.1 demonstrated a consistent capacity of around 100 mAh g-1 with a capacity retention of 90.7%, whereas the full cell with a ratio of 1.0 showed a steady discharge capacity of roughly 90 mAh g-1 with a capacity retention of approaching 100% at a current density of C/5.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Bommier, C., Surta, T. W., Dolgos, M., & Ji, X. (2015). New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Letters, 15(9), 5888-5892.
Cao, R., Mishra, K., Li, X., Qian, J., Engelhard, M. H., Bowden, M. E., ... & Zhang, J. G. (2016). Enabling room temperature sodium metal batteries. Nano Energy, 30, 825-830.
Dou, M., Zhang, Y., Wang, J., Zheng, X., Chen, J., Han, B., ... & Cai, Z. (2023). Simultaneous cation-anion regulation of sodium vanadium phosphate cathode materials for high-energy and cycle-stable sodium-ion batteries. Journal of Power Sources, 560, 232709.
Hirsh, H. S., Sayahpour, B., Shen, A., Li, W., Lu, B., Zhao, E., ... & Meng, Y. S. (2021). Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Materials, 42, 78-87.
Huang, Y., Wang, Y., Bai, P., & Xu, Y. (2021). Storage mechanism of alkali metal ions in the hard carbon anode: an electrochemical viewpoint. ACS Applied Materials & Interfaces, 13(32), 38441-38449.
Hwang, J. Y., Myung, S. T., Choi, J. U., Yoon, C. S., Yashiro, H., & Sun, Y. K. (2017). Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 5(45), 23671-23680.
Lee, J., Lee, Y., Lee, J., Lee, S. M., Choi, J. H., Kim, H., ... & Choi, N. S. (2017). Ultraconcentrated sodium bis (fluorosulfonyl) imide-based electrolytes for high-performance sodium metal batteries. ACS applied Materials and Interfaces, 9(4), 3723-3732.
Li, P., Gao, M., Wang, D., Li, Z., Liu, Y., Liu, X., ... & Guo, X. (2023). Optimizing vanadium redox reaction in Na3V2(PO4)3 cathodes for sodium-ion batteries by the synergistic effect of additional electrons from heteroatoms. ACS Applied Materials & Interfaces, 15(7), 9475-9485.
Ma, L., Cui, J., Yao, S., Liu, X., Luo, Y., Shen, X., & Kim, J. K. (2020). Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 27, 522-554.
Moeez, I., Jung, H. G., Lim, H. D., & Chung, K. Y. (2019). Presodiation strategies and their effect on electrode–electrolyte interphases for high-performance electrodes for sodium-ion batteries. ACS Applied Materials and Interfaces, 11(44), 41394-41401.
Nguyen, T. H., & Duong, T. H. N. (2020). Separation and recovery of Co (II) and Li (I) from spent lithium-ion mobile phone batteries. Can Tho University Journal of Science, 12(2), 60-67.
Nguyen, T. T., Chau, P. Q., Nguyen, N. P. P., Pham, L. T., Nguyen, P. H., Huynh, T. T. K., ... & Van Tran, M. (2023). Synergistic effect of high concentration sodium bis (fluorosulfonyl) imide electrolyte and fluorinated ethylene carbonate enabling stability and high-rate performance of Na metal batteries. Chemical Physics Letters, 825, 140576.
Pan, Y., Zhang, Y., Parimalam, B. S., Nguyen, C. C., Wang, G., & Lucht, B. L. (2017). Investigation of the solid electrolyte interphase on hard carbon electrode for sodium ion batteries. Journal of Electroanalytical Chemistry, 799, 181-186.
Shen, L., Li, Y., Roy, S., Yin, X., Liu, W., Shi, S., ... & Zhao, Y. (2021). A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chinese Chemical Letters, 32(11), 3570-3574.
Song, J., Peng, X., Liu, D., Li, H., Wu, M., Fang, K., ... & Tang, H. (2023). On-site conversion reaction enables ion-conducting surface on red phosphorus/carbon anode for durable and fast sodium-ion batteries. Journal of Energy Chemistry, 80, 381-391.
Tran, T. T., Nguyen, V. N. H., Nguyen, T. H., & Lee, M. S. (2023). Investigating the leaching performance of ferric chloride solution for metallic alloys resulting from reduction smelting of spent lithium-ion batteries. Can Tho University Journal of Science, 15(1), 64-70.
Wu, H. M., Belharouak, I., Deng, H., Abouimrane, A., Sun, Y. K., & Amine, K. (2009). Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life. Journal of the electrochemical society, 156(12), A1047.
Xiao, L., Lu, H., Fang, Y., Sushko, M. L., Cao, Y., Ai, X., ... & Liu, J. (2018). Low‐defect and low‐porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Advanced Energy Materials, 8(20), 1703238.
Xie, F., Xu, Z., Jensen, A. C., Ding, F., Au, H., Feng, J., ... & Titirici, M. M. (2019). Unveiling the role of hydrothermal carbon dots as anodes in sodium-ion batteries with ultrahigh initial coulombic efficiency. Journal of Materials Chemistry A, 7(48), 27567-27575.
Xie, F., Lu, Y., Chen, L., & Hu, Y. S. (2021). Recent Progress in Presodiation Technique for High-Performance Na-Ion Batteries. Chinese Physics Letters, 38(11), 118401.
Yamada, Y. (2020). Concentrated battery electrolytes: Developing new functions by manipulating the coordination states. Bulletin of the Chemical Society of Japan, 93(1), 109-118.
Zhang, L., Deshmukh, J., Hijazi, H., Ye, Z., Johnson, M. B., George, A., ... & Metzger, M. (2023). Impact of Calcium on Air Stability of Na[Ni1/3Fe1/3Mn1/3]O2 Positive Electrode Material for Sodium-ion Batteries. Journal of The Electrochemical Society, 170(7), 070514.
Zheng, J., Chen, S., Zhao, W., Song, J., Engelhard, M. H., & Zhang, J. G. (2018). Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Letters, 3(2), 315-321.