Nguyen Van Men * and Dong Thi Kim Phuong

* Corresponding author (nvmen@agu.edu.vn)

Main Article Content

Abstract

Plasmon excitation plays important roles in many-body systems’ properties such as screening and drag in layer structures and is applied in plasmonic and photonic technology. This research is to consider the analytical expressions of plasmon frequencies in a double layer system made of mono–layer graphene (MLG) and GaAs quantum well with separation of  and nonhomogeneous dielectric background at zero temperature. In this research, random–phase–approximation (RPA) is used to calculate the dielectric function of the system and to determine the plasmon modes by finding out zeroes of the function. Results represent that the zeroes of dielectric function admit two solutions (as in the case of semiconductor double quantum well systems or double-layer graphene – DLG), corresponding for optical (OP) and acoustic (AC) branch, respectively. Meanwhile the frequency of the former is proportional to root square of wave vector and depends on the dielectric constant of the surrounding layers, the frequency of the later is proportional to wave vector and depends on dielectric constant of contacting media and quantum well in long wavelength limit.
Keywords: dielectric function, plasmon excitation, random – phase – approximation

Article Details

References

Badalyan, S. M. and Peeters, F. M., 2012. Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures. Physical Review 85(19): 195444.

Czachora, A., Holas, A., Sharma, S. R., and Singwi, K. S., 1982. Dynamical correlations in a two-dimensional electron gas: First-order perturbation theory. Physical Review B 25(4): 2144.

Digish, K. P., 2015. Transport properties of monolayer and bilayer graphene. PhD thesis. The Maharaja Sayajirao University of Baroda, India.

Gamucci, A. Spirito, D., Carrega, M., et al., 2014. Electron-hole pairing in graphene-GaAs heterostructures. Nature Communications, 5: 5824.

Gasser, W., 1989. Plasmon and magneto-plasmon excitations in double heterostructures. Zeitschrift für Physik B Condensed Matter, 75(4): 459-468.

Geim, A. K. and Novoselov, K. S., 2007. The rise of graphene. Nature Materials, 6(3): 183-191.

Hwang, E. H. and Sarma, S. D., 2007. Dielectric function, screening, and plasmons in 2D graphene. Physical Review B 75: 205418.

Hwang, E. H. and Sarma, S. D., 2009. Exotic plasmon modes of double layer graphene. Physical Review B 80: 205405.

Khanh, N. Q., 1996. Dielectric function and plasmon dispersion relation. Physica Status Solidi (b) 197: 73.

Khanh, N. Q., 2001. The Effect of the Image Charges on the Mobility of a Quasi-Two-Dimensional Electron Gas. Physica Status Solidi (b) 225(1): 89–93.

Khanh, N. Q. and Toan, N. M., 2003. Electron correlations in two dimensions: effects of finite thickness and image charges. Solid State Communications 125(3-4): 133-137.

Maier, S. A., 2007. Plasmonics – Fundamentals and Applications. Springer, New York.

Men, N. V. and Khanh, N. Q., 2017. Plasmon modes in graphene–GaAs heterostructures. Physics Letters A 381(44): 3779–3784.

Neto, A. H. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., 2009. The electronic properties of graphene. Review Modern Physics 81(1): 109.

Principi, A., Carrega, M., Asgari, R., Pellegrini, V., and Polini, M., 2012. Plasmons and Coulomb drag in Dirac/Schrodinger hybrid electron systems. Physical Review B 86: 085421.

Sarma, S. D., Hwang, E. H., and Rossi, E., 2010. Theory of carrier transport in bilayer graphene. Physical Review B 81: 161407.

Sarma, S. D., Adam, S., Hwang, E. H., and Rossi, E., 2011. Electronic transport in two dimensional graphene. Review Modern Physics 83: 407.

Sarma, S. D., Madhukar, A., 1981. Collective modes Spatially Separated. Physical Review B 23: 805.

Scharf, B. and Matos-Abiague, A., 2012. Coulomb drag between massless and massive fermions. Physical Review B 86: 115425.

Sensarma, R., Hwang, E. H., and Sarma, S. D., 2010. Dynamic screening and low energy collective modes in bilayer graphene. Physical Review B 82: 195428.

Stern, F., 1967. Polarizability of a two-dimensional electron gas. Physics Review Letters 18(14): 546.

Ho Sy Ta, 2017. Plasmon characteristics and dynamical properties of electrons in graphene. PhD thesis. Hanoi University of Science and Technology, Ha Noi, Vietnam (in Vietnamese).

Tanatar, B. and Davoudi, B., 2003. Dynamic correlations in double-layer electron systems. Physical Review B 63: 165328.

Tuan, D. V. and Khanh, N. Q., 2013. Plasmon modes of double-layer graphene at finite temperature. Physica E 54: 267–272.

Vazifehshenas, T., Amlaki, T., Farmanbar, M., and Parhizgar, F., 2010. Temperature effect on plasmon dispersions in double-layer graphene systems. Physics Letters A 374(48): 4899–4903.